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Abstract

The Steiner tree packing problem is a long studied problem in combinato-
rial optimization. In contrast to many other problems, where an enormous
progress has been made in the practical problem solving, the Steiner tree
packing problem remains very difficult. Most heuristics schemes are ineffec-
tive and even finding feasible solutions is already NP -hard. What makes this
problem special, is that in order to reach an overall optimal solution non-
optimal solutions to the underlying NP -hard Steiner tree problems must be
used. Any non-global approach to the Steiner tree packing problem is likely
to fail. Integer programming is currently the best approach for computing
optimal solutions.

The goal of this master thesis is to give a survey of models relating to the
Steiner tree packing problem from the literature. In addition, a closer look
at a model for the switchbox routing problem in VLSI-Design will be given.
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Chapter 1

Introduction

The enormous progress in the development of electronic circuits have let
this become a backbone of modern technology. For example, manufacturing,
communication, measurement or control systems of the present generation
are no longer conceivable without electronic controls.

An electronic circuit is a complex interconnection of semiconductor devices
(so-called transistors). This interconnection is the physical implementation
of a logic function. The current technical capabilities allow the integration of
several million transistors on a few square centimeters. The magnitude and
complexity of the problems that arise in the design of such circuits, provide
a great challenge for the developers of electronic circuits. Naturally, meth-
ods from the fields of engineering, computer science and mathematics are
required to solve these problems. For example, a number of problems which
arise in the design of electronic circuits can be formulated as a combinatorial
optimization problem. For this reason, various methods can be used from
this mathematical field.

The problem of minimizing the length of a network or graph is one of the
oldest optimization problems in mathematics, for example the Steiner tree
packing problem. Many famous mathematicians of the past dealt with this
problem.

This thesis gives a detailed introduction to the problem. First important
terms and notations from the fields of graph theory and linear programming
are summarized. During the thesis these terms and notations are required.
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In order that the Steiner Tree Packing Problem can be defined, a definition
of the underlying Steiner tree problem and its historical aspects are given
in chapter 3. Then a mathematical definition of the Steiner tree packing
problem is given. Furthermore, there are given some complexity-theoretic
statements about this problem. After that, this thesis gives a short overview
of different algorithms from the literature, that are related to the Steiner tree
packing problem. These include the edge-disjoint, node-disjoint and element-
disjoint Steiner tree packing problem.

The following part of the thesis deals with the application of the Steiner tree
packing problem (see Chapter 4). The motivation for the study of Steiner
tree packing problem comes from the design of electronic circuits. A part of
the problem occurring there is the so-called routing problem. First the reader
will get familiar with the technical terms occurring in the design of electronic
circuits. Then some variants of the routing problem are presented, in which
different restrictions are given. In addition, it is made clear at which points
the study of the Steiner tree packing problem can make a contribution to
solve the routing problem.

Subsequently, in order to come up with some mathematical formulations
for solving the Steiner tree packing problem, a survey of different integer
programming models is given in chapter 5, which focuses on computational
aspects of the problem. This type of mathematical programming is a way to
achieve a good solution.

In order to show how far an approach, which uses linear programming, can
solve a problem of practical application, the cutting plane algorithm for solv-
ing the weighted Steiner tree packing problem is explained. First, the basic
procedure of such a method is explained in chapter 6. This algorithm was
developed to solve the switchbox routing problem by using integer linear
programming and a heuristic to determine a feasible solution. Moreover, dif-
ferent test examples from the literature are used for validating this approach,
and the results are discussed afterwards.

A similar heuristic as described in the cutting plane approach was imple-
mented with Matlab. In chapter 7 a detailed description and an evaluation
of the developed heuristic is provided.
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Chapter 2

Foundations

This chapter serves to explain important terms and descriptions which are
required during the thesis. First some terms of the graph theory will be
discussed and then a small insight into the linear programming is given. In
addition, in this thesis different terms from the complexity theory are used.
It is assumed that the reader is familiar with these terms and is reffered to
the book of Goldreich [Gol10].

2.1 Graph Theory

In mathematics graph theory is the study of graphs, which are models rep-
resenting pairwise relations between objects. Graphs are one of the prime
objects of study in discrete mathematics. The following important graph-
theoretic terms and descriptions are presented. In addition, some definitions
and notations are introduced. For more detailed graph-theoretic summary
the reader is refered to [Ruo13] or [BM08].

2.1.1 Graphs

A graph is an ordered pair G = (V ,E ) comprising a set V of vertices or
nodes together with a set E of edges or lines. Every edge has two endvertices
and is said to connect or join the two endvertices. An edge can thus be
defined as a set of two vertices. The two endvertices of an edge are also said
to be adjacent to each other.
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Figure 2.1: An undirected graph with 6 vertices and 7 edges

A graph may be undirected (Figure 2.1), meaning that there is no distinc-
tion between the two vertices associated with each edge, so that (vi , vj ) and
(vj , vi) denote the same edge, or its edges may be directed from one vertex
to another. A graph can be a weighted graph G = (V ,E , c) with an edge
funtion c : E → R. For each edge terms like costs, weight, lenght, etc. are
used which can also be denoted by c(vi , vj ) or cij . A graph is called finite if
V and E are finite, otherwise G is infinite. In this thesis only finite graphs
are used.

2.1.2 Walks

A walk is an alternating sequence of vertices and edges, beginning and ending
with a vertex. Each vertex is an end vertex of the edge that precedes it and
the edge that follows it in the sequence. A walk is closed if its first and last
vertex are the same and open if they are different. A walk is called a path
if no vertices and no edges are repeated. If a closed walk has no repeated
vertices or edges, it is also called a cycle. Furthermore a cycle with directed
edges where all the edges are traveled in the same direction is called a circuit.

2.1.3 Trees

A tree is a connected acyclic graph. A graph is called acyclic, if it has no
cycles. An acyclic graph is also called a forest. For a directed tree it is
furthermore assumed that each vertex has at most one incoming edge. The
degree of a vertex is the number of edges incident to the vertex, such that a
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vertex of degree 1 is called a leaf or a pendant vertex. An edge incident to a
leaf is a leaf edge or a pendant edge. A non-leaf vertex is an internal vertex.
Sometimes, one vertex of the tree is distinguished, and called the root, in
which case the edges have a natural orientation, towards or away from the
root. Such a tree is called a routed tree.

Figure 2.2: A labeled tree

In figure 2.2 a labeled tree with 6 vertices and 5 edges is shown. Nodes
1, 2, 3, and 6 are leaves, while 4 and 5 are internal vertices.

2.1.4 Planar Graphs

A graph G = (V ,E ) can be drawn in a plane, by representing each vertex
by a point in the plane, and assigns a curve or a straight line to each edge,
that connects the points, which are representing the two end vertices of the
edge. A graph is called planar if it can be drawn in the plane such that two
edges (more precisely, they representing curves) intersect at most in their
end vertices.
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Figure 2.3: Planar and Non-Planar Graphs

Such a representation of a planar graph (Figure 2.3 (A)) in the plane is
called an embedding of G in the plane. There can be different embeddings
for a graph G . The example B is a non-planar graph, because the edges in-
tersect with each other, it cannot reconfigured in a manner that would make
it planar.

When a graph is drawn without any intersection, any cycle that surrounds
a region without any edges reaching from the cycle into the region forms a
face. Two faces on a planar graph are adjacent if they share a common edge.
A face that contains the entire graph is called outer face. In this thesis the
outer surface of the graph G is denoted by the edge set OG .

2.1.5 Grid Graphs

A graph G = (V ,E ) is called a grid graph, if the set of vertices V can be
numbered, such that V ⊆ {(i , j )|i = 1, ..., h; j = 1, ..., b} with (h, b) ∈ N×N.
The number h is called the grid height and the number b, the grid width of
G . It is obvious that each grid graph is planar.
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For a grid graph G it is normally assumed a certain embedding, in which
each edge of the form [(i , j ), (i + 1, j )] is represented by an vertical line and
each edge of the form [(i , j ), (i , j + 1)] is represented by an horizontal line
(Figure 2.4).

Figure 2.4: A Grid Graph

2.1.6 Hypergraphs

A hypergraph is a generalization of a graph in which an edge can connect any
number of vertices. Formally, a hypergraph H is a pair H = (V , ε) where V
is the node set of H and ε is a collection of non-empty subsets of V . A subset
Z ∈ ε is called a hyperedge of H. Given a partition P = {V1, ...,Vt} of V
into non-empty subsets, a hyperedge Z ∈ ε is called a crossing hyperedge if it
intersects at least with two subsets of P and otherwise it is called an internal
hyperedge. The number of sets Vi in P can be denoted by |P|, and e(P)
denotes the number of crossing hyperedges corresponding to the partition P .
A hypergraph is bipartite if and only if its vertices can be partitioned into
two classes U and V in such a way that each hyperedge with cardinality at
least two contains at least one vertex from both classes.
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Figure 2.5: A hypergraph

In figure 2.5 a hypergraph with seven vertices and four partitions is given.
The hyperedges e1, e2 and e3 are crossing hyperedges and e4is an internal
hyperedge.

2.1.7 Flows and Cuts

Flows

In graph theory, each edge of a network has a capacity and each edge can
receive a so-called flow. The amount of flow on an edge cannot exceed the
capacity of the edge. A flow must satisfy the restriction, that the amount of
flow into a node is equals to the amount of flow out of it, except when it is
a source, which is the initial node, or a sink, which is the target node.
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Given a directed graph G = (V ,E ) in which every edge (u, v) ∈ E has
a non-negative capacity c(u, v). If (u, v) /∈ E , it is assumed that c(u, v) = 0.
A flow with the source s and the sink t is a function f : E → R≥0 with the
following three properties for all nodes u and v :

1) The capacity constraints f (u, v) ≤ c(u, v), which presupposes that the
flow along an edge cannot exceed its capacity. The flow from u to v must be
the opposite of the flow from v to u.

2) The conservation constraint implies that
∑
w∈V

f (u,w) =
∑
w∈V

f (w , u), un-

less u = s or u = t . The flow to a node is zero, except for the source node,
which produces flow, and the sink node, which consumes flow.

Notice that f (u, v) is the flow from u to v . If the graph represents a physical
network, and if there is a real flow of, for example four units from u to v ,
and a real flow of three units from v to u, then f (u, v) = 1.

Figure 2.6: A graph showing flow and capacity

In figure 2.6 a graph is shown, where the flow and capacity of an edge is
denoted by f /c.
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Cuts

A cut is a partition of the vertices of a graph into two disjoint subsets.
The cut-set of the cut is the set of edges, whose end points are in different
subsets of the partition. Edges are said to be crossing the cut, if they are in
its cut-set.

In a network the cut requires the source and the sink to be in different sub-
sets. In this case the cut-set only consists of edges going from the source’s
side to the sink’s side.

Figure 2.7: A cut on a graph

In figure 2.7 a cut is shown, where one partition has black vertices and the
other partition has white vertices. The red edges are in the cut-set, because
their end points are in different subsets of the partition.
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2.2 Linear Programming

Linear programming [Van08] (shorter: LP) is a mathematical method for de-
termining a way to achieve the best outcome in a given mathematical model
for some list of requirements represented as linear relationships. Linear pro-
gramming is a specific case of mathematical programming.

More formally, linear programming is a technique for the optimization of
a linear objective function, subject to linear equality and linear inequality
constraints. Let Ax ≤ b (Ax = b) be a system of linear inequalities (equal-
ities), with A a real m × n - matrix and b ∈ R

m . The set of solutions
{x ∈ R

n |Ax ≤ b} from a system of inequalities is then called the feasible
region of the linear program, which is a polyhedron. It is a intersection of
finitely many half spaces, each of which is defined by a linear inequality. Its
objective function is a real-valued affine function defined on this polyhedron.
A linear programming algorithm finds a point in the polyhedron, where this
function has the smallest (or largest) value if such a point exists.

Linear programs are problems, that can be expressed in the standard form:

minimize cTx
subject to Ax ≤ b
and x ≥ 0

x represents the vector of variables, which has to be computed, c and b
are vectors of (known) coefficients and A is a (known) matrix of coefficients.
The expression, which has to be minimized in this case is called the objective
function (here cTx ). The inequalities Ax ≤ b and x ≥ 0 are the constraints
which specify a convex polyhedron over which the objective function is to be
optimized.

If all of the unknown variables are required to be integers, then the problem is
called an integer programming or integer linear programming (shorter: ILP)
problem. In contrast to linear programming, which can be solved efficiently
in the worst case, integer programming problems are in many practical situ-
ations NP -hard. A special case, 0− 1 integer linear programming, in which
unknowns are binary, is one of the Karp’s 21 NP -complete problems.
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Linear Programming Relaxation

The linear programming relaxation [MG07] (shorter: LP-Relaxation) of an
integer program is the problem, that arises by replacing the constraint xi ∈
{0, 1}, that each variable must be either 0 or 1 by a weaker constraint
0 ≤ xi ≤ 1, that each variable belong to the interval [0, 1].

The resulting relaxation is a linear program, hence the name. The relax-
ation technique transforms an NP -hard optimization problem (integer pro-
gramming) into a related problem, that is solvable in polynomial time (linear
programming); the solution to the relaxed linear program can be used to gain
information about the solution to the original integer program.
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Chapter 3

Steiner Tree Packing Problem

In this chapter, a mathematical definition of the Steiner Tree Packing Prob-
lem is given. In addition, some designations and properties are introduced,
which will be useful later on. Some statements about the complexity of the
problem are given and, moreover, related problems from the literature are
studied.

3.1 Steiner Tree Problem

Before the Steiner Tree Packing Problem can be defined, the notion of Steiner
tree is needed. The actual Steiner tree problem will be discussed. Also the
historical aspects of this problem are offered.

The Steiner problem is the combinatorial variant of the much older Euclidean
Steiner problem, which asks for a minimal tree that connects a given set of
points in the plane. This problem has already been discussed, before 1640
by Fermat [Str10]:

Given three points in the plain, find a fourth point T , such that the length
from this point to the three given points is minimal.

13



Torricelli solved this problem and the point has since been known as the
Torricelli-point. Torricelli’s method was to construct equilateral triangles on
each side of the triangle made up by the original points. Circles circumscrib-
ing the equilateral triangles intersect in the point that is sought.

Jacob Steiner (1796-1863) considered a generalization of this problem for
n points (the generalized Fermat problem), which is the origin of the (Eu-
clidean) Steiner problem. These two problems are identical only in the case
n = 3. In 1836 the Steiner problem is believed to have been presented first by
Gauß. The first (terminating) algorithm for the Euclidean Steiner problem
was given by Melzak [Mel61]. More information on the Euclidean Steiner
problem and its history is contained in Hwang et al. [HRW92].

In 1971 Hakimi and Levin, independently of each other, gave a formulation
of the Steiner tree problem [Hak71, Lev71]. Since then hundreds of articles
have been published concerning different variants of this problem.

(Steiner Tree Problem)

Given: An undirected graph G = (V ,E ) with edge cost c : E → R+, and
a set of vertices T ⊆ V , called terminals.

Problem: Find an edge set S spanning T of minimum cost c(S ) :=
∑
e∈S

c(e).

Given a set of terminals, a tree is called a Steiner tree, if all leafs are termi-
nals. It combines all terminals and it is allowed to use non-terminal vertices
of the graph (the Steiner nodes) in order to determine the Steiner tree.

To illustrate the difference between a graph, a Steiner tree and a minimum
Steiner tree, all three variants are shown graphically in an example below.

14



Figure 3.1: An arbitrary graph

In figure 3.1 is shown a graph G , which has a set of vertices and a set
of edges. The green squares are terminal symbols, the yellow circles are the
other nodes and the connecting lines have to be seen as edges with assigned
length.

Figure 3.2: Steiner tree

This graph (Figure 3.2) is a Steiner tree, since it contains all the termi-
nals and also all the leaves of the tree are occupied by terminal symbols.
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Figure 3.3: Miminimum Steiner tree

This graph is a minimal Steiner tree, meaning that the sum of the edge
costs is minimal. All the leaves of the tree are terminals.

The Steiner tree problem in graphs is known to be NP -complete. But there
are some special cases, which can be solved in polynomial-time. This includes
the case to find the shortest connection between two terminals (the shortest
path problem). The other case is, when all vertices are terminals, then the
problem is just to find a minimum spanning tree.

3.2 Steiner Tree Packing Problem

The Steiner tree packing problem is an extension of the Steiner tree prob-
lem. Instead of having one set of terminals, we have k non-empty disjoint sets
T1, ...,Tk , called nets, that have to be packed into the graph simultaneously,
which means that the resulting edge sets S1, ..., Sk have to be edge-disjoint.

16



(Steiner Tree Packing Problem)

Given: A planar graph G = (V ,E ) and a list of terminal sets
N = (T1, ...,TN ), where N ≥ 1 and Tk ⊆ V for all k = 1, ...,N .

Problem: Find for each k = 1, ...,N , an edge set Sk ⊆ E , which spans Tk ,
such that (V (Sk), Sk) is a Steiner tree and S1, ..., SN are pairwise
edge-disjoint.

The list of vertex sets N is called a netlist. The number N denotes the cardi-
nality of the netlist. A vertex set Tk is called a terminal set and the elements
of Tk terminals. All vertices, which are used by the edge set Sk , are denoted
by V (Sk). It is often used net k instead of terminalset Tk . The notations
net, terminal, etc. originate from the VLSI-Design (Chapter 4), which is
the main application area of the Steiner tree packing problem. Usually the
edge capacities ce = 1, if ce > 1, the problem will be extended to multiple
layers. An instance of the Steiner tree packing problem is then defined by
the triple (G ,N , c). That means, when refering to an instance of a Steiner
tree packing problem, so a triple (G ,N , c) is always meant.

Often there are additionally given weighted edges, searching for a solution of
this problem, which is minimal with respect to the weightings. This weighted
problem is called the weighted Steiner tree packing problem.

(Weighted Steiner Tree Packing Problem)

Given: A planar graph G = (V ,E ), with non-negative weighted edges
we ∈ R+. A list of terminal sets N = (T1, ...,TN ), with N ≥ 1
and Tk ⊆ V for all k = 1, ...,N .

Problem: Find for each k = 1, ...,N , an edge set Sk ⊆ E , which spans Tk ,
such that (V (Sk), Sk) is a Steiner tree. The resulting edge sets
S1, ..., Sk have to be edge-disjoint while the weighted sum of
N∑

k=1

∑
e∈Sk

we have to be minimal.

The notation (G ,N , c,w) is an instance of the weighted Steiner tree packing
problem and is also called a weighted instance of the Steiner tree packing
problem.

17



3.3 Complexity

It is not surprising, that the (weighted) Steiner tree packing problem is NP -
complete (NP -hard). In this context the decision problem, whether the prob-
lem is solvable or not, is NP -complete and the optimization problem, where
an optimal solution is searched, is NP -hard. This problems has a lot of spe-
cial cases, which are already NP -complete or NP -hard. In the following a
small selection of special cases is given.

The case N = 1 will be considered for the weighted Steiner tree packing
problem, such that the Steiner tree problem (Section 3.1) will be obtained.
Karp [Kar10] showed that the Steiner tree problem is NP -hard. Garey and
Johnson [GJ77] show that the so-called rectangular Steiner tree problem is
also NP -hard. For this problem several points are given in a plane and the
goal is to find a tree of minimum cost connecting the points with horizontal
and vertical lines. From this it follows directly, that the Steiner tree prob-
lem also remains NP -hard, when the underlying graph G is planar or a grid
graph and all edges have the same weights.

For example the Steiner tree packing problem contains the problem of finding
k edge-disjoint paths. This problem is obtained if it is additionally required
that all terminal sets have a cardinality of two. Kramer and van Leeuwen
[Kv80] have provided a proof of NP -completeness for this problem. Another
special case of the Steiner tree packing problem arises, when only two termi-
nal sets are specified. Also in this case this problem is NP -complete [KPS90].

Moreover, there are NP -complete problem statements for very specific in-
stances, which very often occur in applications derived from the VLSI-Design
(Chapter 4). Let G = (V ,E ) be a complete, rectangular grid graph and N
a netlist, whose terminals are only located on the four borders of the grid
graph. Sarrafzadeh [Sar87] showed that it is NP -complete to decide, whether
there is a Steiner tree packing for such a problem. This result remains valid,
if each terminal set has at most cardinality k for a fixed k > 3. For the case
k = 2, this problem can be solved in polynomial time.

These examples should give an impression about the actual difficulty of the
problem. It can be said that the (weighted) Steiner tree problem is NP -hard.
There are also special cases, which can be solved in polynomial time.
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3.4 Related Problems

The Steiner tree packing problem is a long studied topic. Here a short
overview of different ideas and algorithms for the Steiner tree packing prob-
lem is given. The various algorithms were divided roughly into the edge-
disjoint, the vertex-disjoint and the element-disjoint cases.

3.4.1 Edge-Disjoint Steiner Tree Packing

The edge-disjoint case is usually treated, when referring to a Steiner tree
packing problem. Most of the edge-disjoint Steiner tree packing problems in
planar graphs are NP -complete. Even when restricted to paths, which means,
that all nets have only two terminals, the problem remains NP -complete. In
the following some algorithms of this problem are presented.

(Max-Steiner-Tree-Packing Min-Steiner-Cut Algorithm)

This approximation algorithm for the Steiner tree packing problem was given
by Lau [Lau07]. The goal is to find a largest collection of edge-disjoint Steiner
trees of an undirected graph G . In this approximation algorithm the main
idea is an approximate min-max relation between the maximum number of
edge-disjoint Steiner trees, that each connect the terminals and the minimum
size of an edge-cut that disconnect some pair of terminals.

Given an undirected graph G and a subset of vertices S ⊆ V (G), called
terminals. The terminals S are also called black vertices, while the vertices
V (G)\S are called white vertices (Steiner vertices). An edge is called a white
edge if it connects two white vertices.

The algorithm consists of two parts. In the first step the given graph G with
` white edges will be transformed into at most ` + 1 graphs {G1, ...,G`+1},
such that each graph has no white edge by using Edmonds’ matroid par-
tition algorithm [Edm65]. In the second step for each subgraph Gi with
i = 1, ..., ` + 1, all Steiner trees are determined. Afterwards the solutions of
the subgraphs are combined.
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Then the Steiner tree packing problem is formulated by the following linear
program, which was introduced by Jain, Mahdian and Salacatipour [JMS03]:

maximize
∑
T∈T

xT

subject to
∑
T∈T
e∈E

xT ≤ ce ∀T ∈ T : xT ≥ 0

In this formulation T denotes the collection of all Steiner trees in a graph
G = (V ,E ), and ce is the given capacity of the edge e ∈ E . The size of T
grows exponentially to the number of vertices in V .

(Edge-Disjoint Steiner Trees)

This approximation algorithm for packing edge-disjoint Steiner trees in pla-
nar graphs was introduced by Aazami [Aaz08]. Based on the element-
disjoint Steiner tree packing algorithm (Section 3.4.3), which also was given
by Aazami, this egde-disjoint version of the problem on planar graphs was
developed. The goal is to find a maximum cardinality set of edge-disjoint
Steiner trees, such that each tree contains every terminal node.

A graph is said to be k -edge connected if it remains connected whenever
at most k edges are removed. The following statement is the main result of
this algorithm:

Let G = (V ,E ) be an undirected planar graph, let R ⊆ V be the set of
terminals, and assume that R is k-edge connected. Then there are at least
b k
4
c−1 edge-disjoint Steiner trees in G. Moreover, there is an algorithm with

a running time of O(|V |4.5) that finds at least b k
4
c − 1 edge-disjoint Steiner

trees in G.

The graph G is first reduced to a planar graph G ′ with Steiner nodes of
degree at most four. To achieve this, a Steiner node of degree more than four
is repeatedly replaced by a so-called gadget, which retains the connectivity
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and planarity. The gadget and its properties are well known from the liter-
ature [MP93, NS08]. The new Steiner nodes have a degree of at most four.
For example let v be a Steiner node of degree seven in G . The node will be
replaced by a gadget as shown in figure 3.4.

Figure 3.4: Gadget for high degree nodes [Aaz08]

Let v be a Steiner node of degree d > 4 in G . The gadget has dd
2
e − 1

rows including the row with the previously given Steiner node, which is now
called v ′. Through this process the graph now has one less Steiner node of
degree more than four. The set of terminal nodes and their degree stay the
same. Any set of edge-disjoint paths using edges which belongs to v can be
rerouted via the gadget (Figure 3.5).The set of terminals R is k -connected in
the obtained graph, where every Steiner node is of degree less or equal four.

Figure 3.5: Routing paths via the gadget [Aaz08]
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Given a pairing of edges, used in the paths, going through v , one of the ex-
treme pairs will be routed first. An extreme pair is the pair, which uses the
left most edge or the right most edge. This pair uses the first horizontal row
of the gadget. The next pair is routed along the vertical edges to the next
horizontal row. Some of the paths may be need to be shifted, like the path
labeled (2, 2′), which is shifted on the first row to the left (Figure 3.5).

An edge that connects two terminals can be subdivided by introducing a
Steiner node. Aazami assumes that G ′ does not contain such an edge con-
necting two terminals. By applying the element-disjoint Steiner tree packing
algorithm (Section 3.4.3) to G ′, there are b k

4
c − 1 element-disjoint Steiner

trees in G ′. These Steiner trees are obviously edge-disjoint. Then it can be
said that G has at least b k

4
c − 1 edge-disjoint Steiner trees.

3.4.2 Vertex-Disjoint Steiner Tree Packing

In the vertex-disjoint case, each node of the graph G is only allowed to occur
in one of the Steiner trees. The vertex-disjoint Steiner tree packing problem
in planar graphs is known to be NP -complete. Even when restricted to paths,
which means that all nets have only two terminals, the problem remains NP -
complete. Robertson and Seymour [RS90] showed, that the vertex-disjoint
paths packing problem is solvable in polynomial time if the number of paths k
is fixed. A linear-time algorithm for planar graphs, which goodness strongly
depends on the number of paths, has been introduced by Reed, Robertson,
Schrijver and Seymour[RRSS93].

There are polynomial time algorithms for the vertex-disjoint Steiner tree
packing problem in planar graphs, where the terminals lie only on one or two
borders of the graph. The algorithms, which are presented in the following,
where the terminals lie only on one border of the graph may be seen as a key
idea for simple linear-time algorithms for similar problems.
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(Vertex-Disjoint One-Face Steiner Tree Packing Problem)

Given: A planar graph G = (V ,E ), |V | = n, and pairwise vertex-disjoint
sets N1, ...,Nk ⊆ V . The graph G is embedded in the plane, such
that all terminals lie on the boundary of the outer face of G .

Problem: Find, for each i = 1, ..., k , a Steiner tree Ti for Ni such that
Ti , ...,Tk are pairwise vertex-disjoint.

It should be noted, that in this problem statement a feasible not an optimal
solution is searched. The algorithm, given by Liao and Sarrafzadeh [LS91],
has two steps. In the first step the topological solvability is tested and in the
second step the layout of the nets is determined. It is important that enough
edge capacity is available and that the nets have a nested structure, which
means that the nets are not allowed to intersect each other. The topological
solution is a collection of Steiner trees for the nets that can be drawn dis-
jointly in the plane outside the outer face.

The topological solvability can be decided by the simple Stack Algorithm.
It checks whether the nets are nested. In this algorithm the terminals are
scanned in anti-clockwise direction along the outer face boundary, beginning
with some arbitrary terminals. Every new visited terminal is pushed onto
the stack. If the pushed terminal is the last non-visited terminal of the cor-
responding net, it is tested if all terminals of the net lie on top of the stack.
If this is not the case, the problem is not topologically solvable. Otherwise,
all terminals of the net are popped. When all the terminals of all nets are
visited, and there was no conflict before, the instance is topologically solvable
only if the stack is empty. For net Ni the first terminal is denoted by si and
the last terminal by ti .

Stack Algorithm

Input:
A net set N = {Ni |i = 1, ..., k} and a planar graph G , where si and ti are
on the outer face.
STACK := ∅
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Output:
Topological solvable or unsolvable.

begin
arbitrarily choose a vertex v as the starting point;
the first terminal si is the one closest to v in anti-clockwise direction of the
boundary of G ;
set j = i and a = |Nj | − 1;
walk anti-clockwise direction along outer face boundary;
if visited vertex v ∈ Nj ;

then a = a − 1;
if a = 0, such that v is a last terminal ti ;

then POP until si is popped;
else if a 6= 0;

then PUSH v on the stack;
else if v ∈ Nk for k 6= j and a 6= 0;

then return topological unsolvable;
else if v ∈ Nk for k 6= j ;

then j = k and a = |Nj | − 1;
end;

return topologically solvable;

The Stack Algorithm can be implemented to run in linear time. The one-face
layout algorithm, which tries to get a solution, is now based on the Stack
Algorithm. This algorithm is explained in the following. In order to get a
correct spanning of the nets, they are considered in the order, in which they
have been deleted from the stack. After a net is routed, the boundary is
corrected by deleting all used edges and vertices, and all edges incident to
them.

(One-face Layout Algorithm)

This algorithm can be interpreted as a right-first search or a depth-first
search, where in each search step the edges are searched from right to left.
A backtrack and remove step consists of a backtrack step, where in addition
the searched edge is deleted from the graph. For technical reasons all si are
determined to have degree one in G . In the following the One-Face Layout
Algorithm is formulated:
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Algorithm

for i := 1 to k do
let pi initially consist of the unique edge incident to si ;
v := the unique vertex adjacent to si ;
while not all terminals of Ni are visited and v 6= si do

if at least one edge incident to v is not yet searched then
let {v ,w} be the next edge after the leading edge of pi w.r.t. v ;
if w is just occupied by some tree different from Ni then

perform a backtrack and remove step;
else add {v ,w} to pi ;
v := w ;

else perform a backtrack and remove step;
v := the leading vertex of pi ;

if v = si then stop; return unsolvable;
return (p1, ..., pk);

The running time of this algorithm is also O(n).

3.4.3 Element-Disjoint Steiner Tree Packing

This approximation algorithm for packing element-disjoint Steiner trees in
planar graphs was introduced in [Aaz08]. An element describes either an
edge or a Steiner node. The goal is to find a maximum cardinality set of
element-disjoint Steiner trees, such that each tree contains every terminal
node. The method consists of two steps. In the first step the given graph
G will be transformed into a bipartite graph. In the second step the bipar-
tite graph is considered as a hypergraph and apply a method of Frank et al.
[FKK03] to decompose the set of hyperedges ε into a number of disjoint sets
ε1, ε2, ε3, ..., where each set is a Steiner tree of the bipartite graph. Each of
these bipartite Steiner trees will be transformed back to a Steiner tree of the
original graph.

A graph is k -element connected if it remains connected whenever at most
k edges or Steiner nodes are removed. The following statement is the main
result of this algorithm:
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Let G = (V ,E ) be an undirected planar graph, let R ⊆ V be the set of ter-
minals, and assume that R is k-element connected. Then there are at least
b k
2
c − 1 element-disjoint Steiner trees in G. Moreover, there is an algorithm

with a running time of O(|V |4.5) that finds at least b k
2
c − 1 element-disjoint

Steiner trees in G.

The bipartite Steiner tree packing problem is defined to be a subproblem
of the element-disjoint Steiner tree packing problem, such that the graph
is bipartite, all terminals are in one part of the bipartition and all Steiner
nodes are in the other part. Given such an instance of the bipartite Steiner
tree packing problem G = (R,U ; E ), where R is the set of terminal nodes
and U is the set of Steiner nodes. A hypergraph H = (V , ε) (Section 2.5) is
associated to G as follows. The node set of H is given by the set of terminal
nodes R of G and for each Steiner node u ∈ U there is a hyperedge Zu , that
contains the set of neighbors of u in G . An instance of the bipartite Steiner
packing problem with any hypergraph can be introduced by GH.

In the following an algorithm is described, where a planar graph G is given
with the goal to find element-disjoint Steiner trees:

Algorithm:

1. In the first step, reduce the given graph G = (V ,E ) to an instance G
′

of the bipartite Steiner tree packing problem; note that G
′

is obtained
from G by removing or contracting white edges in G .

2. In the second step, using results of Frank et al. [FKK03], the associ-
ated hypergraph H of G

′
is decomposed by using Edmonds’ matroid

partition algorithm [Edm65], into the maximum number of partition-
connected subhypergraphs. The independence test in this algorithm is
to check if the given hypergraph is a hyperforest.

3. Each partition-connected subhypergraph corresponds to an Steiner tree
in G

′
. By uncontracting the edges in G that were contracted in the

first step of the algorithm, at least
∣∣ k
2

∣∣−1 element-disjoint steiner trees
in G will be obtained.
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Chapter 4

VLSI-Design

The motivation for the study of Steiner tree packing problem comes from
the field of the design of electronic circuit, which is also called Very Large
Scale Integration (shorter: VLSI). An important subproblem that occurs
in the design of electronic circuits is the routing problem. In this chapter,
the routing problem is considered in more detail. The problems which arise
are identified and some solution approaches are given [JLPP02, GMW96a,
GMW97, KH12].

4.1 Routing Problem in VLSI-Design

The VLSI-Design can be divided into two phases. A circuit has to fulfill a
given task. The task is a complex logical function, which is comprised of
many elementary logical operations. The logical design specify, which of the
logical functional units may be used and defines the connection, which have
to be realized between the units. These units specifying a logical function
called cells. The connections, which have to be realized are called networks.
The list of cells, together with the list of networks, forms the input for the
second phase, the physical design. The task here is to realize the logical
design physically, this means that the cells have to be arranged on a given
surface and to realize the network, which is connected by electrical lines. The
task is made more difficult, because depending on the technology specific de-
sign rules (for example: minimum distance of certain cells or networks) must
be observed and an objective function, where the resulting surface must be
minimized. Generally this problem can be divided into two subproblems,
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which are solved one after the other. The first is the placement problem,
which deals with the arrangement of the cells and the second is the routing
problem, which deals with the realization of the network. In this thesis only
the routing problem is from intrest.

As mentioned above, the routing problem is to connect the cells on the rout-
ing area subject to certain technical side constraints. The objective usually is
to minimize the overall routing length. A net is called routed if its terminals
are connected. A net where k is the number of terminals, is defined as a
k-terminal net. If k > 2, the term multiterminal net is often used.

For the routing there are usually several levels available, the so-called layers.
If a net changes a layer, a hole must be drilled. Such a hole is called a via.
The routing of a net is usually on horizontal and vertical lines, the so-called
tracks to which the contacts of the nets must be assigned. If the routing of
the nets is not on such tracks, this can also be called a grid-free routing.

4.2 Decomposition of the Routing Problem

In practice, the routing problem is usually decomposed, so that large scales,
which can occur at this problem, can be treated. In a first step, the networks
homotopy is determined. It is defined how the cells have to be connected.
This step is also known as the global routing. The second step is the detailed
routing. Here the nets are assigned to the layers and tracks according to
the homotopy specified in the global routing step. This decoposition scheme
gives rise to many variants of the routing problem.

4.2.1 Global Routing

For modelling the global routing problem, the routing area is subdivided into
subareas and these are represented by nodes in a graph. There are many vari-
ants to make such a subdivision, which among other things depends on the
underlying technology and the methods used. An example of how such an
routing area may be divided is illustrated in figure 4.1.
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Figure 4.1: Dividing a routing area in subareas

The enclosing rectangle represents the given area. The rectangular units,
which contain a diagonal represent the cells. The routing area is subdivided
into rectangular subareas. This subdivision of the routing area is represented
by a graph as follows. For each subarea, a node is defined and an edge be-
tween two nodes is introduced, if their corresponding subareas are adjacent.
Let G = (V ,E ) be the graph that results from this construction, where each
edge e receives a capacity ce ∈ N, which indicats how many nets can use
this connection. In addition, each edge gets a weight we ∈ R+, indicating the
distance between the centers of the corresponding subareas. The task now
is to find a routing for each net in G such that the capacity conditions are
preserved and the total routing length is minimized. The formulated task
here corresponds to an instance of the weighted Steiner tree packing problem.
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4.2.2 Detailed Routing

After having solved the global routing problem, the detailed routing problem
must be solved. This means, that every subarea, which are represented by
nodes and are connected by edges, must be routed in detail. The homotopy,
which was determined at the global routing, must be considered. There are
a lot of different detailed routing models which are studied in the literature.
In most cases, these problems can be formulated in a grid graph. This thesis
will be restricted to problems in such grid graphs.

The detailed routing problem can be classified according to two indepen-
dent criteria. In the following the two (A, B) criteria are explained and
various models are introduced.

A: Structure of the routing area
One criterion distinguishes the detailed routing problems in the construction
of the routing areas. In the following different resulting models are presented:

(Channel routing)
Given a complete, rectangular grid graph. The terminals of the nets may be
located on two opposing borders of the graph (Figure 4.2). The size of the
routing area is not fixed in advance.

Figure 4.2: Channel routing area
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(Switchbox routing)
Given a complete, rectangular grid graph. The terminals of the nets may be
located on all borders of the graph (Figure 4.3). The size of the routing area
is fixed here.

Figure 4.3: Switchbox routing area

(General routing)
Given an arbitrary grid graph. Here the graph may contain holes or have
a non-rectangular structure. The size of the routing area is fixed and the
terminals may be located arbitrarily at the holes or borders (Figure 4.4). It
should be noted that in contrast to the above two models, the homotopy of
nets is not trivial and therefore must be taken into account.

Figure 4.4: General routing area
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B: Layer structures
The other criterion distinguishes the detailed routing problems by extent to
which the layers are taken into account when the connections of the nets
are assigned to the tracks. In the following are presented different resulting
models for this criterion:

(Multiple layer model)
A k -dimensional grid graph can be obtained by stacking k copies of a grid
graph on top of each other and connecting the corresponding nodes by per-
pendicular lines. The nets have to be routed in a node-disjoint way. This
model certainly comes very close to the technology requirements, but has
the disadvantage that, in general, the resulting graphs are very large. The
number k has to be chosen minimal.

(Manhattan model)
Given a planar grid graph. The nets have to be routed in a node-disjoint
way, with the additional restriction that nets that meet at some node are
not allowed to bend at this node. The so-called knock-knees are not allowed
(Figure 4.5).

(Knock-knee model)
Given a planar grid graph. The task is to find an edge-disjoint routing of the
nets. Here the restriction of the Manhattan model is omitted, which means
that knock-knees are allowed. It often arise shorter connections, than in the
previous model, but the main disadvantage is that the assignement to layers
is neglected. Brady and Brown have designed an algorithm, that guarantees,
that any solution in this model can be routed on four layers [BB84]. It was
shown, that it is NP -complete to decide if a realization on three layers is
possible.

Figure 4.5: Knock-knee model
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These two types of categorization (A and B) with its models can be combined
arbitrarily. For example, the switchbox routing problem in the knock-knee
model, which will be of interest in the approach presented in chapter 6. In
graph-theoretic terms this combination can be formulated as a problem of
finding edge-disjoint Steiner trees in a complete grid graph, where all termi-
nals may be located on all borders of the graph. Additionally is the fact that
depending on the model different objective functions can be optimized. Pos-
sible objective functions are, minimizing of the routing area, minimizing of
the routing length or minimizing the number of vias. In the case of switchbox
routing, minimizing of the routing length is typically the objective, because
here the routing area is fixed. The objective for the channel routing problem
is usually the minimization of the routing area and for the general routing
problem the minimization of the number of vias can be used as the objective
function.

4.3 Related Problems

As seen in this chapter, a large number of subproblems of the routing problem
can be derived. For all these models different approaches are studied and dis-
cussed in the literature. In this section different approaches for the switchbox
routing problems, which are formulated as an instance of the Steiner trees
packing problem, are given.

4.3.1 Switchbox routing

(Exact Method)

In this context an exact method is understood as an algorithm that always
finds a solution, if there exists a solution or it decides in finite time that there
is no solution. Until now exact methods for the switchbox routing problem
are known for the case, where only two terminals have to be routed in the
knock-knee model. Because in this case the problem, to route N nets, is
equivalent to the edge-disjoint packing problem.
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Given a planar graph G = (V ,E ) and a net list N = {T1,T2, ...,TN} with
TK = {sk , tk} for k = 1, 2, ...,N . The outer face of G is denoted by the
edge set OG . Robertson and Seymour [RS90] denoted f (X ) = δG(X ) as an
induced cut X ⊆ V , where δG(X ) is the set of edges in G with one end node
in X and another in V \X (see Section 2.1.7). In the following an algorithm
is described:

Algorithm

Input:
A planar graph G = (V ,E ) and a net list N of nets {sk , tk} with k =

1, ..,N .
Output:

N edge-disjoint paths P1,P2, ...,PN , such that sk and tk are connected
through Pk for k = 1, 2, ...,N , else there exists no solution.

(1) if G is not 2-vertex-connected, decompose G in components, which
are 2-vertex-connected and use the following steps on every
component

(2) let e ∈ OG be an edge, located in an induced cut of X , which is
minimal regarding f

(3) if f (X ) < 0, then STOP (there exists no solution)
(4) number V (OG) cyclically, such that V (OG) = {v0, v1, ..., vk = v0} with

e = v0v1
(5) if f (X ) = 0, then
(6) choose a vertex minimal cut X

′
with vi ∈ X

′
and v0 /∈ X

′
;

(7) choose [vi , vj ] ∈ δH (X
′) with vj /∈ X

′
, j maximum;

(8) if f (X ) > 0, then
(9) choose [vi , vj ] ∈ F arbitrarily;
(10) set G := G\e and N := N\{vi , vj} ∪ {{vj , v0}, {vi , v1}}
(11) if E 6= ∅, go to (1)
(12) if sk 6= tk for {sk , tk} ∈ N , then STOP (there exists no solution)
(13) identify the paths P1,P2, ...,PN according to the decomposition in (10)
(14) STOP.
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The difficult part of this algorithm is to show, that the choice of the cut
X in step (6) and the choice of the nets in step (7) guarantee, that G\e and
N := N\{vi , vj} ∪ {{vj , v0}, {vi , v1}} are solvable, if G and N are solvable
too. The reduction of the problem in step (10) ensures, that N ⊆ V (OG).
Finally, it should be noted for determining the ways in step (13), that the
way P with the terminals {vi , vj} in step (10) is made up of the ways P1 with
{vj , v0}, the way P2 with {vi , v1} and the edge e.

(Heuristics)

A heuristic is a technique designed for solving a problem more quickly when
classic methods are too slow, or for finding an approximate solution, when
classic methods fail to find any exact solution. This is achieved by trading
optimality, completeness, accuracy, or precision for speed. In this section
some heuristic methods are described.

A greedy switch-box router

This approach introduced by Luk [Luk85] uses the Manhattan model for the
switchbox routing problem. Luk tries to extend a channel routing algorithm
to a switchbox routing problem. The idea is to pass through the columns
of the routing area from left to right. In each column (iteration) the nets
are assigned to the horizontal tracks. The nets, that already use horizontal
tracks will be routed by taking into account the terminals, which have to be
connected. Nets, which have a terminal in the current column are assigned
to free horizontal tracks. If there are not enough horizontal tracks, then ad-
ditional tracks will be introduced. Also, additional columns are inserted at
the end, if the rightmost terminals can not be connected. Every decision of
the algorithm is based on very heuristic arguments. This is especially true
for the selection of the direction (from left to right, top to bottom, or in each
case vice versa) in which the grid graph is traversed.
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BEAVER: A computational geometry-based tool for switchbox routing

This approach, called BEAVER [Coh88], uses the multiple layer model. In
this case just two layers. It proceeds in four phases. In the first phase only
terminals are considered, which can be associated with exactly one change of
direction, a so-called bend. In the second step, linear connections with two
changes of direction are also allowed to route two components of a net. Then,
an attempt is made to route the remaining components by a Maze router.
The Maze router is a connection routing method, where the goal is to find a
path that go from point A to point B . The last phase assigns connections,
whose location is not yet clearly established. It tries to minimize the number
of vias. This approach with its four phases is very time-intensive. But each
of the four phases expires sequentially, which means that there is a defined
order in which the nets are processed.
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Chapter 5

Integer Programming Models

In this chapter different, mathematical formulations for the Steiner tree pack-
ing problem are given. A survey of these integer programming models can
be found in [Cho94]. In the following the same notations as introduced in
section 3.2 is used.

5.1 The Undirected Cut Formulation

This formulation is used by Grötschel et al. in [GMW97]. A similar formu-
lation as presented here, is given by Lengauer and Lügering in [Len90] and
[LL93].

Given a weighted instance of the Steiner tree packing problem (G ,N , c,w).
In addition binary variables χk

e are introduced, for all k = 1, ...,N and e ∈ E .

χk
e =

{
1 if edge e is in the Steiner tree spanning net k ,

0 otherwise.

Each partitition (W ,V \W ) of the nodes V of the graph G defines a cut. It
is called a Steiner cut for net k if |W ∩Tk | ≥ 1 and |Tk\W | ≥ 1. Steiner cuts
are based on the idea that a Steiner tree contains a path from the terminal
t ∈ Tk to every other terminal Tk\{t}. Thus every cut separating the ter-
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minal t from any other terminal Tk\{t} must contain at least one edge from
the Steiner tree. Let δ(W ) be the set of edges in G with one end node in
W and another in V \W . For a net k with k = 1, ...,N and each associated
Steiner cut (W ,V \W ), the Steiner cut inequality is defined. In generel the
Steiner cut inequalities ensure that for each terminal set Tk , all Steiner cuts
are covered with at least one edge.

In order that the capacity is large enough to satisfy the requirements of
all connections, which have to be housed, the capacity inequalities are in-
troduced. It can also be said that by using capacities on the edges the
formulation can be extended to model an arbitrary number of layers.

In the following an integer programming formulation to model an edge-
disjoint routing for the weighted Steiner tree problem is given:

min
N∑

k=1

∑
e∈E

weχ
k
e

(i)
∑

e∈δ(W )

χk
e ≥ 1, for all W ⊂ V , W ∩ Tk 6= ∅, Tk\W 6= ∅.

(ii)
N∑

k=1

χk
e ≤ ce , for all e ∈ E .

(iii) χk
e ∈ {0, 1}, for all e ∈ E , k = 1, ...,N .

In the above mentioned integer programming model the inequalities (i) are
called Steiner cut inequalities and inequalities (ii) are called capacity inequal-
ities. The model can be further strengthened with several valid inequalities,
which are described by Grötschel et al. in [GMW96a, GMW97, GMW96b].

This formulation contains only |E |+ |E |×N variables, but exponential many
inequalities (order of N × 2|V | constraints of type (i)).
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5.2 The Directed Cut Formulation

This formulation was introduced by Wong in [Won84]. A similar formulation
as presented here, is given by Bienstock and Bley in [BB00] or by Althaus,
Polzin and Daneshmand in [APD03].

Given a weighted instance of the Steiner tree packing problem (G ,N , c,w),
the formulation can be restated on a corresponding directed graph as follows:
Given G = (V ,E ) with edge set E , construct the directed graph D = (V ,A)
with arc set A, where arcs a = (s , t) and a ′ = (t , s) are in A if and only
if edge e = st ∈ E . For each k ∈ N one vertex rk ∈ Tk will be chosen as
root. An arborescence is a directed, rooted tree in which all edges point away
from the root, such that an arborescence rooted at rk is said to be a Steiner
arborescence, if it spans each node in Tk . A routing on D consists of a set of
Steiner arborescences with one for each net. In the following the variable yk

a

for each net k and arc a ∈ A are introduced:

yk
a =

{
1 if arc a is in the Steiner arborescence spanning net k ,

0 otherwise.

In the following an integer programming formulation of the directed ver-
sion is given:

min
∑
a∈A

N∑
k=1

weyk
a

(i)
∑

a∈δ(W )

yk
a ≥ 1, for all W ⊂ V , W ∩ Tk 6= ∅, Tk\W 6= ∅.

(ii)
N∑

k=1

(yk
a + yk

a ′) ≤ ce , for all a ∈ A.

(iii) yk
a ∈ {0, 1}, for k = 1, ...,N .

Define a cut (W ,V \W ) to be a directed Steiner cut if rk ∈ W with |W ∩
Tk | ≥ 1 and |Tk\W | ≥ 1. Define δ(W ) to be the set of arcs directed from
W to V \W with one end in W and the other in V \W . For each net k
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and directed Steiner cut (W ,V \W ), the directed Steiner cut inequality (i)
is obtained.

Consider an undirected edge e = st ∈ E and let a = (s , t) and a ′ = (t , s) be
the corresponding arcs in A. The capacity is consumed, if either a or a ′ are
contained in the directed routing. The capacities inequalites for this model
are given in inequalities (ii) [Cho94].

5.3 The Explicit Formulation

This formulation has been considered by Lengauer and Lügering [LL93]. A
similar formulation has also been considered by Raghavan and Thompson
[RT87].

Here the notation is a bit different as in the other formulations. The idea
is that for each set of edges, which is a Steiner tree with respect to a ter-
minal set a variable is introduced. Let Si = {Tij |j = 1, ..., ni} be the set
of all possible Steiner trees in the graph G = (V ,E ), where Ti1,Ti2, ...,Tini

is an enumeration of the spanning tree of the ith terminal set. ni may be
exponential in |V |. In this formulation a variable zij for each Steiner tree
Tij for net i is explicity defined. In the following the variable zij is introduced:

zij =

{
1 if Steiner tree Tij is chosen to span net i ,

0 otherwise.

The total number of variables, where k is the number of terminal sets, is
given by:

k∑
i=1

ni

The weight lij of a Steiner tree Tij is given by:

lij =
∑
e∈Tij

we
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In the following an integer programming formulation of the explicit version
is given:

min
k∑

i=1

ni∑
j=1

lij zij

(i)

ni∑
j=1

zij = 1, for i = 1, ..., k .

(ii)
k∑

i=1

∑
j :e∈Tij

zij ≤ ce , for all e ∈ E .

(iii) zij ∈ {0, 1}, for i = 1, ..., k , j = 1, ..., ni .

The constraint (i) ensures, that exactly one Steiner tree is chosen for each
net i , where all nets are edge-disjoint to each other. In constraint (ii) the
requirement for the capacities is given.

A disadvantage of this formulation is certainly the number of variables. The
numbers ni are generally exponential in the size of the input data. Exceptions
are problem instances whose underlying graph is very small.

5.4 The Multicommodity Flow Formulation

The multicommodity flow formulation as proposed by Wong [Won84] has the
advantage that it has only a polynomial number of variables and constraints.
A similar formulation is given by Koch in [KH12]. The multicommodity flow
formulation can be derived from the directed formulation.

Given an undirected graph G = (V ,E ), the directed graph D = (V ,A)
is formed as in section 5.2. For each net k , one of the nodes rk ∈ Tk is
declared as the root. For each net k and terminals s ∈ Tk\{rk}, a commod-
ity (k , s) is defined. Given an arc a = (f , h), let χks

fh represent the flow of
commodity (k , s) on arc a. In order to ensure a Steiner tree for each net
k ∈ {1, ...,N }, a flow of one unit of commodity (k , s) from rk to s for all
s ∈ Tk\{rk} have to be ensured. This is done by using the following flow
constraints:
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∑
f ∈V

(χks
fh − χks

hf ) =


−1 if h = rk ,

1 if h = s ,

0 if h 6= rk , s .

If in the above mentioned constraints (f , h) /∈ A, the variable χks
fh is simply

ignored. If a multicommodity flow is found, which satisfies these constraints
for s ∈ Tk\{rk}, the arcs with positive flow contain a Steiner arborescence
spanning net k . In order to capture this, integer variables yk ,a are defined:

yk ,a =


1 if there is a positive flow of any of the commodities (k , s)

for s ∈ Tk\{rk} on arc a,

0 if the flow on arc a = 0.

In the following an integer programming formulation of the multicommodity
flow version is given:

min
∑
a∈A

N∑
k=1

wayk ,a

(i) χks
fh ≤ yk ,a , for a = (f , h) ∈ A, k = 1, ...,N , s ∈ Tk\{rk}.

(ii)
N∑

k=1

(yk ,a + yk ,a ′) ≤ ce , for a = (s , t), a ′ = (t , s), e = [s , t ] ∈ E ,

(iii) yk ,a ∈ {0, 1}, for k = 1, ...,N , a = (f , h) ∈ A,

(iv) χks
fh ∈ {0, 1}, for k = 1, ...,N , s ∈ Tk\{rk}, fh ∈ A.

In constraints (ii) the capacities inequalities are given, let a = (f , h) and
a ′ = (h, f ) be the corresponding arcs in A. The capacity is consumed, if
either a or a ′ are contained in the directed routing.

Let C be the total number of commodities created, such that the number
of variables |E | + |E | × N + |A| × C and the number of linear constraints
|V | × C + |E | × C + |E | can be given.
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Results using this model to compute optimal routings can be found in Koch
[KH12]. The advantage of the formulation is that it models all the layers
simultaneously. On the other hand the size of the graph grows rapidly with
the number of terminals.
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Chapter 6

Approach

In this chapter, an approach, which is based on finding a solution with the
help of integer linear programming is presented in more detail. In the ap-
proach the process is described, the mathematical formulations and heuristics
are given.

In the following specific notations are still needed. It is considered a N ×|E |-
dimensional vector space RE × ... × R

E . For this vector space the symbol
R
N×E is used. Each component of a vector x ∈ RN×E is indexed by x k

e with
k ∈ {1, ...,N } and e ∈ E . The vector x k ∈ RE with k ∈ {1, ...,N } denotes a
vector (x k

e )e∈E .

In the approach it is generally assumed that an instance of a weighted Steiner
tree packing problem is given that defines a switchbox routing problem.
Which means that a complete rectangular grid graph with edge capacities
ce = 1 with e ∈ E and a netlist N = (T1, ...,TN ) with N ⊆ V (OG), where
OG is the outer face, is given. Furthermore, for each edge a weight we is
given. In all examples of the literature, the weights are equal to 1. Most of
the examples in the literature have a large grid graph and a large number of
nets, which causes some problems in solving the problems computationally.
This is because the number of variables for such examples is very large.

In order to solve problems of this magnitude, it is necessary to have a very fast
and robust code for solving linear programs. Grötschel et al. [GMW96a] used
in their implementation of the linear programs the simplex method, which
was developed by Bixby [Bix91]. Nonetheless, solving the linear programs
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appears quite difficult, because there are probably alternative optimum solu-
tions and the linear programs occur highly degenerate. That means it exist
a lot of different corners of the corresponding bases to a polyhedron. After a
base exchange of the simplex method, it is often the case that the new basis
is defined at the same area as before, such that no progress is achieved in the
objective function.

Another problem occurs, when the actual linear program finds no optimal
solution. In order to strengthen the linear program, it needs further inequal-
ities, which can be determined by separation algorithms. Here the problem
is, that not every separation algorithm is exact.

6.1 A Cutting Plane Algorithm

The cutting plane algorithm for the Steiner tree packing problem was de-
scribed by Grötschel, Martin and Weismantel [GMW96a]. This algorithm
is used to solve the switchbox routing problem in the knock-knee model by
using separation algorithms and a LP -based primal heuristic.

6.1.1 Mathematical Formulations

In the following a mathematical formulation and its motivation is given.
The switchbox routing problem in knock-knee model can be modeled as the
Steiner tree packing problem with the additional restrictions:

• G = (V ,E ) is a complete rectangular grid graph

• edge capacities ce = 1 for all e ∈ E

By taking these restrictions into account the switchbox routing problem can
finally be formulated as follows:
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Instance:
A graph G = (V ,E ) and a list of node sets N = (T1, ...,TN ), N ≥ 1,
with Tk ⊆ V for all k = 1, ...,N .

Problem:
Find edge sets S1, ..., SN ⊆ E such that:
(i) Sk is a Steiner tree in G for Tk for all k = 1, ...,N ,

(ii)
N∑

k=1

|Sk ∩ {e}| ≤ 1 for all e ∈ E ,

(iii)
N∑

k=1

|Sk | is minimal.

The integer linear program for the weighted Steiner tree problem [GMW97]
(also see section 5.1) can be formulated as follows, wherein the constraint,
that each variable must be either 0 or 1 is replaced by a weaker constraint,
that each variable belong to the interval [0, 1]:

min
N∑

k=1

∑
e∈E

weyk
e

(i)
∑

e∈δ(W )

yk
e ≥ 1, for all W ∪ V , W ∩ Tk 6= ∅, Tk\W 6= ∅.

(ii)
N∑

k=1

yk
e ≤ 1, for all e ∈ E , k = 1, ...,N .

(iii) 1 ≥ yk
e ≥ 0, for all e ∈ E , k = 1, ...,N .

Given that the capacity ce = 1, this linear programming formulation can
also be stated as a knock-knee one-layer model.
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6.1.2 The Algorithm

In this section a cutting plane method for solving the weighted Steiner tree
packing problem will be introduced. First the basic idea and the basic proce-
dure of such a cutting plane method will be described. It will turn out, that
the core of a cutting-plane algorithm is to solve the separation problems.

Procedure

The idea of the cutting plane algorithm is the following. For the start a
small set of inequalities is taken, for example the trivial and the capacity
inequalities. Let y be an optimal solution for the linear objective function,
such that y describes a lower bound for the optimum value of the weighted
Steiner tree packing problem. If y is feasible, then y is an optimal solution
for the problem.

If y is not feasible, there exists a valid inequality, that is violated by y .
At this point the separation problem will be used in order to find a valid
inequality, that is violated by y . If an inequality can be determined, it will
be added to the linear program and subsequently it will be solved again.
Such a procedure of iteratively solving linear programs and adding violated
constraints is generally called a cutting plane algorithm.

A cutting plane algorithm ends either with an optimum solution or at least
with a lower bound of the Steiner tree packing problem. It can not be
expected that the cutting plane method ends with an optimal solution, be-
cause not all known classes of valid inequalities have an exact algorithm. If
the cutting plane algorithm ends with a solution y , which is not allowed, so
the process can be embedded in an enumeration scheme.

The overall problem will be divided into two subproblems by fixing some
variable to zero in one subproblem and in the other subproblem the same
variable will be set to one. This procedure generates a binary tree, also called
branching tree, where each subproblem is represented by a node. A key ad-
vantage of this approach is, that each cutting plane found for a subproblem is
also valid for all other subproblems. The whole methode is commonly known
as a branch and cut algorithm.
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A branch and cut algorithm can only be used to solve practical problems
efficiently if the generated branching tree is kept small. In order to achieve
this, exact separation algorithms or at least good separation heuristics are
necessary. Additionally, a good heuristic for finding a feasible solution is very
important.

The separation algorithms and the associated correctness proofs are quite
complicated. In order to not exceed the scope of the thesis, here the proofs
and descriptions for the different separation algorithms are omitted. For
a detailed discussion of this issue the reader is refered to [GMW96a] and
[GMW93].

6.1.3 Primal Heuristic

The aim of this section is to explain the algorithm for determining a feasible
solution for the Steiner tree packing problem developed by Grötschel, Martin
and Weismantel. Based on this, a heuristic has been implemented in Matlab,
which is presented in chapter 7.

It is known, that the Steiner tree packing problem is NP -complete even
if the given instance defines a switchbox routing problem [Kv80]. Therefore,
the restriction was to develop a heuristic. From the literature, no heuristic
method for solving the switchbox routing problem in the knock-knee model
are known. There are just algorithms, that find a solution if one exists, but
only under the condition that all terminal sets have a cardinality of two (Sec-
tion 4.3.1). The idea of the heuristic is to make use of the information given
by the actual solution of the cutting plane algorithm.

The Algorithm

The developed heuristic is a sequential algorithm. Each terminal of a net is
considered as an (isolated) component. Now iteratively two components of
a net will be connected in a determined order. The procedure is not that a
net will be fully routed, but only two components of the same net will be
connected per iteration. Here the determined order plays an essential role
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for the success of such a procedure. In this algorithm the order will be deter-
mined by the solution vector y of the actual linear program. More precisely,
a function f depending on y is defined according to which two components
are selected. The function will be explained later in more detail. An attempt
is made to connect the two selected components on a shortest path. This
path is in general not uniquely determined, since the underlying graph is a
complete rectangular grid graph. Therefore, a number of criteria have been
created in order to limit the choices. A detailed description of these details
will be given later. If it is possible to connect the two selected components
on a shortest path by taking the mentioned criteria into account, the two
components will be connected, the graph and all relevant datastructures will
be updated and the next pair of components, which have to be connected,
will be selected. Else the function f is recalculated and a new order will be
determined by taking into account the already connected components. This
procedure will be iterated either until all nets are connected or no more con-
nections are possible. In the following a detailed description of the algorithm
is given with the solution vector y and the notation as introduced in section
2.2:

Input:
A complete rectangular h × b grid graph G = (V ,E ) with edge
capacities ce = 1 and edge weights we ∈ R+, e ∈ E . Furthermore, a
net list N = {T1, ...,TN} and a vector y ∈ RN×E , y ≥ 0.

Output:
A feasible solution of the weighted Steiner tree packing problem
(G ,N , 1,w) or the message “No feasible solution found”.

(1) Set Sk := ∅ for k = 1, ...,N .

(2) Determine the graph Ĝ = (V , Ê ) with Ê := {e ∈ E |ce > 0}.
(3) Compute shortest paths for all pairs of nodes in Ĝ .
(4) For k = 1, ...,N perform the following steps (5) to (6):
(5) If Sk = ∅, then

determine sk , tk ∈ Tk such that
fyk (sk , tk) = min

s,t∈Tk
s 6=t

fyk (s , t);

set T ′k := Tk\{tk}.
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(6) Else
determine sk ∈ T ′k , tk ∈ V (Sk) such that

fyk (sk , tk) = min
s∈T ′

k
t∈V (Sk )

fyk (s , t)

(7) As long as further connections are possible perform the following
steps:

(8) Determine k0 ∈ {1, ...,N } with
fyk0 (sk0 , tk0) = min{fyk (sk , tk)|k = 1, ...,N }.

(9) Try to connect sk0 with tk0 via a shortest path by taking the
criteria into account.

(10) If the connection via a shortest path is possible, then
let W be the chosen path;
set Sk0 := Sk0 ∪W , T ′k0 := T ′k0\{sk0} and ce := 0 for all e ∈W ;
if T ′k0 = ∅, set fyk0 :=∞;
else determine another pair (sk0 , tk0) similar to (6).

(11) Else go to (2);
(12) If all terminal sets are connected, return the feasible solution

(S1, ..., SN ).
(13) Otherwise, print the message “No feasible solution found”.
(14) STOP.

Let Sk be the edge set, that was already determined for connecting Tk , T ′k
the set of not yet connected terminals, Ĝ the underlying graph and W the
edge set of the chosen shortest path, where W (sk , tk) is the shortest path
from sk to tk in Ĝ with respect to w .

In the heuristic a distinction is made between two cases Sk = ∅ and Sk 6= ∅.
The algorithm allows at most one component for each net, which has more
than one terminal. If Sk 6= ∅, there is already a component containing more
than one terminal. The task is then to connect the remaining terminals of
T ′k to this component. If Sk = ∅, it has not yet determined which terminals
are connected first.
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fyk := |w(W (s , t))−
∑

e∈E(s,t)

weyk
e |,

The above mentioned function fyk is used to find the two components which
have to be connected. In general, the two components are searched, which
have the smallest value resulting from the function. The first part of the func-
tion is the weighted sum of the shortest path from s to t . To explain the other
part of the function a graph must be determined, which is the smallest rectan-
gular grid graph containing both components, also called minimal enclosing
rectangle. Inside the minimal enclosing rectangle the weighted sum will be
computed, where only the edges with yk

e > 0 are considered. The edges,
which are inside the minimal enclosing rectangle are denoted by E (s , t).

Figure 6.1: A minimal enclosing rectangle

In figure 6.1 an example of a minimal enclosing rectangle is shown. The
mentioned rectangle is represented by blue lines. The red points represent
the two components sk and tk .
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Criteria for routing the shortest path

We consider now the execution of step (9) in the algorithm. Let k be the
chosen net, sk and tk the nodes, which have to be connected via shortest path.
First all neighbors v of sk are determined, where ce = 1. Among these, those
nodes that lie on a shortest path from sk to tk are selected. Let η be the
number of neighbor nodes, which may vary. If η = 0, then no connection on
a shortest path is possible. If η = 1, then v is the unique node. Otherwise,
if η ≥ 2, there are a number of criteria, which help in selecting the node.
Let L be the node list of candidates, such that the following criteria can be
introduced:

(1) In the first criterion a way is searched, where the number of terminals
is kept as small as possible. For this reason, the node in L is selected
which is not a terminal.

(2) yk
sv = max

u∈L
yk
su

Here the node is selected, where the corresponding value yk
sv of the edge

between sk and the neighbor v in the solution vector yk is as large as
possible.

(3) In this criterion the not yet connected terminals of net k are taken into
account. The neighbor v , whose distance to the not yet connected term-
inals is minimal, will be selected. The reason for this, is the attempt to
keep the total length of the final Steiner tree for Tk as small as possible.

In figure 6.2 the two component sk , tk and a not yet used terminal are repre-
sented by red points. The green points represent the neighbors v1 and v2 of
the component sk . In this case v2 is selected, because it is closer to the not
yet used terminal.

(4) Choose v ∈ L such that:∑
k 6=k0

yk
sv − yk0

sv = min
u∈L

∑
k 6=k0

yk
su − yk0

su
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Figure 6.2: An example for criterion 3

With criterion (4), an attempt is made to avoid those edges that are lik-
ely to be preferred by another net.

(5) In the last criterion the node is selected, which gives less change in the
direction.

Figure 6.3: An example for criterion 5
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In figure 6.3 an example for criterion (5) is sketched. In this case the neighbor
v2 will be selected, because in this case there would be no change of direction
with respect to the last connection.

In the selection of the node v it is proceeded as follows. First, the first
criterion is examined. If the minimum is uniquely determined, so let v be
the corresponding node. If the minimum is not uniquely determined, all
nodes that take the minimum in (1) will be used in criterion (2). If among
these nodes the minimum in (2) is uniquely determined, then v is the cor-
responding node. Otherwise, the process continues according to the criteria
(3) to (5). If in criterion (5) no node is uniquely determined, any node v is
selected. After every iteration from (1) to (5) a node is determined, which
is adjacent to s . Then the edge sv is added to the way W , set s = v and
iterate until s = tk or no neighbor node, which is located on a shortest path
(η = 0), was found.

6.1.4 Results

In principle, the cutting plane algorithm can be used to find an optimal
solution for the given switchbox routing problem or to determine that no
solution exists. However, this may often not be guaranteed in an acceptable
computing time. Therefore Grötschel et al. [GMW96a] has integrated a time
barrier. If this time barrier is exceeded the process ends and gives out the
until then best lower bound and the best feasible solution.

Grötschel et al. has given various results of different test examples. These
switchbox examples have often been discussed in the literature. They in-
clude various difficulties, such as a very high density of the networks or a
terminal intensive example, where all vertices of the outer face are terminals.
The example difficult switchbox can be found in [BP83]. Examples terminal
intensive switchbox, dense switchbox and augmented dense switchbox were
introduced in [Luk85]. Finally, the examples modified dense switchbox, ped-
agogical switchbox and more difficult switchbox can be found in [Coh88].

In table 6.1 it is shown how large the test examples are and how large their
corresponding nets are. In column 1 the name of the examples is listed. The
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Name height width nets distribution of nets
2 3 4 5 6

difficult switchbox 15 23 24 15 3 4 1 1
more difficult switchbox 15 22 24 15 3 5 1
terminal intensive switchbox 16 23 24 8 7 5 4
dense switchbox 17 15 19 3 11 5
augmented dense switchbox 18 16 19 3 11 5
modified dense switchbox 17 16 19 3 11 5
pedagogical switchbox 16 15 22 14 4 4

Table 6.1: Constellation of the Examples

height and the width of the corresponding grid graph can be found in column
2 and 3. The number of nets is listed in column 4. The last 5 columns pro-
vide information on the distribution of nets. For example column 6 indicates
how many nets with 3 terminals are included in the problem.

Name best solution LP value gap CPU-time
(%) (min)

difficult switchbox 464 464 0.0 1564:15
more difficult switchbox 452 452 0.0 983:23
terminal intensive switchbox 537 536 0.2 3755:44
dense switchbox 441 438 0.7 1017:43
augmented dense switchbox 469 467 0.4 4561:41
modified dense switchbox 452 452 0.0 387:03
pedagogical switchbox 331 331 0.0 251:58

Table 6.2: Results of the Examples

In table 6.2 the results of Grötschel et al. with their cutting plane algorithm
are summarized. Column 2 gives the best feasible solution. The entries in
column 3 are the objective function values of the linear program, when no
further violated constraints are found. These values are lower bounds of
the whole problem. In column 4 the percental derivation of the best solution
from the lower bound is given. The last column reports on the running times,
where the times are given in minutes.
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The results are promising, such that for the given examples the best fea-
sible solution deviates at most 0.7% from the optimal solution. Generally for
problem instances arising in VLSI-Design there is only given a heuristic. The
advantage of the cutting plane algorithm is, that the quality of the heuristi-
cally determined solution can be evaluated with the lower bound, which may
include knowledge about the problem itself.

This approach has been shown to be quite promising, but there are still
many open problems that need to be solved. In order to solve large scale
problem instances as they occur in practice, the algorithm must be improved.
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Chapter 7

Implementation

The explained heuristic in chapter 6.1.3 has been implemented in Matlab.
Given that this is a LP -based heuristic, various changes have been made,
such that at least the main idea was implemented. Instead of using the
solution vector y , which is computed from a linear program, all values of y
are set to 0. In general it can be said, that this simplification makes the
heuristic independent of a linear program, such that it can be implemented
within a Matlab environment.

7.1 The Algorithm

Each terminal of a net is considered as a component. Now iteratively always
just two components of the same net will be connected. In which order the
components are connected, is depending on a function fk , which is explained
later. The selected components have to be connected on a shortest path,
where some criteria are important in order to limit the choices. If it is not
possible to connect the two components, then another pair of components
have to be connected. Is there no possible way to connect two components
via shortest path, there should be a path via detour. If this is the case,
there is no guarantee that the solution is optimal. The graph and all rele-
vant datastructures will be updated and it will be continued with the next
iteration. This precedure will be iterated either until all nets are connected
or no more connections are possible. If it is not possible to connect two
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components somehow, then the procedure will be interrupted, such that no
solution was found. In the following a detailed description of the algorithm
is given:

Input:
A complete rectangular rows × columns grid graph G = (V ,E ) with
edge capacities ce = 1 and e ∈ E . Furthermore, a list of terminal sets
N = {T1, ...,TN}.

Output:
A feasible solution of the Steiner tree packing problem, given by the
edge sets (S1, ..., SN ) or the message “No feasible solution found”.

(1) Set Sk := ∅ and the not yet used terminals T ′k = Tk for

k = 1, ...,N , and the graph Ĝ = G .
(2) For k = 1, ...,N perform the following steps:
(3) If Sk = ∅, then

determine sk , tk ∈ Tk such that
fk(sk , tk) = min

s,t∈Tk
s 6=t

fk(s , t);

set T ′k := Tk\{sk , tk}.
(4) Else

determine sk ∈ T ′k , tk ∈ V (Sk) such that
fk(sk , tk) = min

s∈T ′
k

t∈V (Sk )

fk(s , t)

(5) Try to connect sk with tk via a shortest path by taking the
criteria into account.

(6) If the connection via a shortest path is possible, then go to (9);
(7) Else determine another pair (sk , tk), go to (3);
(8) If the connection via a detour is possible, then
(9) Update datastructures:

let W be the edge set of the chosen path;
set Sk := Sk ∪W , T ′k := T ′k\{sk};
delete all e ∈W from the graph Ĝ ;

(10) Else print the message “No feasible solution found”.
(11) If all terminal sets are connected, return the feasible solution

(S1, ..., SN ).
(12) STOP.
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fk := |w(W (sk , tk))|

The function fyk presented in chapter 6 was changed to fk and is also used to
find the two components which have to be connected. The two components
are searched, which have the smallest value resulting from the function. The
function gives the weighted sum of the shortest path from sk to tk .

For routing the shortest path, those criteria were taken, which have no re-
lation to the solution vector y . The criteria (1), (3) and (5) from chapter 6
were implemented.

7.2 Code

The implementation was programmed with Matlab, which is a high perfor-
mance language for technical computing. It integrates computation, visu-
alization, and programming in an easy-to-use environment, where problems
and solutions are expressed in familiar mathematical notation.

Given that this is a graph-theoretic problem, it turned out to be usefull to
use a toolbox. MATGRAPH is a toolbox provided by Scheinerman [Sch08]
for working with simple graphs in Matlab. The goal of this toolbox was, to
make interactive graph theory exploration simple and efficient.

In figure 7.1 a grid graph is shown, which was created with MATGRAPH.
In order to understand the calculations in the following functions of the al-
gorithm, it is intended to show how the vertices are arranged. The vertices
are labeled with their corresponding number.
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Figure 7.1: Structure of a grid graph

Similarly as in chapter 6.1.3 the minimum enclosing rectangle was used, but
here in a differnt way. A shortest path between two vertices must run within
their minimum enclosing rectangle. If there is no possible connection inside
this rectangle, then there should be a connection via detour. Otherwise no
path between the two vertices is available. In the following some functions
are presented, where the minimal enclosing rectangle is abbreviated with mer.

The function merVertices determines all vertices of the minimal enclosing
rectangle between the two vertices u and v . Additionally the height and the
width are determined.

function [vert ,h,w] = merVertices(rows ,columns ,u,v)

%determine height

h_u = mod(u-1,rows)+1;

h_v = mod(v-1,rows)+1;

h = abs(h_u -h_v)+1;
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%determine width

if mod(u-1, rows)+1 < mod(v-1, rows)+1

temp = u;

u = v;

v = temp;

end

w = (abs(v+h-1-u))/rows +1;

%vector which will be filled in the following with

%the searched vertices

vert = zeros(1, w*h);

%change the vertices , such that the vertice u is the

%left one

if v < u

temp = v;

v = u;

u = temp;

end

%determine all vertices and store them

for i = 0:w-1

for j = 0:h-1

if mod(u-1, rows)+1 < mod(v-1, rows)+1

vert (1+j+i*h) = u+i*rows+j;

else

vert (1+j+i*h) = u+i*rows -j;

end

end

end

end

A similar function is merValue, which gets the length of the shortest path,
that is running inside the minimal enclosing rectangle for the two given ver-
tices u and v . Basically the output here is the result of height + width − 1 of
the minimal enclosing rectangle.
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The function merMin finds the one vertex from each vertex set T 1 and
T 2, which have to be connected. In general the two vertices are searched,
where the length of the shortest path is minimal. This function plays an
important role in the steps (3) and (4) of the algorithm.

function [a, b] = merMin(g, rows , columns , T1, T2)

%declaration

a = 0; %index of the first vertice in T1

b = 0; %index of the second vertice in T2

value = rows * columns; %biggest possible value

%save the the two vertices with the minimal

%shortest path

for i = 1:size(T1, 2) -1

for j = i+1: size(T2, 2)

if merValue(g, rows , columns , T1(i), T2(j))

< value

value = merValue(g, rows , columns , T1(i),

T2(j));

a = i;

b = j;

end

end

end

end

In step (3) the vertice sets T 1 and T 2 are equal the terminal set Tk . However
in step (4) T 1 is the set of the not yet connected terminals T ′k and T 2 is the
set of vertices V (Sk).

The function merShortestPath determines every shortest path from vertice
u to v . In addition there are some criteria, such that the path which satisfy
all the criteria, will be chosen. This function is used for step (5) of the algo-
rithm. It is first checked, if the given vertices are valid, which means that the
vertices exists in the graph G and that they are not equal. Then all neighbor
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vertices (denoted by near) of u are determined. Here the above explained
function merVertices is used to limit the area of the vertices. Before criterion
one is used, it is checked whether one of the neighbors is leading to an impass.

In the first criterion the neighbor is selected, which is not a terminal. If
the result is not unique, then continue with criterion two.

%criterion 1

temp = near;

%if a neighbor is contained in one of the terminal

%sets => set it equals 0

if size(near , 2) > 1

for i = 1:size(T, 1)

for j = 1:size(near , 2)

if any(T{i} == near (1)) == 1

near (1) = 0;

end

if any(T{i} == near (2)) == 1

near (2) = 0;

end

end

end

end

%remove neighbors (if needed)

if near (2) == 0

near = near(near~=near (2));

end

if near (1) == 0

near = near(near~=near (1));

end

%if there is one neighbor go on with the next

%vertice for the path , else go to criteria 2

if size(near , 2) == 1
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path = [path near (1)];

continue;

else

near = temp;

end

In the second criterion the not yet connected terminals of the same net are
taken into account. The function shortestPath determines every shortest
path from vertice u and v to all vertices in set T ′.

%criterion 2

function direction = shortestPath(g, start , u, v, T)

%Output: 0 => the length of the paths are equal

% 1 => u is the chosen vertex

% 2 => v is the chosen vertex

length_u = size(edges(g), 1);

length_v = size(edges(g), 1);

direction = 0;

T = T(T~= start);

%determine all shortest paths to the not yet

%connected terminals and store the smallest one

for i=1: size(T, 2)

path = find_path(g, u, T(i));

if length_u > size(path , 2)

length_u = size(path , 2);

end

path = find_path(g, v, T(i));

if length_v > size(path , 2)

length_v = size(path , 2);

end

end

if length_u < length_v

direction = 1;
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end

if length_v < length_u

direction = 2;

end

end

The vertex with the shortest path will be the chosen one. The output is 1,
if u is the chosen vertex and 2 if v is the chosen vertex. Otherwise if these
lengths are equal, then the output is 0, in this case continue with criterion 3.

In the last criterion the node is selected, which gives less change in the
direction as explained in section 6.1.3. The vector path contains the until
then determined shortest path.

%criterion 3

if size(path , 2) >= 2

if abs(path(end)-path(end -1)) == rows

if path(end) < last

path = [path near (2)];

else

path = [path near (1)];

end

continue;

end

if abs(path(end)-path(end -1)) == 1

if path(end) < last

path = [path near (1)];

else

path = [path near (2)];

end

continue;

end

end

If no connection via the shortest path within the minimum enclosing rect-
angle is possible, then there must be a detour. The function findDetour
determines a path, which is as small as possible, that connects two compo-
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nents. Finally, the following heuristic was created by using the presented
functions.

function [S] = heuristic(example_name)

%% Input

struct = importdata(example_name);

T = getfield(struct , ’S’); %terminal sets

c = getfield(struct , ’c’); %columns

r = getfield(struct , ’r’); %rows

dim = getfield(struct , ’dim’); %span

%% Initialization

graph_init;

G = graph;

grid(G,r,c); %grid graph

k = size(T,1); %number of terminal sets

S = cell(k,1); %egde sets for the Steiner trees

VS = cell(k,1); %all vertices of each Steiner tree

T_ = T; %terminals which are not used

%% Algorithm

for j=1: dim

for i=1:k

path = [];

if isempty(S{i}) %if edge set i is empty

temp = T_{i};

while isempty(path) && size(temp ,2) >= 2

[s_k ,t_k] = merMin(G, r, c, temp , temp);

path = merShortestPath(G, r, c, i, temp(

s_k), temp(t_k), T, T_);

if isempty(path)

temp([t_k]) = [];

end

end

if isempty(path)

temp = T_{i};
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[s_k , t_k , path] = findDetour(G, r, c,

T_{i}, T_{i});

end

if s_k ~= 0

VS{i} = [VS{i} path];

T_{i} = T_{i}(T_{i}~= temp(s_k));

T_{i} = T_{i}(T_{i}~= temp(t_k));

else

’No solution found’

return;

end

else %if terminal set i is not empty

if ~isempty(T_{i})

temp = T_{i};

while isempty(path) && size(temp ,2) >= 2

[s_k , t_k] = merMin(G, r, c, temp , VS{i

});

path = merShortestPath(G, r, c, i, temp(

s_k), VS{i}(t_k), T, T_);

if isempty(path)

temp([s_k]) = [];

end

end

if isempty(path)

temp = T_{i};

[s_k , t_k , path] = findDetour(G, r, c,

T_{i}, VS{i});

end

if s_k ~= 0

VS{i} = [VS{i} path (1: size(path ,2) -1)];

T_{i} = T_{i}(T_{i}~= temp(s_k));

else

’No solution found’

return;

end

end

end

%save used edges and delete them from the graph

67



for pth=1: size(path ,2) -1

S{i}=[S{i} path(pth) path(pth+1)];

delete(G,path(pth),path(pth+1))

end

end

end

draw(G)

end

As input-file a struct is used, which contains all terminal sets, number of
columns, number of rows and the number of elements from the largest ter-
minal set. The toolbox matgraph is then used to creat a grid graph with all
vertices and edges, such that in the end a visualization of the graph Ĝ can
be shown (Figure 7.2). The graph Ĝ is the graph, where all used edges have
been deleted.

Figure 7.2: Graph with not-used edges
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7.3 Results

In order to show the goodness of the heuristic, some validation tests were
made. It turned out to be difficult to create a concept that provides a good
overview of different results. In the following grid graphs were used as test
examples, which have a quadratic structure, starting with 4×4 up to 18×18.
The terminal sets of all test example were determined by random numbers.
In addition, it must be said that all vertices, which are located on the bound-
ary of the outer face, are assigned to a terminal set. This means, that all
the test examples are terminal intensive and generally not easy to solve. For
each size of the grid graph the average of time and iterations are given. An
iteration in this context means, how often an attempt is made to connect
two components. Furthermore, it is listed for how many of the randomly
generated test examples a solution was found. In the table 7.1 a summary of
the results is given. In order to get a good average 100 test examples were
created for each size of the grid graph.

Size (n × n) Average Time (sec) Success Rate (%) Average Iterations
4× 4 0.0469 100 4.86
6× 6 0.2561 97 7.42
8× 8 0.4904 65 13.25
10× 10 2.7760 34 16.67
12× 12 6.7298 24 24.41
14× 14 10.9823 16 29.33
16× 16 21.3625 8 34.73
18× 18 42.1222 4 41.25

Table 7.1: Results of the random examples

The results in the table above show, that with the size of the graph, also
the computations time is growing (Figure 7.3). With a larger grid graph, not
only the number of vertices, but also the number of terminals is growing. For
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this reason, it is clear that the number of iterations will grow too, because
there are more components, which have to be connected. The success rate
reveals, that this heuristic reliably gives a solution for small problems, but
for larger problems finding a solution is getting unprobably.

Figure 7.3: Computing Time

In figure 7.4 a solution of an easy example was created by the implemented
heuristic. This example can be found in BEAVER [Coh88]. Given that all
Steiner trees have a length, which are as minimal as possible, this solution
is obviously the optimal solution for the minimal length of the Steiner tree
packing problem.
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Figure 7.4: Sample switchbox routing

In section 6.2 some difficult test examples from the literature were discussed.
This heuristic was unable to find a possible solution to these examples. Thus,
the cutting plane algorithm with its solution of the linear program plays an
important role in finding solutions of the given problem.
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7.4 More Examples
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Chapter 8

Conclusion

In this thesis the problem of packing Steiner trees is considered. It is given
an extensive background knowledge of this problem, for example definitions
of the graph theory, linear programming and of the underlying Steiner tree
problem. Furthermore, there are given some related problems from the lit-
erature and the main application of the Steiner tree packing problem, the
VLSI-Design, is studied. An important subproblem that occurs in the VLSI-
Design, can be solved by using the Steiner tree packing problem. Some
detailed routing models, which can be derived from there, are also presented.
In the thesis the switchbox routing model was discussed in more detail.

A survey of different integer programming models, which solve the Steiner
tree packing problem, is given. It focuses on computational aspects of the
problem. The undirected cut formulation is used in the cutting plane algo-
rithm to solve the switchbox routing problem in the knock-knee model. For
this the inter program had to be relaxed, such that each variable belong to
the interval [0, 1], which is called an linear programming relaxation. The
cutting plane algorithm uses the computed solutions of the linear program
and tries to find a feasible solution with a heuristic. It came out, that this
approach finds either an optimal solition, or at least a lower bound of the
problem.

This approach has been shown to be quite promising, but there are still
open problems, that need to be solved like seperation methods, where no
exact algorithm is provided. With the results, which were presented in this
thesis, it can be hoped that the approach can also be used for solving prob-
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lems of practical examples. In order to solve large scale problem instances as
they occur in practice, the algorithm must be improved. For example, by re-
ducing the computation time with a smaller number of variables in the linear
program. This can possibly reached by reducing the area for each terminal
set in the minimal enclosing area.

The heuristic of the presented approach has been implemented in Matlab,
but with a symplification, that made the heuristic independent of a linear
program. This heuristic turned out to be significantly worse than the cutting
plane algorithm. Consequently, it can be said, that the linear program plays
a very important role of finding solutions for the Steiner tree packing prob-
lem in the approach. This algorithm behaves much faster, but for a growing
size of the graph, the success rate is running pretty fast towards zero.
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[KPS90] Korte, B. ; Prömel, H.J. ; Schrijver, A.: Steiner trees in
VLSI-layout. In: Paths, Flows, and VLSI-Layout, pp 185-214
(1990)

[Kv80] Kramer, M.R. ; van Leeuwen, J.: The complexity of wire-
routing and finding minimum area layouts for arbitrary VLSI
circuits. In: Advances in Computing Research 2, pp 270-281
(1980)

[Lau07] Lau, Lap C.: An Approximate Max-Steiner-Tree-Packing Min-
Steiner-Cut Theorem. In: Combinatorica, Volume 27, pp 71-90
(2007)

[Len90] Lengauer, T.: Combinatorial Algorithms for Integrated Circuit
Layout. John Wiley & Sons, (1990)

[Lev71] Levin, A.Y.: Algorithm for shortest connection of a group of
graph vertices. In: Sov. Math. Dokl., Volume 12, pp 1477-1481
(1971)

78
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