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Chapter 1

Introduction

Reformulating a given mixed integer program by the use of Dantzig-Wolfe decomposi-
tion leads to a potentially stronger linear programming (LP) relaxation than the inital
problem formulation and it may reduce the problem’s symmetry [1]. The obtained formu-
lation is called extended formulation. Since the number of variables can be exponential
in the size of the original problem, the LP relaxation of the extended formulation is often
solved by applying column generation – the dynamic generation of new columns. Solving
the LP relaxtion in every node of the branch-and-bound tree by column generation is
called branch-and-price. If we additionally separate cutting planes during the solution
process, the procedure is known as branch-price-and-cut.

For several problem classes combinatorial cutting planes were successfully adapted in
the context of a branch-price-and-cut algorithm, but most often these cutting planes are
problem specific and cannot be applied in general. Separation of cutting planes helps to
improve the dual bound in the root node and reduces the number of used branch-and-
bound nodes. Additionally, this can accelerate the solution process. In this thesis we
discuss the separation of generic cutting planes in branch-and-price. Thereby, we restrict
ourselves to the case of solving a reformulated problem via branch-and-price since we
want to exploit the original problem formulation. Cutting planes which are formulated
in the original problem’s solution space can easily be considered in the branch-and-price
procedure.

Suppose we want to separate a given solution of the extended formulation’s LP relax-
ation. We can transfer the given solution into the original problem’s solution space
and separate this solution by applying separation procedures in the original problem.
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This was already implemented [2], however, it is not successful at many problem classes.
Note that we can only use separators for mixed integer programs which do not use basis
information since the transferred solution is in general not basic feasible to the origi-
nal LP relaxation. This is why we calculate an auxiliary basic feasible solution for the
original LP relaxation. We generate cutting planes which cut off this solution and hope
that these cutting planes also cut off the given solution, which we wanted to separate
initially. This separation procedure was introduced but not tested by Range [3]. We
will discuss this separator as weall as some extensions and present experimental results
of our implementation, which is done in the generic branch-price-and-cut solver GCG [2].
To our knowledge, this is the first implementation of a separator which is used in the
context of a branch-price-and-cut algorithm and generates generic cutting planes in the
original problem’s solution space by the use of basis information.

In the following chapter we give a short introduction to column generation, Dantzig-
Wolfe reformulation, and branch-and-price. After an introduction to cutting planes
including their potential use in branch-and-price in chapter 3, we present the main ideas
of this thesis in chapter 4. We introduce ways to calculate basic feasible solutions for
the original LP relaxation, which can be used to generate cutting planes by the use
of basis information, and formally define the main separation procedure, which we call
basis separator. Furthermore, we present valid inequalities which tighten the original
LP relaxation and can be used in combination with the basis separator. At the end, we
evaluate the performance of the basis separator including its variations and extensions
in chapter 5, before we summarize the results of this thesis and draw a conclusion in
chapter 6.



Chapter 2

Column Generation and
Branch-and-Price

In the following chapter we give a short introduction to column generation and branch-
and-price, where we follow the presentations of Desrosiers and Lübbecke [4, 5]. First
of all, we explain the column generation technique which is applied when solving linear
programs with a huge but finite number of variables. Then, we demonstrate how mixed
integer programs can be reformulated so that the linear programming (LP) relaxation
of the reformulated problem is potentially stronger than the original one. The LP re-
laxation of the reformulation can be solved by applying column generation. In the last
section, we present a branching rule which is used when the LP relaxation of some mixed
integer program is solved with column generation. This completes the branch-and-price
algorithm.

2.1 Column Generation

Let n ∈ N be some natural number and let J ⊂ N be some finite set of indices where
the cardinality number m := |J | is huge in comparison to n. Additionally, let xj ∈ Qn

be some vector and let cj ∈ Q be some rational number for all j ∈ J together with some
vector b ∈ Qn. Suppose we want to solve the following master problem:

(MP ) min
∑
j∈J

cjλj

s.t.
∑
j∈J

xjλj ≥ b

λj ≥ 0 ∀j ∈ J.
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Because this problem has got a huge number of variables, it is not efficient or even
practicable to solve it by applying a traditional linear programming algorithm like the
simplex algorithm [6] or an interior point method [7]. This is why we solve the master
problem with the help of column generation as follows. We initialize the problem with
some subset J ′ ⊆ J of variables and call it the restricted master problem. We first solve
the restricted master problem to optimality with primal solution λ∗ ∈ Q|J ′| and dual
solution µ∗ ∈ Qn by applying a linear programming algorithm. Then we generate new
variables by solving the following pricing problem to optimality

(PP ) c̄∗ := min c(x)− (µ∗)Tx
s.t. x ∈ X,

where X := {xj ∈ Qn : j ∈ J} is the set of column coefficient vectors of the master
problem and the objective function c(xj) := cj is defined as the corresponding objec-
tive coefficient used in the master problem for all j ∈ J . We call the objective value
c̄(x) := c(x)− µ∗x of some column x ∈ X its current reduced cost.

Let xj∗ with j∗ ∈ J be the obtained optimal solution for the pricing problem. If the
strict inequality c̄(x∗) < 0 holds, we add the improving variable λj∗ with coefficient
column xj∗ and objective coefficient cj∗ to the restricted master problem and repeat the
just described proceeding, starting with solving the modified restricted master problem.
Otherwise the inequality c̄(x∗) ≥ 0 holds. This proves that there is no improving variable
x ∈ X with negative reduced cost anymore. Therefore, the current solution λ∗ is not
only optimal for the restricted master problem but also optimal for the master problem.

In most applications the set X of columns is a set of combinatorial objects and we have
more information about each column than just its column coefficients. This information
is used when solving the pricing problem. The pricing problems are often solved with
a suitable combinatorial algorithm or with branch-and-cut, which is introduced at the
beginning of chapter 3. Hence, we do not have to explicitly calculate the reduced cost
of all columns in each step.

2.2 Dantzig-Wolfe Reformulation

Let n be some natural number and let x ∈ Qn have the form x = (x1, x2, . . . , xK) where
xk ∈ Qnk for all k ∈ K := {1, . . . ,K}. Similarly, let c = (c1, c2, . . . , cK) ∈ Qn be
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Ax ≥ b
D1x ≥ d1

PLP
PIP

c

x1

x2

Figure 2.1: The polyhedra defined by the constraints of a 2-dimensional binary original
problem with K = 1 and the set of feasible solutions together with the objective function
vector c.

some rational vector. Furthermore, let m be some natural number. Consider matrices
A ∈ Qm×n and Dk ∈ Qmk×nk for all k ∈ K along with vectors b ∈ Qm and dk ∈ Qmk for
all k ∈ K. Suppose the following problem is given

(OP ) min cTx

s.t. Dkxk ≥ dk ∀k ∈ K
Ax ≥ b

xki ∈ Z ∀i ∈ Ik ∀k ∈ K,

where Ik ⊆ {1, . . . , nk} for all k ∈ K. We will refer to this problem as the original
problem and call its LP relaxation the original LP relaxation. In figure 2.1 an example
for the set of feasible solutions to an original problem and a corresponding original LP
relaxation is depicted.

To ease the notation we define the set

Xk := {xk ∈ Qnk : Dkxk ≥ dk, xki ∈ Z ∀i ∈ Ik}
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for all k ∈ K, the set PIP as the set of all feasible solutions to the original problem,
and the polyhedron PLP as the set of all feasible solutions to the LP relaxation of the
original problem.

We introduce two ways of reformulating the original problem. First, we present the classi-
cal convexification approach which is based on the representation theorems of Minkowski
and Weyl [8]. The convex hull conv(Y ) of some set Y is defined as follows:

conv(Y ) :=

∑
y∈Y

αyy : αy ≥ 0 ∀y ∈ Y,
∑
y∈Y

αy = 1

 . (2.1)

Each vector xk ∈ Xk with k ∈ K can be described as a convex combination of all
extreme points {xkp : p ∈ P(k)} ⊆ Xk together with a non-negative linear combination
of all extreme rays {xkr : r ∈ P(k)} of the convex hull conv(Xk):

xk =
∑

p∈P(k)
xkpλkp +

∑
r∈R(k)

xkrδkr , (2.2)

∑
p∈P(k)

λkp = 1, (2.3)

λkp ≥ 0 ∀p ∈ P(k), (2.4)

δkr ≥ 0 ∀r ∈ R(k). (2.5)

Note that the set of extreme points as well as the set of extreme rays of conv(Xk) are
finite sets for all k ∈ K.
Due to the above reformulation, a vector x ∈ PIP can be written as

x =
∑
k∈K

 ∑
p∈P(k)

xkpλkp +
∑

r∈R(k)
xkrδkr

 , (2.6)

such that the following constraints are satisfied:

∑
p∈P(k)

λp = 1 ∀k ∈ K,

λkp ≥ 0 ∀p ∈ P(k) ∀k ∈ K,

δkr ≥ 0 ∀r ∈ R(k) ∀k ∈ K.

Using identity (2.2) in combination with the corresponding constraints (2.3), (2.4), and
(2.5) we can reformulate the original problem and describe it by the following extended
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formulation:

(IMP1) min
∑
k∈K

 ∑
p∈P(k)

cpkλ
k
p +

∑
r∈R(k)

crkδ
k
r


s.t.

∑
k∈K

 ∑
p∈P(k)

xkpλkp +
∑

r∈R(k)
xkrδkr

 ≥ b∑
p∈P(k)

λkp = 1 ∀k ∈ K

λkp ≥ 0 ∀p ∈ P(k) ∀k ∈ K
δkr ≥ 0 ∀r ∈ R(k) ∀k ∈ K∑

p∈P(k)
xkpλkp +

∑
r∈R(k)

xkrδkr = xk ∀k ∈ K

xk ∈ Xk ∀k ∈ K,

where the objective function is defined as cjk := (ck)Txkj for all j ∈ P(k) ∪ R(k) and
k ∈ K.
Note that the LP relaxation of problem (IMP1) is a master problem like problem (MP )
that we have seen in the column generation context. Due to the potentially huge number
of columns of problem (IMP1), we solve the LP relaxation of the extended formulation
by applying column generation. We also call problem (IMP1) the integer master prob-
lem and its LP relaxation the linear master problem.

Another way of reformulating the problem is called discretization approach. In contrast
to the convexification approach we dot not reformulate the convex hull conv(Xk), but
we actually reformulate the set Xk for all k ∈ K. For the remainder of this section we
define Ik := {1, . . . , nk} for all k ∈ K. Thus, the set Xk contains only integer vectors for
all k ∈ K.
It was shown [6] that every integer vector xk ∈ Xk can be described as an integral
combination

xk =
∑

p∈P(k)
xkpλkp +

∑
r∈R(k)

xkrδkr ,

∑
p∈P(k)

λp = 1,

λkp ∈ {0, 1} ∀p ∈ P(k),

δkr ∈ Z≥0 ∀r ∈ R(k),
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where {xkp : p ∈ P} ⊆ Xk is some finite set of integer vectors and {xkr : r ∈ R} is some
set of integer rays of Xk. Notice that we vary the use of the sets P and R in the different
contexts of convexification and discretization. We can now analogously reformulate the
original problem in the following way:

(IMP2) min
∑
k∈K

 ∑
p∈P(k)

cpkλ
k
p +

∑
r∈R(k)

crkδ
k
r


s.t.

∑
k∈K

 ∑
p∈P(k)

xkpλkp +
∑

r∈R(k)
xkrδkr

 ≥ b∑
p∈P(k)

λkp = 1 ∀k ∈ K

λkp ∈ {0, 1} ∀p ∈ P(k) ∀k ∈ K
δkr ∈ Z≥0 ∀r ∈ R(k) ∀k ∈ K.

Note that the LP relaxation of problem (IMP2) equals the LP relaxation of the ex-
tended formulation that was introduced in the context of the convexification approach.
Therefore, we use the same notations for this problem and its LP relaxation as in the
context of the convexification approach.

When solving the linear master problem with column generation, we need the constraints
containing just λ variables excluding the integrality constraints, i.e. we need the convex-
ity constraint and the reformulated constraints of the original problem. Let µ∗0 ∈ Q be
an optimal dual solution corresponding to the convexity constraint and let µ∗ ∈ Qm be
an optimal dual solution corresponding to the other constraints. Furthermore, let the
matrix A have the form A = (A1, A2, . . . , AK), where Ak ∈ Qm×nk . The kth pricing
problem of the extended formulation is an integer program for each k ∈ K:

(PPk) z∗k := min (ck)Txk − (µ∗)TAkxk − µ∗0
s.t. xk ∈ Xk.

The minimum mink∈K z∗k represents the optimal reduced cost. In many applications
the pricing problems can be solved with a combinatorial algorithm. If no combinatorial
algorithm is at hand, the pricing problems are solved by applying branch-and-cut. We
give a short introduction to branch-and-cut at the beginning of chapter 3.

Vanderbeck and Savelsbergh [1] presented a generalization of the discretization approach
to sets containing not only integer but also continuous variables. We can reformulate
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Ax ≥ b
D1x ≥ d1

conv(X1)
PDW
PIP

c

x1

x2

x∗ x̄

Figure 2.2: The polyhedra defined by the constraints of a 2-dimensional binary original
problem with K = 1 and the convex hull of all integer points X1 together with the
objective function vector c, an optimal solution x∗ for the original LP relaxation, and
an optimal solution x̄ for the linear master problem transferred to the original problem’s
solution space.

these mixed integer sets by applying discretization to all integer variables and convexi-
fication to all continuous variables.

At the end we want to analyze the relation of the original LP relaxation to the linear
master problem. The following identity

zDW = min{cTx : x = (x1, x2, . . . , xK) ∈ Qn, Ax ≥ b, xk ∈ conv(Xk) ∀k ∈ K},

where zDW is the optimal solution value to the linear master problem, holds due to Geof-
frion [9]. We define the set of feasible solutions to the linear master problem transferred
to the original problem’s solution space as

PDW := {x = (x1, x2, . . . , xK) ∈ Qn : Ax ≥ b, xk ∈ conv(Xk) ∀k ∈ K}.

It is obvious that the relation PDW ⊆ PLP holds. Hence, the linear master problem
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leads to a potentially better lower bound than the original LP relaxation:

zDW = min{cTx : x ∈ PDW } ≥ min{cTx : x ∈ PLP } =: zLP .

If PDW ⊂ PLP , we call the relaxation obtained by applying the Dantzig-Wolfe refor-
mulation stronger than the original LP relaxation. In figure 2.2 we can see an example
which illustrates the above described relations.

Besides the fact that the reformulated problem consists of variables which contain more
information than the original variables, the potentially better lower bound is the main
reason for using one of the previously described reformulation techniques.

2.3 Branch-and-Price

In the last sections we have seen how a given mixed integer program can be reformulated
and how the LP relaxation of the obtained extended formulation is solved via column
generation. In this section we present branching rules and name some futher features
which help us to solve the mixed integer program to optimality. The branching rules
are used similarly to the branching rules in the traditional branch-and-bound algorithm
plus some modifications. See [8] for an introduction to branch-and-bound.

Consider the extended formulation which is obtained by reformulating a given mixed
integer program with the use of the convexification approach and let (λ̄, δ̄) be an optimal
solution for the linear master problem but not feasible to the integer master problem.
It is easy to see that branching candidates are original variables xki with

x̄ki =
∑

p∈P(k)
xkpiλ̄kp +

∑
r∈R(k)

xkriδ̄kr 6∈ Z

and i ∈ Ik, where xkji is the ith component of xkj for j ∈ P(k) ∪ R(k) and k ∈ K. We
create two new problems by adding the constraint xkj ≥ dx̄kj e and xkj ≤ bx̄kj c, respectively,
for some branching candidate xkj , where d·e is the ceiling function and b·c is the floor
function.
We can either add the constraints to the master problem or we can add the constraints
to the pricing problem. The first option leads to a new dual variable for each con-
straint. The optimal solution values of these dual variables enter the objective function
of the corresponding pricing problem. The other option results in new bounds for the



Branch-and-Price 11

branching variable xkj in the pricing problem. We refer to Desrosiers and Lübbecke [4]
for further analysis of this branching rule and its extension to the discretization approach.

This branching strategy is not limited to the initial linear master problem, which is the
root node’s LP relaxation of the underlying branch-and-bound tree. Since the branching
decisions lead to new master constraints or new pricing constraints, we have to keep
track of all previous branching decisions. Then we are able to apply the branching rules
analogously.

All in all, this results in an algorithm which solves arbitrary mixed integer programs
to optimality and takes advantage of the problem’s structure. Solving problems by the
use of column generation and branching is called branch-and-price. As we have seen, an
original problem can be reformulated with one of the described techniques and branch-
and-price can be applied to the obtained extended formulation.

Additional features can accelerate the solution process. A summary of these features
can be found in [4] and [5]. We only want to mention aggregation here. It is a method
to aggregate identical pricing problems to one representative pricing problem but it can
only be applied when using the discretization apporach. Aggregation helps to remove
symmetry from the problem and can be used in many applications. See [4] for further
explanations.
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Chapter 3

Cutting Planes

In this chapter we give a short introduction to branch-and-cut and discuss some tech-
niques to generate valid inequalities for general integer programs. In the end we will
explain how the concept of cutting planes can be transferred to the context of branch-
and-price.

Consider some matrix A ∈ Qm×n along with vectors b ∈ Qm and c ∈ Qn. Suppose the
following integer program is given:

(IP ) min cTx

s.t. Ax ≥ b

xi ∈ Z≥0 ∀i ∈ {1, . . . , n}.

To ease the notation we define the set X := {x ∈ Zn≥0 : Ax ≥ b} of feasible solutions to
problem (IP ).
We call πTx ≥ π0 with (π, π0) ∈ Qn+1 a valid inequality for conv(X) if πTx ≥ π0 holds
for all x ∈ conv(X). Note that all rows of Ax ≥ b are valid inequalities for conv(X).

Let x∗ be an optimal solution for the LP relaxation of problem (IP ). We want to find
a valid inequality πTx ≥ π0 with (π, π0) ∈ Qn+1 such that πTx∗ < π0 holds. These
types of inequalities are called cutting planes and their generation is called separation.
If we find a cutting plane which cuts off the solution x∗, we can add it to the problem
formulation. Afterwards, we reoptimize the LP relaxation of problem (IP ) and try to
generate another cutting plane. If we do not find another cutting plane, we branch on
a fractional variable and continue to solve the integer program with branch-and-bound.
This strategy is called branch-and-cut and it is the standard technique to solve (mixed)
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integer programs.

There are several ways of separating cutting planes. On the one hand, there are strategies
which are only applicable to specific problems. On the other hand, there are separation
techniques which can be applied in general. In the following section we discuss some
strategies to obtain cutting planes for integer programs.

3.1 Separating Arbitrary LP-Feasible Solutions

To begin with, we analyse the complexity of separating an arbitrary feasible solution x∗

for the LP relaxation of problem (IP ). We call such a solution LP-feasible. We present
the polynomial equivalence of separation and optimization [8] and refer to Garey and
Johnson [10] for an introduction to computational complexity theory.

We define a class of polyhedra P as a set P = {Pt : t ∈ T } where T is some set of
objects and Pt is a bounded rational polyhedron for all t ∈ T . The class of polyhedra P
is called proper if there exist natural numbers nt and st for each object t ∈ T which can
be computed in polynomial time with respect to the size of t such that Pt ∈ Rnt and
the polyhedron Pt can be described by linear inequalities of size at most st.
The polynomial equivalence of separation and optimization [8] states that for a class of
implicitly defined polyhedron P the following holds: Optimizing some linear objective
function over a polyhedron P ∈ P or proving that P is empty can be done in polynomial
time if and only if separating an arbitrary vector v exactly from the polyhedron P can
be done in polynomial time. Exactly separating means finding a cutting plane which
cuts off the vector v and is valid for P or proving that v ∈ P .
Note that a class of polyhedra P where each polyhedron P ∈ P describes the convex
hull of all integer points of an explicitly defined, bounded rational polyhedron is proper.
Hence, if problem (IP ) is NP-hard, separating an arbitrary LP-feasible solution x∗

exactly is NP-hard as well. Notice that in many applications problem (IP ) is indeed
NP-hard. Thus, separating x∗ exactly may take much time, but there are some tech-
niques to separate an arbitrary feasible solution x∗ heuristically in polynomial time. This
means, if we do not find a cutting plane which cuts off the solution x∗, this does not
prove that there does not exist any cutting plane which does. We only want to present
the approach of optimizing over the first Chvátal closure and refer to Achterberg [11] for
a summary of other methods which separate an arbitrary LP-feasible solution x∗.
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Chvátal as well as Gomory introduced separately from each other a strategy to generate
valid inequalities and we show how these inequalities can be used to separate a solution
x∗. We follow the presentations of Schrijver [8].
Let u ∈ Qm be some rational vector and reconsider problem (IP ), where aj ∈ Qm with
j ∈ {1, 2, . . . , n} is the jth column of matrix A. The inequality

n∑
j=1
duTajexj ≥ duT be (3.1)

is valid for the convex hull conv(X) and is called a Chvátal-Gomory inequality. We
define the set P 1 of feasible solutions to the LP relaxation of problem (IP ) which satisfy
all Chvátal-gomory inequalities

P 1 := {x ∈ P :
n∑
j=1
duTajexj ≥ duT be ∀u ∈ Qm}, (3.2)

where P is the polyhedron of feasible solutions to the LP relaxation of problem (IP ). It
was shown [12] that P 1 is a polyhedron as well, which we call the first Chvátal closure of
P . Therefore, we can iteratively add all Chvátal-gomory inequalities for P i and obtain
the polyhedron P i+1 for all i ∈ N0 where P 0 := P . Since we only added valid inequalities
for the convex hull conv(X), the relation P i ⊇ conv(X) holds for all i ∈ N0. Chvátal
in fact proved [12] that P k = conv(X) for some k ∈ N. This leads to a sequence of
polyhedra (P i)i∈N0 with

P = P 0 ⊇ P 1 ⊇ P 2 . . . ⊇ P k = conv(X). (3.3)

The Chvátal rank of a Chvátal-gomory inequality is defined as the smallest natural
number i ∈ N0 such that the inequality is valid for P i. Hence, P i consists of all Chvátal-
gomory inequalities with Chvátal rank smaller or equal to i.

Reconsider the problem of separating an arbitrary feasible solution x∗ to the LP relax-
ation of problem (IP ). Instead of separating x∗ exactly from the convex hull conv(X),
we separate x∗ exactly from the polyhedron P 1. Unfortunately, Eisenbrand [13] proved
that this problem is in general NP-hard, too. We still want to present a strategy to
separate x∗ exactly from the polyhedron P 1.
The following mixed integer program, which was presented by Fischetti and Lodi [14],
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represents the desired separation problem

(CG) min
∑n
j=1 αjx

∗
j − α0

s.t. fj = αj − uTAj ∀j ∈ {1, 2, . . . n}
f0 = α0 − uT b

0 ≤ fj ≤ 1− δ ∀j ∈ {0, 1, . . . , n}
0 ≤ uj ≤ 1− δ ∀j ∈ {1, 2, . . . , n}

αj ∈ Z ∀j ∈ {0, 1, . . . , n},

where Aj denotes the jth column of A and δ ∈ Q>0 is some small tolerance parameter.
Note that the variables αj and α0 represent the values duTAje for j ∈ {1, 2, . . . , n} and
duT be, respectively.
Fischetti and Lodi also added some modifications to accelerate the solution process and
analyzed the performance of the obtained separation algorithm. They concluded that
optimizing over the first Chvátal closure often gives a very good approximation of the
optimal solution value, though it may require large computing time.

There are a lot of other cutting plane methods which cut off a LP-feasible solution
heuristically. Some of them are applicable to general mixed integer programs such as
clique cuts [11] or {0, 1

2}-cuts [15]. But there are also cuts which are only applicable to
specific types of constraints like knapsack cover cuts or flow cover cuts [11].

3.2 Separating Basic LP-Feasible Solutions

In most applications linear programs which appear in branch-and-cut are solved with
an algorithm which calculates basic feasible optimal solutions. Note that this can be
done by applying an interior point method plus some crossover [16, 17] or by applying
the simplex algorithm. Thus, an obtained optimal solution x∗ to the LP relaxation is
basic feasible and a basis of x∗ is known. There are several separation strategies which
exploit the basis information to cut off the solution x∗. In this section we introduce
some fundamental concepts of linear programming and present the Gomory cutting
plane method to show exemplarily how basis information can be used to generate cuts
for integer programs. Note that the Gomory cutting plane method can be extended to
mixed integer programs. The extended cuts are called Gomory mixed integer cuts. We
refer to Achterberg [11] for a summary of cutting planes for mixed integer programs
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which are generated with the help of basis information.
Consider the following integer program

(IP ) min cTx

s.t. Ax = b

xi ∈ Z≥0 ∀i ∈ {1, . . . , n},

where A ∈ Qm×n is a matrix of rank rk(A) = m and c ∈ Qn as well as b ∈ Qm are
rational vectors. Furthermore, let A consist of columns aj with j ∈ {1, 2, . . . ,m}.
Let B ⊆ (1, 2, . . . ,m) with |B| = n and N = (1, 2, . . . ,m)\B be some ordered subsets
of the column indices. We call B basis of A and the matrix AB := (aj : j ∈ B) with
columns aj for all j ∈ B basis matrix of A if AB is nonsingular and therefore invertible.
The set N is called non-basis of A and the matrix AN := (aj : j ∈ N) is called non-basis
matrix of A. The feasible solution x∗ to the LP relaxation of problem (IP ) with x∗N := 0
and x∗B := A−1

B b is called a corresponding basic solution, where xN := (xj : j ∈ N) and
xB := (xj : j ∈ B) are the component vectors induced by N and B, respectively. If
x∗B ≥ 0 holds, the solution x∗ is a basic feasible solution of A and we also call x∗ basic
LP-feasible.
It was shown [18] that a solution x∗ is basic feasible to some linear program if and only
if it is a vertex of the polyhedron of feasible solutions. Recall that a point x ∈ P is
a vertex of the polyhedron P if it cannot be written as a strict convex combination of
other points of the polyhedron P . This conclusion helps us to transfer the concept of
basic feasible solutions to problems which are not written in the form of problem (IP ).
If we consider linear programs with inequality constraints A′x ≥ b′ and free variables, a
vertex x∗ of the polyhedron of feasible solutions satisfies exactly n̄ := rk(A′) linearly in-
dependent inequalities with equality. We will refer to this result in the following sections.

Let B be a basis of A and let x∗ be the corresponding basic feasible solution. We can
reformulate the constraints Ax = b as follows

xB +A−1
B ANxN = A−1

B b.

Thus, we obtain the equations

xk +
∑
j∈N

ākjxj = b̄k ∀k ∈ B,



18 Cutting Planes

where ā denotes the entry in the kth row and the jth column of the matrix A−1
B AN and

b̄ := A−1b.
Suppose x∗ 6∈ Zn. Since x∗j = 0 for all j ∈ N , there exists an index k̄ ∈ B with b̄k̄ 6∈ Z.
The Chvátal-gomory inequality

xk̄ +
∑
j∈N
dāk̄jexj ≥ db̄k̄e (3.4)

cuts off the solution x∗ because the following strict inequality holds

x∗
k̄

+
∑
j∈N
dāk̄jex

∗
j = b̄k̄ < db̄k̄e.

These types of inequalities can be separated efficiently when applying the simplex algo-
rithm to solve the LP relaxation of problem (IP ).

3.3 Cutting Planes in Branch-and-Price

In the following section we explain how the concept of cutting planes can be transferred
to the context of branch-and-price. Our presentation is based on [19].

There are two types of cutting planes in the context of branch-and-price with a refor-
mulated original problem. First, we consider cutting planes which are defined on the
variables of the extended formulation. Suppose we reformulated problem (OP ), which
was defined in section 2.2, by applying the discretization approach and we obtained the
extended formulation (IMP2). We only consider the case K = 1 and I1 = {1, 2, . . . , n}.
For the remainder of this section let P := P(1) and R := R(1) as well as λp := λ1

p for
all p ∈ P and δr := δ1

r for all r ∈ R. Additionally, let X := X1 = {x ∈ Zn : D1x ≥ d1}.
Thus, we consider an original problem of the form

(OP ′) min cTx

s.t. Ax ≥ b

x ∈ X,
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and the extended formulation

(IMP ′2) min
∑
p∈P cpλp +

∑
r∈R crδr

s.t.
∑
p∈P

xpλp +
∑
r∈R

xrδr ≥ b∑
p∈P

λp = 1

λp ∈ {0, 1} ∀p ∈ P
δr ∈ Z≥0 ∀r ∈ R.

Of course, we can use the integrality constraints of the λ and δ variables to generate
cutting planes defined on these variables, but it is not clear how these inequalities affect
the pricing problems. Note that the pricing problems are formulated with original vari-
ables and we cannot just translate an inequality formulated with master variables. The
structure of the pricing problems is not changed in specific cases. In general though,
these inequalities change the structure of the pricing problems and lead to more difficult
pricing problems.

A way to handle these inequalities in the pricing problems was introduced by Desaulniers
et al. [19]. We have to calculate the potential new column’s coefficient of a cutting plane
explicitly in the pricing problem. If the generated cut is a Chvátal-Gomory inequality,
the calculation of the coefficient is determined by the constraints of the master problem
and its multipliers used to generate the Chvátal-Gomory inequality. Note that we also
have to model the ceiling function for this calculation. This can be done by adding a new
constraint and two new variables, one continuous and one integer, to the formulation of
the pricing problem as we have already seen in problem (CG) in section 3.1. This does
not seem to make the solution of the pricing problem more difficult, but if we generate
several cuts, it might influence the solution time.
The situation completely changes if the generated cut is a clique cut which forbids to
use more than one column of a set of conflicting columns C:

∑
p∈C

λp ≤ 1.

In this case we have to check if the potential new column x0 is in conflict with all columns
in the set C. This can be done by adding a boolean variable yp which is true if and only
if the column x0 is in conflict with the column xp for all p ∈ C. Since the size of the set
C can be as big as the number of all potential columns, it can have a huge influence on
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the solution time of the pricing problem. Spoorendonk and Desaulniers [20] presented a
technique to generate the coefficients of a clique cut heuristically.

As we have seen, the change of the pricing problem and therefore the use of the cutting
planes depends on the cutting plane type. Furthermore, it is not clear how the change of
the pricing problem influences the solution process if we use a combinatorial algorithm.
So far, there are only a few cases where cutting planes on the master variables were
integrated successfully into a combinatorial algorithm [19].

Now, we consider cutting planes which are formulated in the original problem’s solution
space in case we used the convexification approach. We restrict our attention to an
integer original problem with just one set of additional constraints besides Ax ≥ b which
was used to reformulated the problem. We use the same notations as in the beginning
of this section, which leads to the extended formulation

(IMP ′1) min
∑
p∈P

cpλp +
∑
r∈R

crδr

s.t.
∑
p∈P

xpλp +
∑
r∈R

xrδr ≥ b∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P
δr ≥ 0 ∀r ∈ R∑

p∈P
xpλ

k
p +

∑
r∈R

xrδr = x

x ∈ X.

A cutting plane of the form πTx ≥ π0 with (π, π0) ∈ Qn+1 can be handled like a
branching decision, which we have seen in section 2.3. Hence, we have to add the
cutting plane either to the master problem or the pricing problem. Adding the cutting
plane to the master problem leads to new dual variables ν0 ∈ Q. Thus, we add the term

−ν∗0πTxk,

where ν∗0 ∈ Q is an optimal dual solution corresponding to the cutting plane πTx ≥ π0,
to the objective funtion of the pricing problem. Adding the cutting plane to the pricing
problem does not lead to any further changes.

In figure 3.1 we can see the polyhedra of feasible solutions to the linear master problem
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Ax ≥ b
D1x ≥ d1

conv(X1)
PDW

PIP
πTx ≥ π0

c

x1

x2

x̄

(a) Adding πTx ≥ π0 to the master problem.

c

x1

x2

x̄

(b) Adding πTx ≥ π0 to the pricing problem.

Figure 3.1: The polyhedra defined by a 2-dimensional binary original problem with
K = 1 and an valid inequality πTx ≥ π0 for PIP which is not valid for x̄.

after adding a cutting plane to either the master problem or the pricing problem. As we
can see, adding the cutting plane to the pricing problem leads to a potentially stronger
linear master problem in comparison to adding the cutting plane to the master problem.
Note that in case we add the cutting plane to the master problem, the solution space of
the pricing problem does not change at all. This might be useful when using a combi-
natorial algorithm to solve the pricing problem.

In the end, we can handle both types of cutting planes, but cutting planes on master
variables may lead to more difficult pricing problems. For the remainder of this thesis
we will only concentrate on cutting planes formulated on the original variables. In the
next chapter we present some techniques to separate these types of cutting planes.
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Chapter 4

Separation of Cutting Planes in
the Original Problem

Suppose we reformulated the original problem (OP ) by the use of the convexification
approach and obtained the extended formulation (IMP1). Both problems were intro-
duced in section 2.2. Remember that we called the extended formulation the integer
master problem and its LP relaxation the linear master problem. Similarly to section
2.2, we name the set of feasible solutions to the original problem PIP , the polyhedron
of feasible solutions to the original LP relaxation PLP , and the polyhedron of feasible
solutions to the linear master problem PLMP .
Let (λ̄, δ̄) be an optimal solution for the linear master problem and let

x̄ :=
∑
k∈K

∑
p∈P(k)

xkpλ̄kp +
∑

r∈R(k)
xkr δ̄kr

be the corresponding feasible solution for the original LP relaxation. Our goal is to find
a cutting plane of the form πTx ≥ π0 which is valid for all x ∈ PIP but violated by x̄.
Thus the following conditions must hold:

πTx ≥ π0 ∀x ∈ PIP ,

πT x̄ < π0.

An example for this cutting plane is shown in 4.1.
There are several ways of finding cutting planes, but in a lot of applications we would
make use of a known basis for x̄ as seen in section 3.2. Unfortunately, we usually do
not have a basis of x̄ at hand although we translated the basic feasible solution (λ̄, δ̄)
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Ax ≥ b
D1x ≥ d1

conv(X1)
PDW
PIP
πTx ≥ π0

c

x1

x2

x̄

Figure 4.1: The polyhedra defined by a 2-dimensional binary original problem with
K = 1 and an valid inequality πTx ≥ π0 for PIP which is not valid for x̄.

into the original solution space. The reason for this is that in general the vertices of the
polyhedron PLMP do not correspond to the vertices of the polyhedron PLP as already
seen in section 2.2.

In the following section we discuss some ideas of how to find a basic feasible solution
x∗ and use it to separate the solution x̄. Then we present the corresponding separa-
tion algorithm which makes use of these basic feasible solutions. In the last section of
this chapter we present valid inequalities which help us to strengthen the original LP-
relaxation. These inequalities might support the success of the separation procedure.

4.1 Search for Basic LP-Feasible Solutions

In order to exploit separation strategies in the original solution space which make use
of a basis and cut off the current master solution x̄, we have to find a basic LP-feasible
solution for the original LP relaxation. We want to find a basic feasible solution x∗ of
the original LP relaxation which is close to the solution x̄ in the following way: When we
separate the solution x∗ by using a basis of x∗, at least one generated cutting plane does
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not only cut off the solution x∗ but also the solution x̄. We cannot guarantee to find
such a basic feasible solution, but in the following we want to present some strategies to
obtain basic feasible solutions to the original LP relaxation, which might be useful.

4.1.1 Solving the Original LP Relaxation

An obvious strategy to find a vertex of the polyhedron PLP would be solving the original
LP relaxation to optimality using the simplex algorithm and obtaining an optimal basic
feasible solution x∗. Of course, the idea behind this approach is that cTx∗ as well as
cT x̄ are both lower bounds on the optimal solution value of the original problem. In
section 2.2 we have seen that the inequality cTx∗ ≤ cT x̄ is valid. And since the identity

cT x̄ = min{cTx : x = (x1, x2, . . . , xK) ∈ Qn, Ax ≥ b, xk ∈ conv(Xk) ∀k ∈ K} (4.1)

holds, we can conclude that the condition conv(Xk) = {xk ∈ Qnk : Dkxk ≥ dk} for all
k ∈ K implies cT x̄ = cTx∗. If this is the case, we expect the approximation x∗ to be
useful. Otherwise, it is doubtful that the solution x∗ is close to the solution x̄ since we
just use the original objective function, which does not contain any information about
the specific solution x̄.

4.1.2 Search on the Same Faces of the Polyhedron

The strategy to obtain a basic feasible solution, which is presented in this section, was
presented by Range [3] in the same context as here and by Dash and Goycoolea [21] in
the context of separating rank-1 Gomory mixed-integer cuts heuristically.

We already mentioned that the solution x̄ does not need to be a vertex of the polyhedron
PLP , but it still might be lying on some of its faces. A face F of a polyhedron P is the
non-empty intersection F := P ∩ {x ∈ Qn : αTx = α0} of P and the set of solutions
which satisfy a given valid inequality αTx ≥ α0 for P . We say that the solution x lies
on a face F if the condition x ∈ F holds. We refer to Cook [12] for an introduction to
faces of polyhedra.

Let F := {F : F face of PLP , x̄ ∈ F} be the set of faces of the polyhedron PLP that the
solution x̄ lies on and let XF :=

⋂
F∈F{x ∈ F : x basic feasible to PLP } be the set of

basic LP-feasible solutions which lie on all these faces F ∈ F . The set F of an exemplary
problem is depicted in figure 4.2.
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We can write x̄ as a convex combination ᾱ ∈ [0, 1]|XF | of these basic LP-feasible solutions

x̄ =
∑
x∈XF

ᾱxx

with
∑
x∈XF ᾱx = 1. Since the set XF containts only basic LP-feasible solutions, we can

easily generate cutting planes which cut off the solution x by the use of a corresponding
basis for x ∈ XF .

Ax ≥ b
D1x ≥ d1

conv(X1)
PDW
PIP
F

c

x1

x2

x∗1

x∗2

x̄

Figure 4.2: The polyhedra defined by the constraints of a 2-dimensional binary original
problem with K = 1 and the corresponding optimal solutions x∗1 ∈ XF and x∗2 ∈ XF to
problem (4.2) together with the set F .

The following theorem was presented by Ralphs and Galati [22] and it demonstrates the
potential use of these cutting planes.

Theorem 4.1. Let x̂ ∈ Qn be some rational vector and let X ⊂ Qn be some subset of
the underlying vector space. Furthermore, let α̂ ∈ Q|X |≥0 be the coefficient vector of some
convex combination of X with

∑
x∈X α̂xx = x̂ and

∑
x∈X α̂x = 1.

If x̂ violates an inequality πTx ≥ π0 with (π, π0) ∈ Qn+1, then there must exist some
x′ ∈ X with α̂x′ > 0 such that x′ also violates the inequality πTx ≥ π0.
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Proof. Assume that πTx ≥ π0 holds for all x ∈ X with α̂x > 0. Using this assumption
together with the identities

∑
x∈X α̂xx = x̂ and

∑
x∈X α̂x = 1 we can conclude

πT x̂ = πT
(∑
x∈X

α̂xx

)
=
∑
x∈X

α̂xπ
Tx ≥

∑
x∈X

α̂xπ0 = π0
∑
x∈X

α̂x = π0,

which is a contradiction to πT x̂ < π0.

Hence, in order to cut off the solution x̄ it is necessary to cut off a solution x ∈ XF . We
want to use this condition although it is not sufficient. This is why we search for some
x∗ ∈ XF . Note that an optimal solution for the original LP relaxation is in general not
in XF . Therefore, we use the strategy proposed by Range [3] as well as by Dash and
Goycoolea [21], which we will present in the following.

We want to find a solution x∗ ∈ XF , e.g. a basic feasible solution x∗ to the orginal
LP relaxation which lies on the same faces as the solution x̄. If the solution x̄ is not
basic LP-feasible, it is obvious that the basic LP-feasible solution x∗ has to lie on some
additional faces of the polyhedron PLP , the solution x̄ does not lie on.
Since the constraints of the original LP relaxation are inequalities, a constraint represents
a potential face of the polyhedron of all feasible solutions to the original LP relaxation.
Thus, a solution x∗ lies on a potential face if and only if the corresponding constraint is
satisfied with equality by x∗.
Let J0 := {j ∈ {1, . . . ,m} : Aj x̄ = bj} and Jk := {j ∈ {1, . . . ,mk} : Dk

j x̄ = dkj } for all
k ∈ K be the index sets of all inequalities which are satisfied with equality by x̄. We
formulate the following optimization problem

z∗ = min
∑
k∈K0

∑
j∈Jk

skj

s.t. Dkxk − sk = dk ∀k ∈ K
Ax− s0 = b

xki ∈ Q ∀i ∈ Ik ∀k ∈ K
skj ≥ 0 ∀j ∈ {1, . . . ,m} ∀k ∈ K0,

(4.2)

where K0 := K ∪ {0}. We call the objective function used in problem 4.2 the face
objective function. Notice that we only added slack variables to the LP relaxation of the
original problem and changed the objective function. Thus, the polyhedron of all feasible
solutions of problem (4.2) equals the polyhedron PLP disregarding the slack variables.
The following proposition shows that an optimal solution for problem (4.2) exists.
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Proposition 4.2 ([3]). A feasible solution (x∗, s0
∗, . . . , s

K
∗ ) with (sk∗)j = 0 for all j ∈

{1, . . . ,m}, k ∈ K and objective value z∗ = 0 to problem (4.2) exists and is optimal.

Proof. First of all, it is obvious that the optimal objective value is non-negative because
the slack variables are non-negative. Furthermore, the solution (x̄, s̄0, . . . , s̄K) with s̄0 :=
Ax̄ − b and s̄k := Dkx̄k − dk for all k ∈ K is feasible to problem (4.2) and the identity
s̄kj = 0 holds for all j ∈ Jk, k ∈ K. Thus, we obtain the optimal solution value z∗ = 0
due to the solution (x∗, s0

∗, . . . , s
K
∗ ) := (x̄, s̄0, . . . , s̄K).

As we mentioned, the solution x̄ does not need to be a vertex of PLP . This is transferred
to the solution (x̄, s̄0, . . . , s̄K) of problem (4.2), which was defined in the previous proof,
because its formulation differs only in the use of slack variables. Therefore, we may
obtain another solution (x∗, s0

∗, . . . , s
K
∗ ) 6= (x̄, s̄0, . . . , s̄K) when solving problem (4.2)

with the simplex algorithm. The vector x∗ is apparently a vertex of the polyhedron PLP
and so we are able to separate it by making use of a corresponding basis.

4.1.3 Combination of Both Strategies

We have seen two strategies of how to find a basic feasible solution for the original LP
relaxation by solving a linear program. Since both of them differ only in the objective
function and the use of slack variables, we are able to combine both approaches. This
can be done by using a convex combination of the used objective functions.
For the remainder of this section let c 6= 0 and Jk 6= ∅ for some k ∈ K0. In problem
(4.2) we replace the objective function S(x, s0, . . . , sK) :=

∑K
k=0

∑
j∈Jk

skj by the convex
combination

fα(x, s0, . . . , sK) := αS(x, s0, . . . , sk) + (1− α)

√∑
k∈K0 |Jk|
||c||

cTx, (4.3)

where α ∈ [0, 1] and || · || is the Euclidean norm of a vector. Note that
√∑

k∈K0 |Jk| is
the Euclidian norm of the objective function vector S(x, s0, . . . , sK).
We can either fix α or calculate some value for α before solving problem (4.2) with ob-
jective function fα. In the following we want to present a strategy to calculate a suitable
value for α.

We define
D̄k
j := ( 0, . . . , 0︸ ︷︷ ︸∑k−1

k′=1 nk′

, Dk
j , 0, . . . , 0︸ ︷︷ ︸∑n

k′=k+1 nk′

) (4.4)
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as the n-dimensional row corresponding to the jth row of the matrix Dk
j for all j ∈ mk

and k ∈ K. Let

J := {(Aj , bj) : j ∈ J0} ∪
⋃
k∈K
{(D̄k

j , d
K
j ) : j ∈ Jk} (4.5)

be the set of all inequalities of the original formulation which are satisfied with equality
by x̄. We are now interested in the dimension d of the vector space

span(J ) :=

∑
v∈J

µvv : µ ∈ Q|J |
 (4.6)

which is spanned by J . The value d equals the maximum number of linearly indepen-
dent vectors in the set J . Since a basic feasible solution satisfies n′ := rk(A) linearly
independent inequalities with equality as seen in section 3.2, where

A :=



A1 A2 . . . AK

D1 0 . . . 0
0 D2 . . . 0
... 0 . . . ...
0 . . . 0 DK


(4.7)

and A = (A1, A2, . . . , AK) with Ak ∈ Qm×nk for all k ∈ K, the quotient αx̄ := d
n′ ∈ [0, 1]

shows how close the solution x̄ is to being basic feasible. The larger the quotient αx̄, the
closer is x̄ to being basic feasible to the original LP relaxation. This is why αx̄ might be
a suitable value for the convex combination coefficient α. If αx̄ is close to one, we will
base our search on the basis information we already have due to x̄, which means weight-
ing the objective function S higher than the original objective function. Otherwise, if
αx̄ is close to zero, we will depend more on the original objective function than on the
poor basis information of x̄. We call the obtained objective function fᾱ generic convex
objective function.
The dimension d of the vector space span(J ) can be obtained by using Gaussian elimi-
nation in polynomial time.
All in all, we are able to combine both previous approaches, which results in a more rea-
sonable algorithm by the use of a generically calculated convex combination coefficient.
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4.2 The Basis Separator

So far, we described approaches to calculate basic LP-feasible solutions. Generating
cutting planes which cut off one of these solutions might help us to cut off the solution
x̄. In this section we describe the obtained basic separation procedure and present an
extension which allows us to apply the basic separation procedure iteratively. The ob-
tained extended algorithm was introduced by Range [3].

Let cB : PLP → Qn be a function which maps a feasible solution x to the original LP
relaxation to an objective function vector cB(x). Note that cB might be one of the objec-
tive functions used in the previously described strategies to calculate a basic LP-feasible
solution.
Separating a basic LP-feasible solution obtained by minimizing the objective cB(x̄) over
the polyhedron PLP and checking if one of the generated cutting planes also cuts off the
solution x̄ results in a separation procedure.
Since this procedure is likely to fail, especially when the polyhedron PDW is much
stronger than the polyhedron PLP , we present an extension which deals with the failure
to cut off x̄.

Let S∗ ⊆ Qn+1 be the set of valid inequalities for conv(PIP ) of the form πTx ≥ π0

which were generated by separating some basic feasible solution x∗ to the original LP
relaxation. Suppose πT x̄ ≥ π0 holds for all (π, π0) ∈ S∗. In this case we are not able to
cut off the solution x̄, but we can make use of the generated inequalities.
Since all inequalities πTx ≥ π0 with (π, π0) ∈ S∗ are not valid for our approximation
x∗, we add them to the original LP relaxation and get a new approximation x∗∗ by
applying the basic separation procedure again. Adding these inequalities strengthens
the original LP relaxation, but we do not cut off any feasible solutions to the original
problem. Repeatedly separating these approximations of x̄ until a predefined number
of iterations is achieved or no more cuts are found results in separation algorithm 4.1,
which is exemplary applied in figure 4.3. We also call algorithm 4.1 basis separator.

This separation algorithm including an extension, which we will present in section 4.3.1,
was presented by Range [3]. He uses the objective function S, which was proposed in
section 4.1.2, as the objective function vector cB(x̄).
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(a) Solution x∗ calculated in step (2).
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(b) Inequality (π1)Tx ≥ π1
0 ∈ S∗ calculated in

step (3).
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(c) New solution x∗∗ calculated in step (2).

x1

x2

x∗∗

x̄

(d) Inequality (π2)Tx ≥ π2
0 ∈ S∗ calculated in

step (3) cuts off x̄.

Figure 4.3: The steps of the basis separator 4.1 illustrated by applying the algorithm to
a 2-dimensional example.
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Algorithm 4.1 Basis separator
Input: Optimal solution x̄ to the linear master problem (transferred to original solution
space), the original LP relaxation PLP , function f : PLP → Qn and maximal number of
iterations imax.
Output: Cutting plane πTx ≥ π0 which is valid for all x ∈ PIP , but not for x̄, or
nothing.

(1) Initialize S := ∅ and i := 0.

(2) Solve min{f(x̄)Tx : x ∈ PLP , πTx ≥ π0 ∀(π, π0) ∈ S} using the simplex algorithm
and let x∗ be an optimal basic feasible solution.

(3) Separate x∗ and let S∗ be the set of generated inequalities.

(4) Return all inequalities πTx ≥ π0 with (π, π0) ∈ S∗ which satisfy the strict inequal-
ity πT x̄ < π0. If there does not exist such an inequalitiy, set i := i+ 1.

(5) If i ≥ imax or S∗ = ∅ holds, return nothing, otherwise set S := S ∪ S∗ and go to
step (2).

4.3 Strengthening the Original LP Relaxation

The success of the previous strategies highly depends on the LP relaxations of the original
and the master problem. If the LP relaxation of the master problem is much stronger
than the original LP relaxation, it will be hard to approximate the solution x̄ by some
basic feasible solution x∗ of the original LP relaxation no matter what objective function
we use. This is why we want to strengthen the LP relaxation of the original problem
by adding valid inequalties for the polyhedron conv(PIP ) which is the convex hull of all
feasible solutions to the original problem.
When solving the linear master problem we optimize over the polyhedron

PDW := {x = (x1, . . . , x
K) ∈ Qn : Ax ≥ b, xk ∈ conv(Xk) ∀k ∈ K}. (4.8)

Notice that the polyhedron PDW can be obtained by adding all valid inequalities for
the convex hull conv(Xk) for all k ∈ K to the formulation of the polyhedron PLP if
the polyhedron PDW is a strict subset of the polyhedron PLP . Thus, we are especially
interested in finding some of these inequalities to get a better approximation of PDW .
Suppose we only add all inequalities which are valid for conv(Xk) for all k ∈ K and are
satisfied with equality by x̄ to the formulation of PLP and obtain the polyhedron P ′LP .
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Note that the vector x̄ is a vertex of P ′LP and therefore basic feasible to the correspond-
ing LP relaxation, where the set of feasible solutions is given by the polyhedron P ′LP .

Let Ck ⊆ Qnk+1 for k ∈ K be some set of valid inequalities for conv(Xk) with the form
(πk)Txk ≥ πk0 . Consider the following linear program, which employs these sets of valid
inequalities:

min cTx

s.t. Dkxk ≥ dk ∀k ∈ K
(πk)Txk ≥ πk0 ∀(πk, πk0 ) ∈ Ck ∀k ∈ K

Ax ≥ b

xki ∈ Q ∀i ∈ Ik ∀k ∈ K

(4.9)

We will will refer to problem (4.9) as the stronger original LP relaxation and define the
set of its feasible solutions as PS . Note that we can replace the original LP relaxation
by the stronger original LP relaxation in every context, in which we have been using it.
Notice that the statement

PDW ⊆ PS ⊆ PLP (4.10)

holds because we just added valid inequalities for the convex hull conv(Xk) for some
k ∈ K which are also valid for the polyhedron PDW . Since the relation (4.10) holds, this
results in a potentially better approximation of the polyhedron PDW , and therefore, we
might get a better approximation x∗ of x̄ when applying the basis separator 4.1.

Now, consider an inequality πTx ≥ π0 which is valid for the convex hull conv(PIP ). In
general this inequality is not valid for the polyhedron PDW because PDW is the set of all
feasible solutions to the linear master problem transferred to the original solution space.
Remember that the linear master problem is the LP relaxation of the integer master
problem which is some formulation with solution set PIP . Thus, we do not only add the
inequality πTx ≥ π0 to the (stronger) original LP relaxation, but we also add it to the
linear master problem. Thus, relation (4.10) maintains valid.

In the following sections we present strategies to calculate valid inequalities, which help
us to strengthen the original LP relaxation. We differentiate between valid inequalities
for conv(PIP ) and valid inequalities for conv(Xk) for some k ∈ K not only because of the
previously described difference but also because there are different strategies to obtain
valid inequalities for each inequality type.
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4.3.1 Valid Inequalities Obtained During the Solution Process

In this section we will present some types of valid inequalities for conv(PIP ) and conv(Xk)
for k ∈ K which are directly obtained during the solution process using branch-and-price.
Since we do not need the additional valid inequalities until we have solved the linear
master problem to optimality, we can use all information we gain while applying column
generation in the root node of our branch-and-price tree.

First of all, we use the original objective function. Let zDW := cT x̄ be the lower bound
to the optimal objective value of the original problem, which is due to the linear master
problem. Obviously, the inequality cTx ≥ zDW is valid for all x ∈ conv(PIP ) and it
is satisfied with equality by x̄. Thus, it might be useful to add this inequality to the
(stronger) original LP relaxation as well as to the linear master problem.
Furthermore, we might know that the objective value of the original problem is always
integer because the objective function only consists of integer coefficients and the solu-
tion set PIP only contains integer vectors. If we do know that this is the case, we can
even add the inequality cTx ≥ dzDW e, which we call the original objective cut. Range [3]
introduced the original objective cut in this context.

When solving the kth pricing problem for some k ∈ K, we optimize over the polyhedron
conv(Xk). If we solve the pricing problem with a branch-and-cut algorithm, valid in-
equalities for the convex hull conv(Xk) might be separated in the root node. As we have
just seen, these pricing cuts may help us to strengthen the original LP relaxation. We
can add these inequalities to the set Ck for all k ∈ K and obtain a potentially stronger
LP relaxation. Notice that we usually solve the pricing problems with branch-and-cut if
we do generic column generation. This way we can add these inequalities without any
further effort.

We can obtain another type of valid inequalities when the objective function (ck)Txk −
(µ∗)TAkxk − µ∗0 of the kth pricing problem for some k ∈ K is considered, which was
used in the last pricing round of the root node. If we solve the linear master problem to
optimality, the reduced costs of any potential new variable is non-negative. Therefore
the inequality (ck)Txk − (µ∗)TAkxk ≥ µ∗0 is valid for the convex hull conv(Xk) and we
can add it to it to the (stronger) original LP relaxation. We call such an inequality a
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reduced cost cut.
Suppose δ̄ = 0. Then these inequalities are also satisfied with equality by x̄ because x̄k

can by definition be written as a convex combination of columns of the linear master
problem for all k ∈ K

x̄k =
∑

p∈P(k)
xkpλ̄kp,

where
∑
p∈P(k) λ̄

k
p = 1. Since (λ̄, 0) is optimal to the linear master problem, every column

corresponding to a variable λkp with λ̄kp > 0 has reduced costs equal to zero. Hence, the
following holds:

(
(ck)T − (µ∗)TAk

)
x̄k =

(
(ck)T − (µ∗)TAk

) ∑
p∈P(k)

xkpλ̄kp


=

∑
p∈P(k):
λ̄k

p>0

λ̄kp

(
(ck)T − (µ∗)TAk

)
xkp︸ ︷︷ ︸

=µ∗0

=
∑

p∈P(k):
λ̄k

p>0

λ̄kpµ
∗
0

= µ∗0
∑

p∈P(k):
λ̄k

p>0

λ̄kp

︸ ︷︷ ︸
=1

= µ∗0.

So we can see that the reduced cost cuts are satisfied with equality by the optimal
solution x̄ to the linear master problem transferred to the original solution space if the
pricing problems are bounded.

4.3.2 The Chief-and-Slave Algorithm

In this section we present a strategy to generate valid inequalities for the polyhedron
conv(Xk) for all k ∈ K by the use of mixed integer programs. Our strategy is based on
the algorithm proposed by Louveaux et al. [23]. They use the algorithm to analyze the
strength of multi-row cuts in the context of branch-and-cut.

For the remainder of this section let K = 1 and I1 = {1, 2, . . . , n} as in section 3.3.
We also make use of the previous notations. Due to these restrictions, the considered
problem consists of just one integer pricing problem.
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To simplify the notation we denote PX := {xk ∈ Qn : D1x ≥ d1} as the set of all feasible
solutions to the LP relaxation of the pricing problem.
As we have seen, we are especially interested in valid inequalities for conv(X) which
are satisfied with equality by the solution x̄ because they might help us to find a basic
feasible solution which is close to x̄. These inequalities should be linearly independent
to the inequalities we already use in the formulation of the pricing problem. Otherwise,
we would not gain any information.
If a new inequality is valid for all solutions in X but not for all solutions in PX , it
is linearly independent to the already used inequalities. Otherwise, we could describe
the new inequality by a linear combination of the already used inequalities and thus,
it would be valid for all solutions in PX . We will use this sufficient condition to avoid
generating unnecessary inequalities. Notice that it is easy to test if some vectors are
linearly independent by using a linear program, but it is not clear how to formulate the
linear independence of a variable vector to given vectors as a constraint in an integer
linear program. For the remainder of this section let X be finite. Obviously, the set Q
of valid inequalities for X of the form πTx ≥ π0 can be written as

Q =
{

(π, π0) ∈ Qn+1 : πTx ≥ π0 ∀x ∈ X
}
.

Let x∗ be some feasible solution for the LP relaxation of the pricing problem. We
generate valid inequalities which are satisfied with equality by x̄ and cut off the solution
x∗ by solving the following linear program

min πTx∗ − π0

s.t. πT x̄ = π0

(π, π0) ∈ Q.

(4.11)

Besides the fact that Q can have exponential size in n, the problem is unbounded if
there exists a cutting plane which cuts off the solution x∗ and is satisfied with equality
by x̄. Otherwise, the vector (0, 0) ∈ Qn+1 is optimal to problem (4.11). This is why we
introduce a normalization proposed by Balas and Perregaard [24]:

πT (x̄− x∗) = 1. (4.12)

In the following we show that if we add this normalization constraint to problem (4.11),
the problem gets bounded while no relevant solution is disregarded.

Proposition 4.3 ([23]). Let x∗ ∈ PX and x̄ ∈ conv(X). The following optimization
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problem is allways bounded:

min πTx∗ − π0

s.t. πT x̄ = π0

πT (x̄− x∗) = 1
(π, π0) ∈ Q.

(4.13)

Moreover, if an optimal solution exists, the optimal objective value is equal to −1.

Proof. Let (π̄, π̄0) be an optimal solution for problem (4.13), then the following holds:

π̄Tx∗ − π̄0︸︷︷︸
π̄T x̄

= π̄T (x∗ − x̄) = −1.

We now proof that adding the normalization constraint does not lead to disregarding
any relevant solutions.

Proposition 4.4 ([23]). Let x∗ ∈ PX and x̄ ∈ conv(X). Furthermore, let (π, π0) ∈ Q
be an inequality which cuts off the solution x∗ and is satisfied with equality by x̄. Then
there exists some rational number α > 0 such that (απ, απ0) ∈ Q and (απ)T (x̄−x∗) = 1.

Proof. We know that πT x̄ = π0 and πTx∗ < π0. Hence, the strict inequalitiy πT x̄ > πTx∗

and therefore πT (x̄−x∗) > 0 holds. Thus, the value α := 1
πT (x̄− x∗) fullfills the desired

properties.

Due to proposition 4.3 and 4.4, we have seen that solving problem (4.13) to optimality
produces an inequality which cuts off a given solution x∗ and is satisfied with equality
by x̄ if such an inequality exists.

We already mentioned that the set Q might have exponential size in n. This is why we
want to solve problem (4.13) by applying cut generation.
Let S ⊆ X and define the set

Q(S) :=
{

(π, π0) ∈ Qn+1 : πTx ≥ π0 ∀x ∈ S
}
. (4.14)
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Consider the following chief problem:

C(S) := min πTx∗ − π0

s.t. πT x̄ = π0

πT (x̄− x∗) = 1
(π, π0) ∈ Q(S).

(4.15)

Note that the chief problem with S = X is equal to problem (4.13). We start solving
the chief problem with the set S := ∅. In order to check if an optimal solution (π̄, π̄0) of
the chief problem for some S ⊆ X is feasible and therefore optimal to problem (4.13),
we solve the following slave problem

S(π̄, π̄0) := min π̄Tx − π̄0

s.t. x ∈ X.
(4.16)

Notice that the slave problem is an integer program since X is a set containing just in-
teger vectors. If the optimal solution value S(π̄, π̄0) is non-negative, the solution (π̄, π̄0)
is optimal to problem (4.13). Otherwise, let x′ be an optimal solution for the slave
problem. Then the strict inequality π̄Tx′ < π̄0 holds and thus, (π̄, π̄0) is not feasible to
problem (4.13). Adding x′ to the set S and iteratively applying this procedure leads to
algorithm 4.2, which is exemplary performed in figure 4.4.

Algorithm 4.2 Chief-and-slave algorithm
Input: Finite sets X ⊂ Qn and S0 ⊆ X together with vectors x̄ ∈ conv(X) and
x∗ 6∈ conv(X).
Output: A Valid inequality of the form π̄Tx ≥ π̄0 which is valid for all X and are
fullfilled with equality by x̄, or nothing.

(1) Initialize S = S0.

(2) Solve the chief problem (4.15).

(3) If the chief problem is feasible, let (π̄, π̄0) be an optimal solution and go to step (4).
Otherwise, return nothing.

(4) Solve the slave problem (4.16). Let x′ be an optimal solution.
If π̄Tx′ ≥ π̄0, return π̄Tx ≥ π0. Otherwise, define S := S ∪{x′} and go to step (2).

We apply algorithm 4.2 with the set of feasible solutions X to the pricing problem as
input data. Furthermore, we use some subset S0 ⊆ X, which we will specify in the
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following, and the vector x̄ as a current optimal solution to the linear master problem,
transferred to the original solution space and an optimal solution x∗ to the original LP
relaxation. If the algorithm calculates a valid inequality, we add it to the formulation of
the pricing problem and the original problem. After that, we calculate a new optimal
solution x∗ to the original LP relaxation and repeat this procedure.

We now want to deal with the choice of the set S0. Obviously, we could initialize the
algorithm with the set S0 = ∅, but starting with a non-empty set S0 potentially reduces
the number of iterations. In section 4.3.1 we have seen that the solution x̄ can be written
as a convex combination of columns of the linear master problem

x̄ =
∑
p∈P

xpλ̄p,

where
∑
p∈P λ̄p = 1. Note that the columns of the linear master problem do not rep-

resent any extreme rays of X because we only consider a finite set X. Analogously to
proving that the reduced cost cuts are satisfied with equality by x̄, we can show that a
valid inequality for the convex hull conv(X) which is satisfied with equality by x̄ is also
satisfied with equality by all xp with λp > 0.
We initialize the set S0 with S0 := {xp : λp > 0}. This might result in less iterations
than initializing the set S0 with the empty set.

In this section we have seen an algorithm which produces valid inequalities heuristically
that are satisfied with equality by the solution x̄. Although we only considered the case
of one integer pricing problem, the procedure can easily be transferred to the general
case because the pricing problem was examined independently of the master problem.
Due to the restriction that the generated inequality has to be satisfied with equality by
x̄, we limited the set of possible valid inequalities, but it still might take some time to
apply algorithm 4.2. This is because we have to solve an integer program in step (4)
which is equal to a pricing problem with a different objective function and as already
mentioned, the pricing problems are NP-hard in most applications.
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D1x ≥ d1

conv(X1)
S

(π̄i)Tx ≥ π̄i0, i ∈ {1, 2}

x1

x2

x∗

x̄

(a) Starting situation at the beginning of the
algorithm.

x1

x2

x∗

x̄

(b) Inequality (π̄1)Tx ≥ π̄1
0 calculated in step (2).

x1

x2

x′

x∗

x̄

(c) Solution x′ calculated in step (4) does not
satisfy inequality π̄Tx ≥ π̄0.

x1

x2

x′

x∗

x̄

(d) Inequality (π̄2)Tx ≥¯̄π2
0 calculated in step (2)

is valid for conv(X).

Figure 4.4: Applying the chief-and-slave algorithm.



Chapter 5

Experimental Results

We implemented the basis separator 4.1 including its variations and extensions in GCG

1.1.0.1 [2], which is based on SCIP 3.0.1.3 [11] with CPLEX 12.5.0.0 as LP-solver.

We applied the basis separator to instances of various problem classes. Namely these
classes are the bin packing problem (bp), the cutting stock problem (cs), the vertex col-
oring problem (coloring), the capacitated p-median problem (cpmp), the generalized as-
signment problem (gap), the resource allocation problem (rap) and the multiple knapsack
problem (mkp). Additionally, we tested the basis separator on instances of the MIPLIB
2003 [25] and the MIPLIB 2010 [26] which were already successfully tested with GCG [27].
We refer to these instances as gcgjournal instances. Formal problem definitions and the
test sets of the problem classes are stated in appendix A.

All computations but the ones dealing with SCIP exclusively and GCG’s computations on
resource allocation problem or gcgjournal instances were performed by using the RWTH
Compute Cluster [28]. The other calculations were performed on Intel Core i7-2600
CPUs with 16GB of RAM on openSUSE 12.1 workstations running Linux kernel 3.1.10.
The default time limit is 3600 seconds unless stated otherwise.

When using the basis separator, we previously have to solve the root node’s original LP
relaxation in order to solve the linear program in step (2) of algorithm 4.1 by using a
specific implementational feature of SCIP, the diving mode. With the help of the diving
mode we can change and solve the current linear program easily. Afterwards, all changes
are reversed.
For the purpose of a better comparison of GCG’s performance with and without using
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the basis separator, we solve the original LP relaxation even if the basis separator is
disabled. Thus, the default setting of GCG which we use is GCG’s initial default setting
plus solving the original LP relaxation.

We only tested the basis separator on instances where the root node of the reformulated
problem was solved before the time limit was reached and the solution process is not
finished after solving the root node when using the previously defined default setting.
Depending on the solution time of GCG’s default setting, we classified all instances of a
given problem class into groups with the exception that we divided the multiple knap-
sack instances of the same type into groups. We refer to appendix A for further details.
The easy (e) instances were solved to optimality within 60 seconds using the default
setting, the middle (m) instances were solved to optimality between 60 seconds and 3600
seconds, and the hard (h) instances were not solved to optimality within the time limit
of 3600 seconds. Each test set contains at least five instances. If there exist less than
five instances of a specific problem class and difficulty level, we grouped the instances of
more than one difficulty level into a test set. The test sets are named as follows. Each
test set’s name consists of the problem class in the previously introduced short form plus
the suffix -nr, which stands for the instances that were not solved in the root node, and
at least one suffix -e, -m, and -h, which represents the contained difficulty levels.

In order to cut off an auxiliary basic LP-feasible solution in step (3) of algorithm 4.1, we
use all of SCIP’s separators but the integer objective value separator, closecuts meta sep-
arator, rapidlearning separator, and the Chvátal-Gomory cuts computed via a sub-MIP
as introduced in section 3.1. Namely we separate an auxiliary basic LP-feasible solution
using the clique separator, the complemented mixed integer rounding cuts separator, the
flowcover separator, the Gomory MIR cuts separator, the implied bounds separator, the
multi-commodity-flow network cut separator, the oddcycle separator, the strong Chvátal-
Gomory cuts separator and the {0, 1

2}-cuts separator. In order to separate cutting planes
using these separators, we set SCIP’s parameters to the values which are given by SCIP’s
predefined parameter setting aggressive.

In the next section we compare the different objectives which can be used to calculate
basic LP-feasible solutions in step (2) of the basis separator. Then, we analyze the
basis separator in section 5.2. We examine which one of SCIP’s separators finds useful
cutting planes and we compare the basis separator to the master separator [2], which is
by default enabled when using GCG.
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In section 5.3 we examine the impact of the additional inequalities which were introduced
in section 4.3, before we compare the performance of GCG including the basis separator
to GCG’s performance, using the default setting.

5.1 Comparison of the Different Search Strategies

First of all, we compare the performance of the basis separator 4.1 when using the dif-
ferent choices of the objective functions f to calculate the auxiliary basic LP-feasible
solutions. We introduced the original objective function (origobj) in section 4.1.1, the
face objective function (face) in section 4.1.2, and the generic convex objective function,
which is a combination of both strategies with a generically calculated convex combi-
nation (genconv or gen), in section 4.1.3. In table 5.1 we can see the number of nodes
(Nod), the solution time (T), the Dantzig-Wolfe gap that was closed (Gap cl), where the
gap is given by the difference of the root dual bound of the Dantzig-Wolfe reformulated
problem and the optimal solution value, and the number of found cuts due to the basis
separator (Fnd) when using the different objectives. Furthermore, we state the time that
was spent in the basis separator (BT), and the percentage of affected instances (Aff),
where at least one cut was found. In each line the percentage of affected instances and
the shifted geometrical mean of the other values for the different test sets is presented.
On the one hand, we use the shifted geometrical mean because it allows us to average
out nonnegative values in contrast to the geometrical mean, which demands positive
values. On the other hand, it has some advantage compared to the arithmetic mean.
We use the geometrical shift 100 for the number of nodes, 10 for the solution time as
well as for the time spent in the separator, and 1 for the integrality gap that was closed
as well as for the number of generated cuts.

Note that the size of the given Dantzig-Wolfe gap can only be reduced due to a better
dual bound. This is an important measure to evaluate the use of a separation algorithm
besides the solution time and the number of used branch-and-bound nodes.
In the first part of the table we calculated the values for all instances of a given test

set which were solved to optimality by all observed settings. This way we can explicitly
compare how many nodes and how much time was needed to solve these instances to
optimality. We consider the easy and middle instances in this part. In the second part
of the table we take a look at the other instances and compare the values for complete
test sets. The number of examined instances for each test set is stated in brackets after
the test set’s name.
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genconv face origobj
Nod T Gap cl Fnd BT Aff Nod T Gap cl Fnd BT Aff Nod T Gap cl Fnd BT Aff

bp-nr-e (266) 184.9 27.6 0.000 0.1 20.7 0.07 185.5 19.5 0.000 0.2 9.5 0.11 156.5 75.2 0.000 0.0 59.7 0.00

bp-nr-m (33) 7357.8 598.3 0.000 0.1 86.7 0.04 7460.1 470.2 0.000 0.1 24.0 0.12 3106.2 1054.7 0.000 0.0 223.1 0.00

cs-nr-e (125) 223.8 26.9 0.000 0.4 16.3 0.37 223.0 12.8 0.000 0.4 4.2 0.43 223.8 22.0 0.000 0.0 10.2 0.00

cs-nr-m (149) 1106.1 237.4 0.000 0.8 3.7 0.67 1106.1 223.9 0.000 0.8 0.9 0.63 1106.1 233.7 0.000 0.0 1.8 0.01

coloring-nr-e (5) 65.3 28.4 0.000 2.1 17.1 0.20 65.3 11.2 0.000 2.8 1.9 0.40 65.3 29.8 0.000 0.0 20.8 0.00

coloring-nr-m (5) 1398.3 717.3 0.000 1.5 200.6 0.20 1398.3 359.6 0.000 0.0 49.5 0.00 1398.3 995.9 0.000 0.0 433.6 0.00

cpmp-nr-e (42) 24.4 70.0 0.196 8.9 16.2 0.85 36.7 56.1 0.119 45.3 2.6 0.90 32.5 61.4 0.197 6.6 6.0 0.78

cpmp-nr-m (44) 127.5 520.9 0.106 5.3 83.3 0.68 144.9 545.1 0.076 22.5 10.9 0.86 114.1 496.4 0.112 4.4 23.6 0.68

gap-nr (35) 5.9 11.1 0.172 1.8 1.1 0.54 6.9 11.4 0.020 0.7 0.8 0.20 5.6 10.8 0.149 1.8 0.9 0.57

rap32-nr-e-m 24.2 644.1 0.195 2.4 33.2 0.61 30.9 713.2 0.054 1.1 0.7 0.40 21.7 571.5 0.267 3.7 24.5 0.66

rap64-nr-e-m (29) 9.8 539.2 0.206 1.6 20.5 0.48 11.7 556.3 0.042 0.3 0.5 0.10 10.5 569.4 0.168 1.1 19.0 0.55

gcgjournal-nr-e-m (5) 348.7 70.6 0.290 4.4 0.8 0.80 339.2 66.8 0.000 2.1 0.5 0.80 311.5 66.4 0.245 2.4 0.9 0.80

cpmp-nr-h (80) 640.2 3539.5 0.053 12.9 633.4 0.06 3064.5 3352.1 0.044 101.5 17.3 0.05 1941.1 3357.5 0.057 12.8 34.5 0.05

rap32-nr-h (17) 73.3 3289.8 0.204 10.3 83.8 0.11 78.1 3553.5 0.048 3.2 1.8 0.05 69.7 3327.3 0.142 6.9 48.1 0.17

rap64-nr-h (10) 26.4 3572.8 0.165 2.6 44.6 0.00 28.0 3600.0 0.000 0.4 0.8 0.00 23.7 3585.4 0.142 3.7 33.8 0.10

gcgjournal-nr-h (11) 369.8 3600.0 0.075 140.8 10.7 0.09 382.2 3600.0 0.057 146.3 8.9 0.09 350.7 3600.0 0.062 171.1 8.8 0.09

mkp-u-dis-nr-h (49) 689.5 3118.3 0.049 0.5 10.9 0.08 739.6 3125.6 0.035 0.3 7.7 0.04 551.8 3161.6 0.039 0.3 15.9 0.06

mkp-u-sim-nr-h (49) 559.0 3276.4 0.063 0.4 13.5 0.04 632.1 3276.0 0.058 0.3 9.6 0.02 608.0 3332.2 0.062 0.3 18.7 0.02

mkp-w-dis-nr-h (73) 398.4 3469.0 0.016 0.2 31.8 0.01 439.3 3600.0 0.013 0.2 16.5 0.01 441.2 3466.7 0.016 0.2 18.5 0.01

mkp-w-sim-nr-h (83) 499.7 3316.3 0.048 0.3 26.3 0.02 548.0 3397.3 0.041 0.2 15.2 0.02 578.4 3259.2 0.047 0.3 17.9 0.04

Table 5.1: Test results for the different approaches to obtain an auxiliary basic LP-
feasible solution.

In table 5.1 we can see that we are not able to reduce the size of the Dantzig-Wolfe
gap for the bin packing, the cutting stock, and the coloring problem instances, although
we find cuts for some instances when using the face or the genconv setting. Since the
generated cuts do not affect the dual bound in the root node, the number of nodes stays
almost the same for all settings.

The situation changes when we consider the other test sets. The cuts which are found
on instances of the other test sets influence the dual bound in the root node. So on
shifted geometrical average we are able to close the Dantzig-Wolfe gap at least 5% on
all other test sets by the use of one of the considered settings. When considering the
remaining test sets where we only examine instances that were solved to optimality by
all settings, we close at least 10% and at most 29% of the Dantzig-Wolfe gap measured
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Figure 5.1: Comparison of the Dantzig-Wolfe gap that was closed due to the basis
separator with the use of the different objective functions. When we order the settings
for a given instance depending on how much of the original gap is closed, the difference
between two consecutive settings is marked with the color of the setting that reduces
the size of the original gap more on the given instance. If we obtain the same gaps for
two settings, we use the color of the combination of both settings.
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Figure 5.2: Node performance profiles showing in how many instances (y-axis in percent)
a given setting needs at most x times less nodes (factor on the x-axis).

in the shifted geometrical mean over a test set. How much of the gap is closed depends
on the observed test set and the setting that we use.

The genconv and the origobj settings close more of the gap than the face setting, while
the face setting finds more cuts than the other settings. An explanation for this be-
haviour might be the impact of the original objective function to find an auxiliary basic
LP-feasible solution when using the genconv or the origobj setting. Remember that the
origobj setting uses nothing but the original objective function and the genconv setting
uses a generic convex combination of the original objective function together with the
face objective function to find an auxiliary basic LP-feasible solution. In contrast to this,
the face objective function is independent of the original objective function. Hence, the
objective value of an auxiliary basic LP-feasible solution calculated by using the generic
convex or the original objective function is potentially lower than the objective value
of an auxiliary basic LP-feasible calculated with the help of the face objective function
when considering a minimization problem. So cutting off the solutions calculated by
using the generic convex or the original objective function results potentially more often



Comparison of the Different Search Strategies 47

in a change of the dual bound.
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Figure 5.3: Time performance profiles showing in how many instances (y-axis in percent)
a given setting is at most x times slower (factor on the x-axis).

As we can see, the partly closed integrality gap leads to less nodes in the underlying
branch-and-bound tree. Except for the gcgjournal-nr-e-m test set, the face setting aver-
ages more nodes than the other settings to solve the instances to optimality. Depending
on the observed test set one of the other two settings needs the least nodes. In figure 5.2
node performance profiles for some test sets are presented. We cannot say which one,
the genconv or the origobj setting, needs less nodes in general, because it depends on
the observed test set.

The number of branch-and-bound nodes used on the more difficult test sets is not that
informative. Besides the closed integrality gap, the number of instances which were
solved within the time limit of 3600 seconds is interesting, but there is no big difference
between the observed settings. We solved one instances less on the mkp-u-dissim-h test
set when applying the face setting instead of one of the other settings, and on the
rap32-nr-h test set we solved one instance by applying the face setting, two instances
by applying the genconv setting and three instances when using the origobj setting.
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On all other test set we solved the same number of instances to optimality within the
given time limit no matter which setting we used.

In the end we want to compare the running time of the algorithm when using the dif-
ferent settings. We disregard the test sets where none of the settings have an influence
on the given integrality gap. In all test sets but the gcgjournal-nr-e-m test set the use
of the genconv setting leads to the most time spent in the separator, while using the
face setting leads to the least time spent in the separator. This is not observable when
looking at the overall solution time. When we use the face setting, the algorithm aver-
ages the least time in the cpmp-nr-e test set to solve the instances to optimality, but in
all other test sets either the genconv or the origobj helps to solve the instances most
rapidly. The differences in the solution time are not that significant, but overall the use
of the origobj setting is a bit faster than the use of the genconv or the face setting.
The time performance profiles in figure 5.3 confirm this.

All in all, we have seen that each setting influences the solution process on some instances
of every problem class but the binpacking, the cutting stock, and the coloring problem
class. While the face setting finds the most cuts, the other two settings help to close
more of the given Dantzig-Wolfe gap. This leads to less branch-and-bound nodes and
in some cases to a faster solution process. Since the closed gap is the most important
issue when evaluating a separation procedure and the face setting does not need less
time or less nodes than the other settings, the genconv setting and the origobj setting
are more interesting to examine than the face setting.
Therefore, we only consider the genconv and the origobj setting in the following sec-
tions.

We have also seen that the time which was spent in the separator is not strictly related
to the overall solution time. So we disregard the separation time for the remainder of
this thesis except for the part where we analyze the pricing cuts and the chief-and-slave
problem. Furthermore, we disregard the percentage of affected instances.
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5.2 Comparison to the Master Separator and Analysis of
the Underlying Separators

In this section we compare the basis separator to the master separator, which is by
default enabled in GCG, and analyze the use of the underlying SCIP separators as well.
In section 3.1 we already explained how to use separators which separate an arbitrary
LP-feasible solutions to generate cutting planes which cut off the current solution of the
linear master problem and are formulated in the original problem’s solution space. The
master separator applies the clique separator, the complemented mixed integer rounding
cuts separator, the flowcover separator, the implied bounds separator, and the multi-
commodity-flow network cut separator in order to generate cutting planes.

In table 5.2 we present the number of cutting planes which were found by the applied
SCIP separators measured in shifted geometrical mean over a test set. We do not differ-
entiate between cutting planes generated by the Gomory cuts separator and the strong
Chvátal-Gomory cuts separator. Both of them are listed under strong Chvátal-Gomory
cuts. Note that {0, 1

2}-cuts are a special kind of Chvátal-Gomory cuts.
Each column belongs to an applied separator and is divided into subcolumns which
contain the number of cutting planes found by the basis separator (b) and the master
separator (m), respectively. cs, bp and col

clique cmir flowcover impbds mcf oddcycle strongcg zerohalf

Name b m b m b m b m b m b m b m b m

cpmp-nr-e 0.0 0.0 0.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 - 5.1 - 3.3 -

cpmp-nr-m 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 - 1.5 - 1.2 -

cpmp-nr-h 0.0 0.0 0.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 - 5.8 - 3.7 -

gap-nr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 1.0 - 0.5 -

rap32-nr-e-m 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 - 1.8 - 0.3 -

rap32-nr-h 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 - 9.3 - 0.6 -

rap64-nr-e-m 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 - 1.6 - 0.2 -

rap64-nr-h 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 - 2.2 - 0.1 -

gcgjournal-nr-e-m 0.0 0.0 3.1 1.0 0.9 1.0 0.0 0.0 0.6 0.0 0.0 - 0.0 - 0.0 -

gcgjournal-nr-h 0.6 0.7 94.9 32.9 27.7 8.1 3.5 4.0 7.7 7.9 0.3 - 4.7 - 0.9 -

Table 5.2: Number of cutting planes which were found by the separators in the basis
separator and the master separator. Additionally, each non-zero entry is colored in blue
(basis separator) or in red (master separator).
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The master separator does not find any cutting planes on the capacitated p-median prob-
lem, the generalized assignment problem, and the resource allocation problem instances,
but it finds cutting planes on some instances of the gcgjournal test sets. In the previous
sections we have already seen that the basis separator finds cuts on all observed test
sets. So this is a huge advantage in comparison to the master separator. Furthermore,
the basis separator finds a lot more cuts on shifted geometrical average than the master
separator.

Each separator used by the master separator finds cuts on the gcgjournal instances. The
complemented mixed integer rounding separator and the flowcover separator find a lot
more cuts than the other separators which are applied by the master separator, but
both separators find even more cuts when separating auxiliary LP-feasible solutions in
the basis separator. A reason for this dominance of the basis separator over the master
separator might be the use of additional valid inequalities which strengthen the origi-
nal LP relaxation. When applying the basis separator, we iteratively generate cutting
planes which cut off the current auxiliary LP-feasible solution. These cuts either cut off
the current solution of the linear master problem, too, or strengthen the LP relaxation.
Therefore, the basis separator uses more information in order to generate cutting planes.

Besides the just described advantage of the basis separator, we are able to use more sep-
arators in order to generate cutting planes which cut off a LP-feasible solution. On most
test sets, the strong Chvátal-Gomory cuts separator and the {0, 1

2}-cuts separator gen-
erate the majority of all found cuts, whereas the oddcycle separator only finds a few cuts
on the gcgjournal-nr-h test set. The complemented mixed integer rounding separator as
well as the flowcover separator find some cuts on almost every test set, where they find
by far the most cutting planes on the gcgjournal instances. On the corresponding test
sets, they even generate significantly more cutting planes than all other used separators.

In this section we have seen that the basis separator generates significantly more cut-
ting planes than the master separator. Furthermore, the number of cuts generated by
the underlying SCIP separators differs extremely depending on the observed test set.
All separators but the Chvátal-Gomory cuts separators perform much better on the
gcgjournal instances than on the other instances, which formulate combinatorial opti-
mization problems. Especially the clique separator, the implied bounds separator, the
multi-commodity-flow network cut separator, and the oddcycle separator do not find
any cuts on these instances, although we strengthen the LP relaxtion during the basis
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gen gen-obj gen-obj-redcost gen-redcost
Nod T Gap cl Fnd Nod T Gap cl Fnd Nod T Gap cl Fnd Nod T Gap cl Fnd

cpmp-nr-e (42) 24.4 70.0 0.196 8.9 40.0 54.2 0.116 26.6 41.6 44.5 0.029 4.6 34.8 45.0 0.139 7.5

cpmp-nr-m (40) 133.2 501.1 0.102 4.5 134.0 596.7 0.095 28.0 177.6 484.9 0.029 9.1 128.8 398.6 0.084 3.5

gap-nr (35) 5.9 11.1 0.172 1.8 5.7 9.7 0.219 2.0 5.5 10.2 0.135 1.1 5.1 10.0 0.149 1.4

rap32-nr-e-m (38) 21.1 579.8 0.197 2.5 22.6 577.7 0.234 2.4 17.0 662.9 0.282 9.9 19.9 546.7 0.255 8.8

rap64-nr-e-m (30) 9.6 569.1 0.224 1.6 9.9 642.4 0.205 1.4 6.9 499.5 0.357 9.0 7.7 632.6 0.358 7.7

gcgjournal-nr-e-m (4) 141.9 37.2 0.565 22.4 119.2 40.9 0.191 18.3 168.9 50.6 0.035 10.5 187.7 62.1 0.107 5.5

Table 5.3: Shifted geometrical test results for the reduced cost cuts and the original
objective cuts.

separation. It would be interesting to investigate the reasons for this behaviour and it
might be a subject for future research.

5.3 Impact of the Additional Valid Inequalities

In this section we analyze the influence of the additional valid inequalities, we presented
in this thesis. We introduced the original objective cuts, the pricing cuts, and the reduced
cost cuts in section 4.3.1. Furthermore, we presented the chief-and-slave algorithm 4.2
in section 4.3.2.

To begin with, we evaluate the impact of the original objective and the reduced cost
cuts. Note that in each separation round we generate exactly one original objective cut
and K reduced cost cuts, one for each pricing problem.
In table 5.3 we compare the results achieved by applying the genconv setting and adding
the original objective cuts (genconv-obj), the reduced cost cuts (genconv-redcost),
both types of cutting planes (genconv-obj-redcost), or no additional inequalities.

As we can see, the original objective cuts help us to generate significantly more cuts
on shifted geometrical average on the capacitated p-median problem test sets and the
reduced cost cuts in combination with the original objective cuts lead to more cuts in
the resource allocation problem test sets in comparison to the setting without any fur-
ther inequalities. The genconv setting generates the most cuts on the gcgjournal-nr-e-m
test set. The additional inequalities do not improve the dual bound in the capacitated
p-median problem test sets or the gcgjournal test set. On the contrary, at least one of
the settings using additional inequalities closes more of the Dantzig-Wolfe gap than the
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genconv setting on the other test sets when comparing the shifted geometrical means
over a test set. This transfers to the number of used branch-and-bound nodes except
that the genconv-redcost setting needs the least nodes in the cpmp-nr-middle test set.

The results for the basis separator including both original objective cuts and reduced
cost cuts are similar to the the results of the basis separator including just the re-
duced cost cuts, whereby the difference to the genconv setting is even bigger. Applying
the genconv-obj-redcost setting leads to less nodes and a smaller gap than apply-
ing the other settings on the capacitated p-median problem test sets, but the contrary
holds on the resource allocation problem test sets. Whereas on the generalized assign-
ment instances the setting which uses both types of inequalities reduces the size of the
Dantzig-Wolfe gap less than the setting with no additional inequalities. On the contrary,
the genconv-obj-redcost setting solves the instances faster to optimality and therefore
it needs less branch-and-bound nodes when comparing the shifted geometrical mean of
these values over the test set.

Now, we compare the solution time of the different settings. Depending on the observed
test set, the solution times clearly distinguish from each other. Every setting but the
gen-obj setting is the fastest one on at least one test set. It is not possible to determine
the overall fastest setting and apparently, the solution time is not cohererent with the
size of the integrality gap in the root node or the number of used branch-and-bound
nodes. An explanation for this behaviour might be the already fast default setting. If
we only find few cuts which hardly affect the solution process, we might solve the prob-
lem faster to optimality than in the case of finding a lot of cuts which rather affect the
solution process. In section 5.4 we analyze the performance of the default setting in
comparison to the use of the basis separator.

Next, we consider the pricing cuts and valid inequalities, generated by the chief-and-slave
algorithm. In comparison to the previously evaluated cuts, the number of pricing cuts
is not strictly limited and the chief-and-slave cuts are not obtained during the solution
process without any further effort. Additionally, we have to solve the pricing problems
as a MIP in order to generate pricing cuts.

The impact of the pricing cuts (genconv-ppcuts) and the chief-and-slave algorithm
(genconv-chief) on the performance of the basis separator with the use of the generic
convex objective function can be seen in table 5.4. Similarly to the previously analyzed
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additional valid inequalities, the inequalities do not reduce the integrality gap in the root
node in comparison to the genconv setting with the exception that the chief-and-slave
algorithm helps to reduce the size of the integrality gap by 0.5% more than the basis
separator without any additional inequalities. The impact of both approaches is a bit
significant on the other test sets. Either of them reduces the Dantzig-Wolfe integrality
gap by at least 2% and at most 8% more than the genconv setting measured in the
shifted geometrical mean over a test set. This partly transfers to the number of used
branch-and-bound nodes.

The problem with the additional inequalities affect the solution time. If we disregard
the easy capacitated p-median instances and the generalized assignment instances, which
can for the most part also be solved within 60 seconds, the solution time in comparison
to using the basis separator without any further inequalities increases drastically. In the
following we give the reasons for the increased solution time.

First, we consider the pricing cuts. On the one hand, we solve the pricing problems
as mixed integer programs. This has an effect on all problems with knapsack pricing
problems since in this case GCG solves the pricing problem by applying a combinatorial
algorithm. On the other hand, in order to solve the pricing problems, a huge number of
cutting planes might be generated. All these cutting planes are temporarily added to the
current original LP relaxation. Hence, solving this linear program as well as generating
cutting planes for the current basic LP-feasible solution takes more time and on some
instances it even leads to memory space problems.

In contrast to the potentially huge number of pricing cuts, the number of cutting planes,
calculated by the chief-and-slave algorithm is limited by the dimension n of the underly-
ing vector space. Note that each solution of the original LP relaxation is a n-dimensional
vector. As we can see, the number of generated cuts cannot be the reason for the drasti-
cally increased solution time. The large solution time is mainly a result of the calculation
of the chief-and-slave cutting planes. In each step we alternatingly solve a linear program
and an integer program in order to generate a valid inequality, where the number of steps
is just limited by the number of possible solutions to the corresponding pricing problem.
Thus, the number of steps can be extremely large. Furthermore, in each step we add a
new constraint to the chief problem such that the chief problem can be extremely large
as well. On some instances, this also leads to memory space problems.
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genconv genconv-new genconv-ppcuts
Nod T Gap cl Fnd BT Nod T Gap cl Fnd BT Nod T Gap cl Fnd BT

cpmp-nr-easy (19) 23.9 66.3 0.190 8.7 14.6 32.6 66.4 0.167 9.5 7.6 37.8 30.4 0.129 9.1 7.5

cpmp-nr-middle (32) 122.4 381.3 0.128 6.9 54.1 105.4 428.8 0.133 6.6 47.0 117.0 486.6 0.075 5.4 170.9

gap-nr (33) 5.6 8.1 0.183 1.9 1.0 5.1 7.0 0.208 2.0 1.8 6.4 8.7 0.217 3.0 0.8

rap32-nr-easy-middle (37) 23.6 585.5 0.206 2.6 31.2 22.2 923.4 0.230 2.6 121.3 23.7 728.0 0.201 2.8 105.4

rap64-nr-easy-middle (26) 9.8 468.6 0.233 1.9 19.6 - - - - - 7.1 688.3 0.317 1.8 52.8

Table 5.4: Shifted geometrical test results for the pricing cuts and the chief-and-slave
algorithm.

All in all, additional valid inequalities in combination with the basis separator can be
useful to further improve the dual bound in the root node, but it can also have a negative
impact on the performance of the basis separator. Especially, the pricing cuts and the
chief-and-master cuts lead to a larger solution time and memory space problems. With
the exception of the chief-and-slave cuts, the problem is that the original LP relaxation,
which is used in the basis separator, becomes too big. We could select only a subset
of the inequalities to enter this LP depending on the satisfaction of given orthogonality
properties. This is also done by SCIP when adding cutting planes to the current LP. A
subject for future research might be to adopt this selection of cutting planes. This could
lead to better cutting planes and an overall more competitive performance of the basis
separation algorithm in combination with additional valid inequalities.

5.4 Comparison to the Default Setting

1. use cgmip

Finally, we want to compare the performance of GCG using the basis separator to the
performance of GCG’s default setting. Therefore, we use the genconv and the origobj

setting, which we have already examined in the previous sections. We apply these set-
tings without any additionally generated valid inequalties, because all approaches to
generate additional valid inequalities either lead to a drastically increased solution time
or the generated inequalities affected the overall performance on some test sets positively
as well as on some test sets negatively as seen in section 5.3. So none of the presented
approaches has a sole favorable influence on the solution process.

In table 5.5 we can see the results of GCG’s default setting in comparison to the use of the
basis separator 4.1 when using the generic convex or the original objective function. The
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default genconv origobj
Nodes Time Nodes Time gap closed bCuts Nodes Time gap closed bCuts

bp-nr-easy 186 6.2 186 19.0 0.000 0.0 187 43.9 0.000 0.0

bp-nr-middle 8 941 286.6 8 941 480.4 0.000 0.0 8 901 685.0 0.000 0.0

cs-nr-easy 222 10.4 222 26.7 0.000 0.0 222 21.8 0.000 0.0

cs-nr-middle 1 136 218.6 1 136 238.8 0.000 0.0 1 136 235.4 0.000 0.0

coloring-nr-easy 65 10.9 65 28.4 0.000 0.0 65 29.8 0.000 0.0

coloring-nr-middle 1 398 455.1 1 398 717.3 0.000 0.0 1 398 995.9 0.000 0.0

cpmp-nr-easy 43 35.1 24 70.0 0.196 4.5 32 61.4 0.197 3.0

cpmp-nr-middle 180 331.7 131 543.1 0.103 2.8 118 517.7 0.109 2.5

gap-nr 8 10.2 5 11.1 0.172 0.9 5 10.8 0.149 0.9

rap32-nr-easy-middle 35 733.0 24 644.1 0.195 1.0 21 571.5 0.267 1.1

rap64-nr-easy-middle 12 621.2 9 571.1 0.224 0.6 10 603.1 0.187 0.6

gcgjournal-nr-easy-middle 338 63.5 334 68.0 0.348 2.2 302 65.0 0.300 2.2

cpmp-nr-hard (80) 1377.3 3560.0 640.2 3539.5 0.053 12.9 1941.1 3357.5 0.057 12.8

rap32-nr-hard 82 3600.0 73 3289.8 0.204 3.1 69 3327.3 0.142 2.2

rap64-nr-hard 31.4 3600.0 26.4 3572.8 0.165 2.6 23.7 3585.4 0.142 3.7

gcgjournal-nr-hard 492 3600.0 369 3600.0 0.075 23.4 350 3600.0 0.062 22.4

mkp-lamani-uncor-dissim-nr 744 2585.2 645 2522.5 0.048 0.4 515 2553.4 0.039 0.3

mkp-lamani-uncor-sim-nr 544 3281.7 512 3303.6 0.053 0.3 554 3360.6 0.052 0.3

mkp-lamani-weak-dissim 488 3615.9 398 3487.5 0.005 0.2 439 3486.9 0.005 0.2

mkp-lamani-weak-sim 642 3376.1 577 3118.8 0.032 0.3 631 3068.4 0.031 0.3

Table 5.5: Shifted geometrical test results for the default setting and two different ap-
proaches to obtain an auxiliary basic LP-feasible solution.
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form of this table is similar to table 5.1 excluding the percentage of affected instances
and the time that was spent in the basis separator.
As might be expected, the default setting outperforms the other settings on the bin
packing, the cutting stock and the coloring instances since the size of the Dantzig-Wolfe
gap is not reduced by the basis separator, while additional time is spent to generate cut-
ting planes. Hence, the number of used nodes is almost equal for all examined settings,
but the default setting’s solution time is much lower than the solution time of the other
two settings.
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Figure 5.4: Comparison of the original gap that was closed due to the Dantzig-Wolfe re-
formulation, GCG with the use of the basis separator, and SCIP with the use of separation.
The difference between the closed gaps is similarly colored to figure 5.1.

In figure 5.1 we compare how much of the original integrality gap, which is given by the
difference of the optimal solution value and the dual bound obtained due to the original
LP relaxation, is closed in the root node by applying GCG’s default setting, GCG’s origobj

setting, and SCIP both with and without separation to the one of the binpacking test
sets. As already mentioned, the basis separator does not find any cuts which help to
reduce the size of the original integrality gap. This also holds for SCIP with separation.
Note that the dual bound given by the original LP relaxation is already close to the
optimal solution value, but the dual bound given by the linear master problem, which is
used by GCG, is even better. Most often the Dantzig-Wolfe reformulation either closes the
original integrality gap completely or does not reduce the size of the gap at all. These
observations can also be made when considering cutting stock and coloring problem in-
stances except that the dual bound given by the original LP relaxation is not that often
equal to the optimal solution value.
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In section 5.1 we have already seen that the basis separator is able to generate cutting
planes which help to reduce the integrality gap for instances of all other test sets. In
figure 5.5 we compare the reduction of the original integrality gap for some test sets
similarly to figure 5.1. Of course, the figures for test sets where the basis separator does
affect the dual bound and for test sets where it does not are different, but as we can
see the subfigures in figure 5.5 also differ from each other, although the basis separator
affects the dual bound in all evaluated test sets.
First of all, we can see that the original LP relaxation seems to be weak in comparison
to the relaxation obtained by applying Dantzig-Wolfe reformulation, because the origi-
nal integrality gap is much bigger than the Dantzig-Wolfe integrality gap. Furthermore,
the cutting planes generated by SCIP significantly reduce the original integrality gap, too.

When considering the capacitated p-median test set in figure 5.5, most often one of the
following two cases applies. On the one hand, there are instances where the dual bound
given by the linear master problem is better than the one given by SCIP with separation
in the root node. On these instances, the basis separator does not affect the already good
dual bound given by the linear master problem most of the time. On the other hand,
when SCIP’s dual bound in the root node which is obtained by the help of separation
is better than the dual bound given by the linear master problem, the basis separator
generates cutting planes which improve the dual bound given by the linear master prob-
lem. This transfers to both the gcgjournal instances as we can see in figure 5.5 and the
generalized assignment problem instances.

Note that on several instances SCIP with separation calculates a better dual bound in the
root node than GCG with the use of the basis separator. Since both use the same separa-
tors to cut off a basic LP-feasible solution and we disabled propagation in SCIP, which
is by default applied after a separation round, there are only two reasons why this could
happen. First, the calculated basic LP-feasible solutions may differ from each other.
Even if we use GCG’s origobj setting, it is not guaranteed that the same optimal solu-
tion is calculated. Hence, we generate different cutting planes. And second, SCIP does
not apply all generated cuts to the current linear program. Only cutting planes which
efficiently cut off a given solution with respect to the cutting plane’s norm together with
a given minimum cut efficiency and that satisfy some given orthogonality properties are
used. This leads to a smaller linear program. However, the basis separator only uses the
minimum cut efficiency, which results in a potentially greater linear program. Besides
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Figure 5.5: Comparison of the original gap that was closed due to the Dantzig-Wolfe
reformulation, GCG with the use of the basis separator, and SCIP with the use of separa-
tion. The difference between the closed gaps is colored similarly to figure 5.1 with the
exception that we use the color of the Dantzig-Wolfe reformulation if the corresponding
dual bound is equal to the dual bound that was computed with the use of the basis
separator.
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Figure 5.6: Node performance profiles showing in how many instances (y-axis in percent)
a given setting needs at most x times less nodes (factor on the x-axis).

the fact that solving a greater LP needs more solution time, the efficiency of generated
cuts could be reduced due to a potentially greater norm. For example, Chvátal-Gomory
inequalities tend to have more non-zero coefficients, which leads to a potentially greater
norm.

The subfigures in figure 5.5 corresponding to the resource allocation problem are com-
pletely different from the subfigures of the other problem classes. As we can see, the
dual bound obtained by the Dantzig-Wolfe reformulation is much better in comparison
to the dual bound in the root node, which is due to SCIP with the use of separation.
Contrary to the previously examined test sets, the basis separator still improves the dual
bound obtained by the Dantzig-Wolfe reformulation. So in this case the Dantzig-Wolfe
reformulation combined with the cutting planes formulated in the original problem’s
solution space leads to an improved dual bound in comparison to the application of
either of them. This holds for almost all resource allocation problem instances. For
the time being, we do not know the reasons why the combination improves the dual
bound, although the cutting planes do not have a strong impact on the dual bound due
to the original LP relaxation. It would be interesting to investigate this and it could be
a subject for future research.

Because of the smaller integrality gap in comparison to GCG’s default setting, both set-
tings using the basis separator average less branch-and-bound nodes than the default
setting. This can also be seen in the node performance profiles in figure 5.6.

At the end we examine how the improved dual bound in the root node and the reduced
number of nodes in case of using the basis separator affects the overall solution time.
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Figure 5.7: Time performance profiles showing in how many instances (y-axis in percent)
a given setting is at most x times slower (factor on the x-axis).

default genconv origobj

cpmp-nr-h (80) 2 6 6

rap32-nr-h (32) 0 2 3

rap64-nr-h (10) 0 1 1

gcgjournal-nr-h (11) 0 1 1

mkp-u-dissim-nr-h (49) 1 3 3

mkp-u-sim-nr-h (49) 1 1 1

mkp-w-dissim-nr-h (73) 0 1 1

mkp-w-sim-nr-h (83) 0 2 2

Table 5.6: Number of solved instances for the more difficult test sets.
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The number of solved instances for each relevant test set is presented in table 5.6. We
are able to solve at least one instance more when using the basis separator in comparison
to the default setting with the exception that we solved the same number of instances of
the mkp-u-dissim-h test set. Since it is not possible to reasonably analyze the solution
time on the difficult instances, we take a look at the test sets where the instances were
solved to optimality within the given time limit.

As we can see in table 5.5, the solution time increases slightly on the generalized as-
signment problem test set and the gcgjournal-nr-easy-middle test set, but it increases
significantly on the capacitated p-median problem test sets when considering the shifted
geometrical mean over a test set. In contrast, the solution time decreases on the resource
allocation problem test sets. The time performance profiles in figure 5.7 confirm this
observation.

All in all, the proposed basis separator using either the original objective function or
the generic convex objective function affects the solution process on the majority of the
observed problem classes and it reduces the integrality gap in the root node as well as
the number of used branch-and-bound nodes in comparison to the use of the default
setting. On the one hand, the solution time increases on most instances when using the
basis separator. On the other hand, the solution process on resource allocation problem
instances is accelerated. Additionaly, on the majority of the more difficult test sets
where the basis separator reduces the integrality gap, we solve a bit more instances to
optimality within the given time limit by applying basis separation than without the use
of the basis separator.
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Chapter 6

Conclusion

1. comparison to other dual bounds (orig+sepa, cgmip)

2. how can we accelerate the solution process then? cancel/abort after a few itera-
tions?

3. what is to do next? separation in master on general problems?

In this thesis we presented a separation procedure – the basis separator – which is able
to generate cutting planes in the original problem’s solution space by the use of basis in-
formation. This separator was initially introduced by Range [3], but, to our knowledge,
we are the first to present implementational results for a separator like this. Therefore,
we implemented a separator in the generic branch-price-and-cut solver GCG [2]. Further-
more, we discussed some variations and extensions which improve the performance of
the basis separator. Especially the use of the generic convex objective function leads
to cutting planes which improve the dual bound in the root node as well as reduce the
number of used branch-and-bound nodes in comparison to the use of the originally pro-
posed face objective function. Using the original objective function instead of the face
objective function also improves the performance of the basis separator, but we were not
able to figure out if the original objective function or the generic convex objective func-
tion improves the basis separator’s performance the most. Depending on the observed
test set, one of them reduces more of the integrality gap and solves the instances faster
to optimality.

We also introduced valid inequalities which can be used to strengthen the original LP
relaxation and we tested their impact on the basis separation procedure. Unfortunately,
the additional inequalities do not have a sole favorable impact. On the one hand, the
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inequalities lead to the separation of less efficient cutting planes and, on the other hand,
we generated a huge number of valid inequalities such that solving the original LP relax-
ation in order to calculate an auxiliary basic LP-feasible solution takes much longer. A
task of future research might be to add only a useful subset of these inequalities similar
to SCIP’s selection of cutting planes. Only valid inequalities which satisfy some given
orthogonality properties are applied to the current LP relaxation.

Although, the basis separator reduces the integrality gap in the root node and the
number of used branch-and-bound nodes, it does not accelerate the solution process in
comparison to GCG’s default setting with the exception of resource allocation problem
instances with block diagonal structure. The just mentioned selection of inequalities
which are applied to the current LP relaxation may change this. Since we iteratively
add all cutting planes which cut off the auxiliary basic LP-feasible solution for the orig-
inal LP relaxation, adding a useful subset of these cutting planes may accelerate the
basis separation procedure and lead to an overall reduced solution time.

Another subject of future research might be the analysis of the problem classes which
are affected by the basis separator. We have seen that problem classes with much
symmetry like the bin packing problems or the coloring problems are not affected by the
basis separator, although a few cutting planes are generated. In addition, it might be
difficult to separate cutting planes formulated in the original problem’s solution space
for problems where the pricing problem’s LP relaxation is very weak. All problem classes
where the basis separator reduces the integrality gap in the root node have dissimilar
pricing problems. We guess that this helps to generate cutting planes which cut off the
current solution and it would be interesting to investigate the influence of the asymmetric
structure.
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Appendix A

Problem Classes

In this part of the appendices we give the problem definitions and the original formulation
for each problem class. We specify which constraints remain in the master problem and
which constraints enter which pricing problem. This leads to a clearly defined extended
formulation if the reformulation approach, namely convexification or discretization, is
stated, too. By default, GCG uses the discretization approach to reformulate the origi-
nal problem.
Furthermore, we name the test sets which we used in chapter 5. do this!

A.1 The Bin Packing Problem

Consider a set of bins J with capacity C and a set of items I with given weights wi for
all i ∈ I. The bin packing problem is to minimize the number of used bins such that each
item is packed into a bin respecting the given capacity. This problem can be formulated
as follows:

min
∑
j∈J

yj

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (A.1)

∑
i∈I

wixij ≤ Cyj ∀j ∈ J (A.2)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J (A.3)

yj ∈ {0, 1}. ∀ j ∈ J (A.4)



68 Problem Classes

This formulation is used as the original problem formulation and the extended formu-
lation is obtained by independently reformulating the constraints (A.2) together with
the binary constraints (A.3) and (A.4) for all j ∈ J . So the constraints (A.1) stay in
the master problem and we obtain a knapsack pricing problem for each j ∈ J with
constraints:

∑
i∈I

wixij ≤ Cyj

xij ∈ {0, 1} ∀ i ∈ I

yj ∈ {0, 1}.

For our computations we used bin packing problem instances of [29], [30], and, some
randomly generated instances. Furthermore, we used the bin packing versions of the
cutting stock problem instances.

A.2 The Cutting Stock Problem

The cutting stock problem is similar to the bin packing problem despite the fact that
each item i ∈ I has to be packed di times, where di ∈ N is a given demand of item i ∈ I,
and that an item i ∈ I can be packed multiple times into a an individual bin. This is
why the items are called orders and the bins are called rolls in the context of the cutting
stock problem. Using the same notations as in the bin packing context, we formulate
the cut packing problem as

min
∑
j∈J

yj

s.t.
∑
j∈J

xij = di ∀i ∈ I (A.5)

∑
i∈I

wixij ≤ Cyj ∀j ∈ J (A.6)

xij ∈ Z≥0 ∀ i ∈ I, j ∈ J (A.7)

yj ∈ {0, 1} ∀ j ∈ J. (A.8)

Similar to the bin packing problem we independently reformulate the constraints (A.6).
This leads to the same pricing problems as in the reformulated bin packing problem, one
knapsack pricing problem for each stock j ∈ J .
We tested the basis separator on instances that were presented in [31], [32], and [33].
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Additionally, we used the cutting stock versions of the bin packing problem instances
and cutting stock problem instances generated with CUTGEN1 [34].

A.3 The Vertex Coloring Problem

Given a graph G = (V,E), where V is the set of vertices and E the set of edges, together
with a set of colors C with |C| = |V |. We want to assign a color to each vertex such
that vertices assigned with the same colour are not adjacent. This problem is called the
vertex coloring problem and an integer linear program formulation is given by

min
∑
c∈C

yc

s.t.
∑
c∈C

xvc = 1 ∀v ∈ V (A.9)

xvc ≤ yc ∀v ∈ V, c ∈ C (A.10)

xuc + xvc ≤ 1 ∀{u, v} ∈ E, c ∈ C (A.11)

xvc ∈ {0, 1} ∀ v ∈ V, c ∈ C (A.12)

yc ∈ {0, 1} ∀ c ∈ C. (A.13)

We use this formulation as the original problem and obtain the extended formulation by
independently reformulating the constraints (A.10) together with (A.11). This leads to
a maximum wighted independent set pricing problem for each color c ∈ C.
We used instances that are stated in the OR library [35] and some additional instances.

A.4 The Capacitated p-Median Problem

Suppose a set of locations I and a subset J ⊆ I of medians is given. Each location i ∈ I
is assigned with a demand qi and each median j ∈ J with a capacity Qj . Additionally,
let p ∈ N be a natural number and let dij ∈ Z≥0 be the distance of location i ∈ I and
median j ∈ J . Our goal is to minimize the used distances, while assigning each location
to a median, respecting the capacities and using exactly p medians. This problem is
called the capacitated p-median problem and we use the following formulation as the
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original problem:

min
∑
i∈I

∑
j∈J

dijxij

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (A.14)

∑
j∈J

yj ≤ p (A.15)

∑
i∈I

qij ≤ Qjyj ∀j ∈ J (A.16)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J (A.17)

yj ∈ {0, 1} ∀ j ∈ J. (A.18)

The extended formulation is obtained by independently reformulating the constraints (A.16).
For each median j ∈ J exists a knapsack pricing problem just like in the reformulated
bin packing and the reformulated cutting stock problem.
A majority of the observed instances is available in the OR library [35].

A.5 The Generalized Assignment Problem

Given a set of items I and a set of knapsacks J with capacities Cj for all j ∈ J .
Furthermore, let wij ∈ Z≥0 be the weight of item i ∈ I in knapsack j ∈ J . There
are two versions of the generalized assignment problem. On the one hand, there is the
maximization version, where we want to maximize given profits pij ∈ Z≥0 of packing
item i ∈ I into knapsack j ∈ J , while satisfying the given capacities:

max
∑
i∈I

∑
j∈J

pijxij

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (A.19)

∑
i∈I

wij ≤ Cj ∀j ∈ J (A.20)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J. (A.21)
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On the other hand, in the minimization version we want to minimize the sum over given
costs cij ∈ Z≥0 of packing item i ∈ I into knapsack j ∈ J :

min
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (A.22)

∑
i∈I

wij ≤Wj ∀j ∈ J (A.23)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J. (A.24)

In both cases we obtain the extended formulation by independently applying Dantzig-
Wolfe reformulation to the constraints (A.20) and (A.23), respectively. Once again, there
exists a knapsack pricing problem for each knapsack j ∈ J .
For our tests we used the instances presented in [36], [37], and [38].

A.6 The Resource Allocation Problem

In this section we define the resource allocation problem and follow the explanations
in [2]. Suppose we are given an ordered set of periods T := {1, . . . , N} and a set of
items I. Each item i ∈ I is assigned with a profit pi, a weight wi, as well as a starting
and an ending period. We define for each t ∈ T the set I(t) ⊆ I as the set of all items
which are alive in period t, i.e. all items, where the period t is greater than or equal to
the starting period and lower than or equal to the ending period. Additionally, there
exists a knapsack with capacity C over all periods. Our goal is to maximize the sum
of profits of selected items such that in each period the capacity is not exceeded. This
problem can be formulated as follows:

max
∑
i∈I

pixi

s.t.
∑
i∈I(t)

wixi ≤ C ∀t ∈ T (A.25)

xi ∈ {0, 1} ∀ i ∈ I. (A.26)

This problem has no block diagonal structure, but GCG is able to handle this type of
problems, too. Unfortunately, the observed resource allocation problem instances were
solved to optimality in the root node or we were not able to solve the root node at all by
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applying GCG and its structure detectors. Therefore, we were not able to test the basis
separator with this formulation.

Nevertheless, we are able to reformulate the resource allocation problem such that it has
block diagonal structure. We split the periods T into groups of sizeM , whereM is a fixed
natural number. We define G :=

⌈
N
M

⌉
as well as N(G) := {(g − 1)M + 1, . . . , gM} ∩ T

for all g ∈ {1, . . . , G}.

Furthermore, let G(i) be the set of groups where item i is alive and let I(g) be the set
of items which are alive in at least one period of group g ∈ {1, . . . , G}. Additionally, let
g(i) := min{g ∈ G(i)} be the first group in which item i ∈ I is active.

Creating copies xgi for all g ∈ G(i) of each variable xi and ensuring that these copies take
the same value as well as substituting the variable xi by xg(i)i in the objective function
for all i ∈ I leads to the following formulation

max
∑
i∈I

pix
g(i)
i

s.t. xgi = x
g(i)
i ∀i ∈ I, g ∈ G(i)\{g(i)} (A.27)∑

i∈I(t)
wix

g
i ≤ C ∀t ∈ T (g), g ∈ G (A.28)

xgi ∈ {0, 1} ∀ g ∈ G(i), i ∈ I. (A.29)

We will use this formulation with either blocks of size M = 32 or M = 64 as the original
formulation. We get the extended formulation by independently reformulation the set
of constraints for each g ∈ G. Hence, we obtain a pricing problem for each g ∈ G with
constraints ∑

i∈I(t)
wix

g
i ≤ C ∀t ∈ T (g).

For our computational tests we used the instances proposed in [39].

A.7 The Multiple Knapsack Problem

In the multiple knapsack problem we are given a set of knapsacks J with capacities Cj
for all j ∈ J as well as a set of items I with weights wi ∈ Z≥0 and profits pi ∈ Z≥0 for
all i ∈ I. We want to maximize the profit of packing the items into the knapsacks, while
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respecting the capacities of the knapsacks:

max
∑
i∈I

∑
j∈J

pixij

s.t.
∑
j∈J

xij ≤ 1 ∀i ∈ I (A.30)

∑
i∈I

wixij ≤ Cj ∀j ∈ J (A.31)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J. (A.32)

Just like in many previously introduced problem classes, we obtain the extended formu-
lation by independently reformulating the knapsack constraint (A.31) which results in a
knapsack pricing problem for each knapsack j ∈ J .
For the multiple knapsack problem we used the instances presented in [40].

A.8 MIPLIB Instances

The MIBLIB instances which we examine were successfully tested with GCG by Bergner
et al. [27]. Since these instances do not have a common structure, we obtain the extended
formulation by applying GCG’s structure detectors.
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Appendix B

Figures

In this part of the appendix we show the same kind of figures as in section 5.1 and
section 5.4. We presented only a some figures in the main part of the thesis and the rest
is shown in the following.



76 Figures

0

0.2

0.4

0.6

0.8

1

or
ig

ga
p
cl
os
ed

instance
(a) cpmp-nr-middle

0

0.2

0.4

0.6

0.8

1

D
-W

ga
p
cl
os
ed

Instance
(b) gcgjournal-nr-easy-middle

0

0.2

0.4

0.6

0.8

1

D
-W

ga
p
cl
os
ed

Instance
(c) gcgjournal-nr-easy-middle

0

0.2

0.4

0.6

0.8

1

or
ig

ga
p
cl
os
ed

instance
base+genconv
base+origobj

origobj+gen
base

genconv
origobj

(d) rap64-nr-easy-middle

Figure B.1: Comparison of the Dantzig-Wolfe gap that was closed due to the basis
separator with the use of the different objective functions. When we order the settings
for a given instance depending on how much of the original gap is closed, the difference
between two consecutive settings is marked with the color of the setting that reduces
the size of the original gap more on the given instance. If we obtain the same gaps for
two settings, we use the color of the combination of both settings.
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Figure B.2: Node performance profiles showing in how many instances (y-axis in percent)
a given setting needs at most x times less nodes (factor on the x-axis).
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Figure B.3: Time performance profiles showing in how many instances (y-axis in percent)
a given setting is at most x times slower (factor on the x-axis).
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Figure B.4: Comparison of the original gap that was closed due to the Dantzig-Wolfe re-
formulation, GCG with the use of the basis separator, and SCIP with the use of separation.
The difference between the closed gaps is colored similarly to figure 5.1.
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Figure B.5: Comparison of the original gap that was closed due to the Dantzig-Wolfe
reformulation, GCG with the use of the basis separator, and SCIP with the use of separa-
tion. The difference between the closed gaps is colored similarly to figure 5.1 with the
exception that we use the color of the Dantzig-Wolfe reformulation if the corresponding
dual bound is equal to the dual bound that was computed with the use of the basis
separator.
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Figure B.6: Node performance profiles showing in how many instances (y-axis in percent)
a given setting needs at most x times less nodes (factor on the x-axis).
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Figure B.7: Time performance profiles showing in how many instances (y-axis in percent)
a given setting is at most x times slower (factor on the x-axis).
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