
Covering Rectilinear Polygons by

Rectangles
Jaromił Najman

Master Thesis in Mathematics

Institute for Operations Research

Rheinisch-Westfälische Technische Hochschule Aachen

Fields of Research in Approximation Algorithms

Prof. Dr. Marco Lübbecke
September 2014

Covering Rectilinear Polygons by Rectangles § Table of Contents

Table of Contents

1 Introduction 4

1.1 Definitions . 4
1.2 Structure and current knowledge . 6

2 Lower bound improvement for θ
α 8

3 Franzblau's algorithm reanalysed 15

3.1 Franzblau’s algorithm . 15
3.2 Analysis of the chords . 18

4 Conclusions and Outlook 33

4.1 An upper bound for θ
α . 33

4.2 Linear programming approach . 33

5 References 35

3

Covering Rectilinear Polygons by Rectangles § 1 Introduction

§ 1 Introduction

In this Master Thesis we consider the problem of covering rectilinear polygons by the
minimum number of axis-parallel rectangles. This problem finds applications in the
fabrication of DNA chip arrays [Hannenhalli et al. 2002], in VLSI design, where the
rectilinear polygon is a chip that has to be covered by a huge number of rectangular
transistors, see Fig. 1 ["Diopsis", Licensed under Creative Commons Attribution].
Other applications are data compression and in particular image compression, where
large rectangular areas with the same color can be compressed into one pixel.

Fig. 1: VLSI chip with thousands of integrated transistors.

First we will need some essential definitions for understanding the problem.

Definitions

(1.1) Definition (Rectilinear Polygon)
A rectilinear polygon R is a finite set of unit squares, called pixels, on a two dimen-
sional integer grid.

(1.2) Definition (Rectangle)
A rectangle is a rectangle in the usual sense formed by the union of unit squares
(pixels).

The boundary of a rectilinear polygon R consists of horizontal and vertical edges.

(1.3) Definition (Polygon vertices)
Let R be a rectilinear polygon. A vertex of R is the intersection of a horizontal and
vertical edge of R.

4

Covering Rectilinear Polygons by Rectangles § 1 Introduction

A normal convex vertex is the intersection of exactly two edges which form a 90◦

angle inside R.
A concave vertex is the intersection of exactly two edges which form a 270◦ inside
R.

(1.4) Definition (Hole)
We define a hole in a rectilinear polygon R, as a hole in the common sense, i.e. a
finite set of connected unit squares inside of R, that are not a subpart of R.

(1.5) Definition (Rectangle Cover)
A rectangle cover for a given rectilinear polygon R is a finite set of rectangles com-
pletely contained in R, whose union is equal to R. The rectangles may overlap.
A minimum rectangle cover is a rectangle cover containing the minimum number
of rectangles needed to cover R.

Fig. 2: An example showing a rectilinear polygon R with edges in black, two holes
with a large X, one of the pixels in red, two rectangles in blue, and 8 vertices.
The two vertices shaded green are concave and the other six are convex.

We can now define the Rectangle Cover Problem:

input: rectilinear polygon R
output: minimum number of rectangles, completely contained in R, needed

to cover R completely

We denote the optimal number of needed rectangles to cover a given rectilinear po-
lygon R by θ(R).

5

Covering Rectilinear Polygons by Rectangles § 1 Introduction

In the rectangle cover problem we only consider the number of needed rectangles
and not their areas, since the rectangles may overlap. Thus picking the largest rec-
tangles results in a lower or the same number of rectangles needed. Hence we
can restrict our attention without loss of generality to inclusionswise maximal rec-
tangles.

(1.6) Remark
Notice that every rectangle contained in the optimal solution covers a unique pixel
that none of the other rectangles covers.

Moreover we will need the basic definition of an approximation algorithm and some
basics from the fields of graph theory. More information in the fields of approxima-
tion algorithms can be found in [Garey and Johnson 1979] and for the fields of graph
theory in [Ahuja,Magnanti 1993].

(1.7) Definition (Approximation Algorithm)
An approximation algorithm of factor c for a minimization problem Π

1. computes for every instance I ∈ Π a feasible solution with value
A(I) ≤ c· OPT(I)

2. and has a running time that is polynomial in its input size |I|.

(1.8) Definition (Undirected Graph)
An undirected graph G is an ordered pair (V, E) consisting of a set of vertices V
and a set E of edges, where every edge is contained in V ×V. Two vertices v1, v2 are
called adjacent if e = (v1, v2) ∈ E.

(1.9) Definition (Clique)
A clique in a given graph G = (V, E) is a subset S ⊆ V where every two vertices are
adjacent.

(1.10) Definition (Independent Set)
An independent set in a given graph G = (V, E) is a subset I ⊆ V where none of
the vertices are adjacent.

Structure and current knowledge

In the first part of the thesis we will think of the polygon R as a union of finitely
many pixels, i.e. 1× 1 squares, also called polyomino in other literature. R can be
associated with a visibility graph G described in [Maire 1994; Motwani et al. 1989a;

6

Covering Rectilinear Polygons by Rectangles § 1 Introduction

1989b; Schrijver 2003]: The vertex set of G is the set of pixels of R and two vertices are
adjacent in G if and only if their associated pixels in R can be covered by a common
rectangle. Notice that rectangles then correspond to cliques in G.
A set of pixels in R, no two of which can be covered by a common rectangle, is called
an antirectangle. In G this corresponds to the problem of finding an independent set,
we denote its maximum size by α(G) and by (1.6) it is an obvious lower bound on
θ(G).

It was originally conjectured by Chvátal that θ = α. This is true for convex polygons
[Chaiken et al. 1981] and a number of special cases. Szemerédi gave an example of
θ 6= α, see Fig. 2, and Erdös then asked whether θ

α is bounded by a constant. The best
proven lower bound is θ

α ≥
8
7 [Chaiken et al. 1981], which we are going to improve

in the second section of the thesis.

The rectangle cover problem is NP-hard for polygons with holes and even for those
without holes [Masek 1979; Culberson and Reckhow 1994] and it is Max SNP-
hard [Berman and DasGupta 1997], what implies that there is no polynomial time
approximation scheme for the rectangle cover problem. The rectangle cover problem
can be interpreted as a special set cover problem, for which the standard greedy
algorithm gives us an O(log n) approximation, where n is the number of pixels in
the polygon. [Anil Kumar and Ramesh 2003] improved this factor to O(

√
log n),

where n is the number of edges in R. The open question remained:

Is there a constant factor approximation algorithm
for the rectangle cover problem?

asked in [Bern and Eppstein 1997], that we will answer in the third section by reana-
lysing the Partition/Expand algorithm from [Franzblau 1989], which she conjectured
to be a factor 3 approximation algorithm.

7

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

§ 2 Lower bound improvement for θ
α

It was originally conjectured by Chvátal that θ = α, which is proven to be true for
convex polygons [Chaiken et al. 1981]. Szemerédi gave an example with θ 6= α, see
Fig. 3. The grey shaded rectangles have to be included in every optimal cover since
they are the only ones covering the green pixels. The red pixels build an odd cycle
of length 5. It implies that at most two pixels of this odd cycle can be independent
but at least three rectangles are needed to cover the cycle. It implies that θ

α = 8
7 .

There are several other examples where the case θ 6= α is true, some of them not
containing an odd cycle, see Fig. 4 [Chaiken et al. 1981] and others containing larger
odd-length cycles, see Fig. 5. An example with θ

α ≥
21
17 − ε is mentioned in [Chaiken

et al. 1981] but this example cannot be reconstructed from [Chaiken et al. 1981], and
thus cannot be verified. The best proven lower bound is θ

α ≥
8
7 , which we are going

to improve in this section.

Fig. 3: Szemerédi’s original counter example to θ 6= α.

Fig. 4: Example with θ 6= α without a hole.

8

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

Fig. 5: A larger example with an odd cycle of length 7 with θ
α = 19

18 . The shaded
rectangles represent all other rectangles used in the optimal cover, that do not
contain the red pixels.

9

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

For this purpose we need to take a closer look at Szemerédi’s example. If we extend
the right horizontal stripe to the right and paste a copy of exact the same polygon
to it, we recieve a new polygon which now contains two odd cycles of length 5, see
Fig. 6. The rectangles that have to be contained in every optimal cover are shaded
grey. We can see that those two polygons now share one common rectangle that has
to be contained in every optimal rectangle cover, shaded darker grey here. For the
optimal rectangle cover it implies that θ ≥ 9 + 2 · 3 = 15 and for the independent set
it implies that α ≤ 9 + 2 · 2 = 13.

Fig. 6: The new constructed polygon out of 2 original Szemerédi’s polygons. It is
now θ

α = 15
13 > 8

7 .

Since 15
13 > 8

7 , we already improved the lower bound for θ
α but we aren’t finished

yet. If we repeat the process and paste one more of the same polygon on the right
of the new constructed one, we recieve a new polygon with three cycles of length
5, see Fig. 7. The grey shaded rectangles again represent the rectangles that have
to be contained in every optimal cover. This implies θ ≥ 13 + 3 · 3 = 22 and α ≤
13 + 3 · 2 = 19 and since 22

19 > 15
13 > 8

7 , we improved the bound again.

Fig. 7: The new constructed polygon out of 3 original Szemerédi’s polygons.

10

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

To recieve a general bound we define a sequence an∈N of polygons that are construc-
ted exactly the way we just did for all n ∈N. We use the θ

α ratio as the value of each
member of the sequence. The sequence has to start at 8

7 , so a1 = 8
7 , and increase by

7 in the numerator and by 6 in the denominator. The sequence with these proper-
ties is an = 7n+1

6n+1 , n ∈ N. The following lemma shows that this sequence is strictly
monotonically increasing.

(2.1) Lemma
The sequence

an =
7n + 1
6n + 1

, n ∈N

is strictly monotonically increasing.

Proof
We show an+1 > an.

7(n + 1) + 1
6(n + 1) + 1

>
7n + 1
6n + 1

⇔ (7(n + 1) + 1)(6n + 1) > (7n + 1)(6(n + 1) + 1)

⇔ (7n + 8)(6n + 1) > (7n + 1)(6n + 7)

⇔ 42n2 + 55n + 8 > 42n2 + 55n + 7

This is obviously true for all n ∈N. �

Since the sequence is strictly monotonically increasing, the θ
α ratio increases in our

construction, thus the construction is correct in the sense of recieving a better lower
bound. In the following lemma we show that the constructed sequence is bounded
and therefore its limes is a new larger lower bound for θ

α .

(2.2) Lemma
It is

lim
n→∞

an =
7
6

.

Proof
It is

an =
7n + 1
6n + 1

=
7 + 1

n

6 + 1
n
−−−→
n→∞

7
6

.

11

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

We now obtained a new proven bound θ
α ≥

7
6 but there is still space for improvement

since we only expanded our example horizontally. What happens if we expand it
vertically, i.e. we paste the whole construct once again on the top of itself, see Fig.
8 for an example with n = 3 and a pasted itself on its top. We count each vertical
level of the construct with m ∈ N0 where m = 0 stands for the constructs we build
before, i.e. only the horizontally expanded ones. For this example it is θ

α = 41
35 > 22

19 ,
where θ

α = 22
19 is the fraction we got from our previous example, see Fig. 7.

m = 0

m = 1

n = 1 n = 2 n = 3

Fig. 8: The new constructed polygon out of 6 original Szemerédi’s polygons for n = 3
and m = 1.

We can formulate this as a sequence again but this time we have got two variables
n ∈ N and m ∈ N0, so we define the new sequence an∈N,m∈N0 . In addition to our
first sequence we need to somehow express the vertical expansion of the construct
in the new one. We recieve the same horizontal construct once again minus the n
shared rectangles between two vertical levels. This leads to the sequence

an,m =
7n + 1 + m(7n + 1− n)
6n + 1 + m(7n + 1− n)

=
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

, n ∈N, m ∈N0.

With the next two lemmas we improve this lower bound once again.

12

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

(2.3) Lemma
The sequence

an,m =
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

, n ∈N, m ∈N0

is strictly monotonically increasing.

Proof
To show the monoty of the sequence, we will need to show 3 cases.
1. an+1,m > an,m

7(n + 1) + 1 + m(6(n + 1) + 1)
6(n + 1) + 1 + m(5(n + 1) + 1)

>
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

⇔ m2 + 2m + 1 > 0.

This is true for m ∈N0.

2. an,m+1 > an,m

7n + 1 + (m + 1)(6n + 1)
6n + 1 + (m + 1)(5n + 1)

>
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

⇔ n2 > 0.

This is true for n ∈N.
3.an+1,m+1 > an,m

7(n + 1) + 1 + (m + 1)(6(n + 1) + 1)
6(n + 1) + 1 + (m + 1)(5(n + 1) + 1)

>
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

⇔ m2 + 3m + n2 + n + 2 > 0.

This is true for n ∈N, m ∈N0. �

The new construction increases the θ
α ratio as well by expanding the construct hori-

zontally or vertically. We now need to show that it is bounded.

(2.4) Lemma
It is

lim
m→∞

lim
n→∞

an,m =
6
5

.

13

Covering Rectilinear Polygons by Rectangles § 2 Lower bound improvement for θ
α

Proof
It is

an,m =
7n + 1 + m(6n + 1)
6n + 1 + m(5n + 1)

=
7 + 1

n + 6m + m
n

6 + 1
n + 5m + m

n

−−−→
n→∞

7 + 6m
6 + 5m

=
7
m + 6
6
m + 5

−−−→
m→∞

6
5

�

With the horizontally and vertically expanded construct and the proved lemmas we
improved the lower bound for θ

α to 6
5 .

We tried to improve it once again by constructing similar examples but we were
not able to find an example which could have been treated in a similar way and
was simultaneously increasing the bound. We strongly assume that the mentioned
bound 21

17 − ε [Chaiken et al. 1981] is constructed similarly. We can as well say that
we proved a bound of 6

5 − ε for a small enough ε, since the instances are always of
finite size. Probably the basic construct used in [Chaiken et al. 1981] is a different
and a larger one, thus not the Szemerédi’s 8

7 example we used.

14

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

§ 3 Franzblau’s algorithm reanalysed

In this section we will reanalyse the algorithm Partition/Extend from [Franzblau 1989]
to find a better approximation ratio. We will repeat the algorithm and some of the
most needed definitions here, a more detailed description can be found in [Franzblau
1989].

Franzblau’s algorithm

(3.1) Definition (Chord (Franzblau 1989))
A horizontal chord of a rectilinear polygon R is a horizontal line segment completely
contained in R, such that at least one endpoint is a concave vertex, both endpoints
lie on the boundary, and no other point lies on the boundary. Every concave vertex
determines a unique horizontal chord.

There are 3 types of chords Franzblau uses, which we as well need in our analysis.
A type 1 chord contains exacly one concave vertex, a type 2 chord contains two
concave vertices with opposite orientations and a type 3 chord connects two concave
vertices with the same orientation, see Fig. 9.

Fig. 9: Type 1 chord, type 2 chord and type 3 chord from left to the right.

Fig. 10: Horizontal partition in the first step of the algorithm producing 6 rectangles.

15

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

We now present Franzblau’s Partition/Extend algorithm:

ALGORITHM: Partition/Extend

Input: Rectilinear polygon R.
Output: Rectangle cover for R.

1. Partition R into rectangles by cutting along each horizontal chord of R,
see Fig. 10.

2. Extend each rectangle vertically inside R until it is vertically maximal, i.e., tou-
ches the boundary on top and bottom. Delete any repeated rectangles,
see Fig. 11.

Fig. 11: The determined rectangle cover after the Extend part of the algorithm. The
rectangles are shown slightly smaller for better understanding.

We call the number of rectangles obtained by horizontal partitioning only (step 1 of
the algorithm) p = p(R) for a rectilinear polygon R. Let p = p(R) be the number
of rectangles obtained by the algorithm Partition/Extend for a rectilinear polygon R.
Franzblau showed the inequality p ≤ 2θ + h− 1, where h is the number of holes in
a given rectilinear polygon R and this bound is tight, see Fig. 12.

Fig. 12: An example where the inequality p ≤ 2θ + h− 1 is actually tight.
Here is θ = 3, there are no holes and p = 5.

16

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Franzblau used another inequality for proving the above mentioned, namely

2p ≤ 2θ + c1 + c3,

where c1 is the number of type 1 chords and c3 is the number of type 3 chords in the
rectilinear polygon R. Since it is p ≤ p it holds that

2p ≤ 2θ + c1 + c3.

Franzblau herself already encountered the problem created by type 3 chords. Na-
mely if there are many of them creating the same rectangle in the Extend part of
the algorithm, the above inequality is pretty weak, since we count too many type 3
chords regarding the p in the inequality, see Fig 13.

(a) (b)

Fig. 13: (a)An other example where the inequality p ≤ 2θ + h− 1 holds.
(b)We see that all the dotted left type 3 chords will produce the same vertical-
ly expandable rectangle in the second part of the algorithm, the same with all
the dotted right type 3 chords, so counting them all in the 2p ≤ 2θ + c1 + c3
inequality seems too much.

17

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Analysis of the chords

To improve this inequality we need to observe some properties type 3 chords have.
Let C3 be the set of all type 3 chords in a given rectilinear polygon R.

(3.2) Definition
Two chords are called alligned if their right and left endpoints have the same hori-
zontal coordinate, i.e. the chords have exactly the same width and there is no hole
between them, i.e. they can be both covered by exactly one rectangle, see Fig. 14.

(3.3) Definition
A chord-set S is a set of chords of the same type with all of them beeing alligned
and there is no chord not in the set, that is alligned to a chord in the set, i.e. the
chord-sets have always maximum cardinality, see Fig. 15.

(a) (b) (c) (d)

Fig. 14: The blue dotted lines shall help in understanding the allignments.
(a)Two alligned type 3 chords.
(b)Two type 3 chords with the same width but different right and left point
coordinates, hence they are not alligned.
(c)Two type 3 chords with the same right point coordinates but different left
point coordinates, hence they are not alligned.
(d)Two type 3 chords with the same left and right coordinates, but a hole
is in between them so they cannot be completely covered by exactly one
rectangle, hence they are not alligned.

(3.4) Definition
A chord-family F is a family containing chord-sets such that

C3 =
⋃
S∈F
S

18

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Fig. 15: The red dotted type 3 chords are all in the same chord-set S1 and the blue
dotted type 3 chords are all in an other chord-set S2.

(3.5) Remark
Note that a type 3 chord can be contained in only one chord-set.

(3.6) Remark
Note that it is possible that each type 3 chord builds its own chord-set, because none
of them are alligned. It is then

|F | = |C3|

for the chord-family F of all type 3 chords.

A type 3 chord produces in the Partition part of the algorithm one wider and one
sleeker rectangle below or above depending on the orientation of the concave verti-
ces. Those sleeker rectangles at two alligned type 3 chords would vertically expand
to the same rectangle in the second part of the algorithm. Regarding the Extend
part of the algorithm all type 3 chords in a chord-set produce the same vertically
extended rectangles and all of them except 1 will be deleted, see Fig. 13.

Let F3 be the chord-family of all type 3 chords in a given rectilinear polygon R.
With the observations we can now replace the number of type 3 chords c3 by the
cardinality of F3, it is

2p ≤ 2θ + c1 + |F3|.

The first intuitional assumption would be |F3| ≤ θ since every chord-set has to
somehow be covered by at least one rectangle. This assumption was encouraged by
experiments with randomly generated instances of rectilinear polygons, where |F3|
was always much lower than θ. This is not true in general, see Fig. 16 for an example.

19

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Regarding this example it leads to the idea that |F3| is bounded by c · θ for a c ∈N,
since adding new chord-sets leads to the need of more rectangles to cover them.

Fig. 16: An example where θ = 13 < 15 = |F3|. The different chord-sets are the
colored dotted lines, where every red chord builds his own set and every 3
or 4 alligned blue chords are in the same chord-set together.

In the following discussion, we will only need to consider the positioning of the
type 3 chord-sets in between each other and checking how many of those mentioned
sleeker vertically expanded rectangles, that go straight throught the chord, see Fig.
17, do we need to optimally cover all of the type 3 chord-sets.

Fig. 17: The light violet area has to be covered by at least one of the mentioned
sleeker vertical expanded rectangles in every optimal solution.

For this purpose we will need other observations and visualization of the chord-sets
in a way we can somehow analyse. We will interpret a whole chord-set S as one

20

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

straight horizontal line Sh with the left and right coordinates matching the left and
right coordinates of the chords in the chord-set, see Fig. 18.

(a) (b)

(c)

Fig. 18: Here is an example of our easier visualization of the chord-sets positions.
(a) 3 chords which build a chord-set for themselves, the big X are holes.
(b) The corresponding visualization of the chord-sets.
(c) An instance where this positioning of the chords is possible.

Notice that there are always at least two holes directly next to each chord-set, because
of the way type 3 chords look like, and thus next to their corresponding horizontal
lines, see Fig. 18 as well.

The only questionable data is their vertical positioning, since some chord-sets can
be large and thus they expand vertically, moreover there can be chord-sets between
other chord-sets, see Fig. 19.

21

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

(a)

(b)

Fig. 19: Examples of larger chord-sets.
(a) Three chord-sets with cardinality >1.
(b) Three different chord-sets, but the red one is in between the blue and
violet ones while the blue one is in between the violet one.

We can solve the vertical size problem easily by just putting the corresponding hori-
zontal straight line Sh in the vertical middle of the chord-set S , see Fig. 20. This way,
we do not leave out any possibilities to cover the sets by rectangles and we do not
create any new possibilities as well.

22

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Fig. 20: The horizontal straight lines corresponding to the chord-sets in Fig. 18 (a).
Notice that we do not need to mark all holes since we only care about the
mentioned sleeker vertical rectangles that go trought the horizontal straight
lines.

To solve the problem with the chord-sets A beeing in between an other chord-set S ,
we just position the corresponding horizontal line Sh above all the other horizontal
lines Ah corresponding to the chords-sets beeing in between S . Moreover we need
to add additional holes for at least one chord of S under Ah to prevent creating new
rectangle covering possibilities, see Fig. 21 and 22 for specific examples.

Fig. 21: The horizontal straight lines corresponding to the chord-sets in Fig. 18 (b).
Notice that this time we have to add additional holes under the lowest
horizontal straight line, to prevent the creation of new possible rectangle
coverings.

23

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Fig. 22: An example of a larger chord set and two different chord sets in between on
the left. Notice that the red and blue chord set are different since they cannot
be both covered by exactly one rectangle.
On the right the corresponding horizontal straight lines and holes.

Using this construction, we will show the following theorem.

(3.7) Theorem
Let |F3| = n ∈N. There are at least dn

2 e rectangles needed to completely cover F3.

Proof
We will show this theorem by induction. First we show the basis step.
The cases n = 1 and n = 2 are trivial so we start at n = 3.
We need to show the assumption for every possible positioning of 3 chord-sets,
since this shows that in any arbitrary instance containing these n chord-sets in this
positioning, the assumption is true. We will show it for 10 positionings, all other
possibilities are either symetrical or similar enough to be ignored, e.g. additional
holes, one of the chord-sets positioned slithly more to the left, one of the chord-sets
is wider etc.

1st positioning:

At least 3 rectangles are needed in every optimal covering.

24

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

2nd positioning:

At least 3 rectangles are needed in every optimal covering.

3rd positioning:

At least 3 rectangles are needed in every optimal covering.

4th positioning:

At least 3 rectangles are needed in every optimal covering. Notice that making the
blue chord-set wider can lead to having only two chord-sets, while adding additional
holes, e.g. to make the red chord-set be in between the blue chord set, does not lower
the optimal number of rectangles needed to cover the chord-sets.

5th positioning:

At least 3 rectangles are needed in every optimal covering. Notice that moving the
blue chord-set slightly to the left does not lower the optimal number of rectangles
needed to cover the chord-sets. Adding additional holes does not create new possi-
bilities of covering rectangles.

25

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

6th positioning:

At least 3 rectangles are needed in every optimal covering.

7th positioning:

At least 3 rectangles are needed in every optimal covering. Notice that swapping
the vertical positions of the chord-set will not affect the optimal needed number
of rectangles. It is the same with adding holes and creating chord-sets in between
chord-sets.

8th positioning:

At least 3 rectangles are needed in every optimal covering. Notice that moving the
chord-sets to the left or right will not lower the optimal number of needed rectangles
to cover the chord-sets.

26

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

9th positioning:

At least 3 rectangles are needed in every optimal covering. It seems that there are
only two rectangles needed here, but the small blue area above the middle hole is
the reason why there are 3 rectangles needed.

10th positioning:

In this case at least 2 = d3
2e rectangles are needed. Notice that moving the chord-sets

would in the worst case only increase the optimal number of needed rectangles to
cover the chord-sets. Adding holes would lead to the same conclusion. It is indeed
the only positioning for n = 3 where less than 3 rectangles are needed in an optimal
cover.

Let the assumption be true for every 1 . . . m ∈N.
Let |F3| = n = m + 1.

Let x be the minimum right coordinate of a chord-set contained in F3. Notice that it
is possible that there is more than only one chord-set with x as the right coordinate.
Let c ∈ n be the number of chord-sets with x as the right coordinate. If c = n then
let y be the maximum left coordinate of a chord-set contained in F3 and d ∈ n be the
number of chord-sets with y as the left coordinate. If d = n we have a special case
which we will solve later.

Let w.l.o.g. c < n and x be the mentioned minimum right coordinate, since if c = n
and d < n, we can just flip the horizontal straight lines instance vertically to recieve
c < n.

By induction we need at least d c
2e rectangles to cover the chord-sets in any optimal

solution. The side of the instance with coordinates larger than x are still completely

27

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

uncovered. We create a vertical line going from the top to the bottom of the instance
straight throught x and call it the split line.
There may be some chord-sets that are split in 2 by the split line but the right part of
these chord-sets can not be covered by the rectangles needed to optimally cover the
c chord-sets on the left side of the split line, see Fig. 23.

Fig. 23: The violet vertical line is the split line in this horizontal straight line instance
with c = 2. We see two chord-sets split in two and their straight line parts on
the right of the split line can not be covered by rectangles needed to optimally
cover the two chord-sets with minimum right coordinate.

However straight line parts on the left of the split line of the chord-sets split by it,
can be partially or even completely covered by the rectangles needed to cover the c
chord-sets with minimum right coordinate.
We can now interpret the straight line parts on the right side of the split line as
uncovered chord-sets, since we do not decrease the number of rectangles needed to
cover the horizontal straight line instance on the right side of the split line.
To cover the right side of the instance, by induction we need at least dn−c

2 e rectangles.
In total we need at leastdn−c

2 e+ d
c
2e rectangles to cover the horizontal straight line

instance. We need to show that⌈
n− c

2

⌉
+

⌈
c
2

⌉
≥
⌈

n
2

⌉
.

We will show the four possible cases to prove the inequality.

28

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

1st case: n = 2k, c = 2l , k, l ∈N⌈
2k− 2l

2

⌉
+

⌈
2l
2

⌉
= dk− le+ dle = k ≥

⌈
n
2

⌉
2nd case: n = 2k, c = 2l + 1 , k ∈N, l ∈N0⌈

2k− 2l − 1
2

⌉
+

⌈
2l + 1

2

⌉
=

⌈
k− l − 1

2

⌉
+

⌈
l +

1
2

⌉
= k− l − 1 + l + 1 = k ≥

⌈
n
2

⌉
3rd case: n = 2k + 1, c = 2l + 1 , k ∈N, l ∈N0⌈

2k + 1− 2l − 1
2

⌉
+

⌈
2l + 1

2

⌉
= dk− le+

⌈
l +

1
2

⌉
= k− l + l + 1 = k + 1 ≥

⌈
n
2

⌉
4th case: n = 2k + 1, c = 2l , k ∈N, l ∈N⌈

2k + 1− 2l
2

⌉
+

⌈
2l
2

⌉
=

⌈
k− l +

1
2

⌉
+ dle = k− l + 1 + l = k + 1 ≥

⌈
n
2

⌉

The inequality holds and we only have to show the last special case mentioned be-
fore.
Let c = n and d = n. In this case all chord-sets have the same left and right coordi-
nates and between every two chord-sets there has to be a hole or else they would be
alligned and create only one instead of two chord-sets, see Fig. 24.

Fig. 24: The special case c = n and d = n.

Let S be the lowest chord-set. There is no chord-set below S and there is at least
one hole directly above it. Hence there is an area on the horizontal straight line that
has to be covered directly under one of the holes. To cover this area there is at least

29

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

one rectangle needed and this rectangle does not cover any parts of other horizontal
straight lines in this instance. By induction we need at least dn−1

2 e rectangles to cover
all the chord-sets above S and an additional rectangle to cover S . Thus we need at
least dn−1

2 e+ 1 rectangles. We show the only two possibilities for n.

1st case: n = 2k , k ∈N⌈
2k− 1

2

⌉
+ 1 =

⌈
k− 1

2

⌉
+ 1 = k− 1 + 1 = k ≥

⌈
n
2

⌉
2nd case: n = 2k + 1 , k ∈N⌈

2k + 1− 1
2

⌉
+ 1 = dke+ 1 = k + 1 ≥

⌈
n
2

⌉

The inequality holds as well for this special case and hence we have proven the
theorem by induction. �

The first question that comes in mind is, if it is possible to improve this theorem, i.e.
why is it not possible to prove it for d21n

40 e?

We will use the 10th positioning in the induction basis of the theorem to show that
improving this theorem is not possible. Let 1 > a > 1

2 be the ratio that we want to
improve to, i.e. we need at least a · n rectangles to cover n type 3 chord-sets.

We expand the 10th positioning by always adding a wide and a sleeker chord-set
above the right sleeker chord-set such that we only need one more rectangle to cover
both new chord-sets, see Fig. 25.

Fig. 25: The construct to show that the theorem can not be improved. We have 5
chord-sets covered by only 3 rectangles.

30

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

This construction leads to the sequence an = 3+2n
2+n , n ∈N and its limes is 1

2 . Thus the
theorem cannot be improved.

Using the proven theorem we recieve:

θ ≥ |F3|
2

⇔ 2θ ≥ |F3|

With the inequality c1 ≤ 4θ from [Franzblau 1989] we recieve:

2p ≤ 2θ + 4θ + 2θ

⇔ p ≤ 4θ

This implies that the algorithm Partition/Extend is a constant factor approximation
algorithm with ratio 4.

We can further improve this ratio. The theorem is adaptable for type 1 chords, i.e.
for |F1|, as well since they have the same properties type 3 chord-sets have. The only
difference in the visualization of type 1 chord-sets would be an additional hole on
the left or right side of the straight horizontal line, since type 1 chords only contain
one concave vertex. With this result we can improve the inequality to

p ≤ 3θ

the ratio conjectured by Franzblau herself.

There is even one more property of type 1 chords we can use to improve this inequa-
lity. In the proven theorem we only used the rectangles that go vertically throught
the chord. There is at least one horizontally expanded rectangle needed to cover the
area below or above type 1 chord, see Fig. 26.

Fig. 26: The purple area below this type 1 chord has to be covered by at least one
horizontally expanded rectangle.

At most four chords and thus chord-sets can share one of the rectangles needed to
cover the purple area, see Fig. 27.

31

Covering Rectilinear Polygons by Rectangles § 3 Franzblau’s algorithm reanalysed

Fig. 27: At most four type 1 chords or chord-sets can be attached to the purple area
in the middle at once.

Hence we need at least additional
⌈
|F1|

4

⌉
rectangles to cover the areas below all type

1 chord sets. Thus we recieve:

θ ≥
⌈
|F1|

2

⌉
+

⌈
|F1|

4

⌉
⇔ 4

3
θ ≥ |F1|

In total the resulting inequality is:

2p ≤ 2θ +
4
3

θ + 2θ

⇔ p ≤ 8
3

θ

The result is that algorithm Partition/Extend from [Franzblau 1989] is a 8
3 -approximation

algorithm.

32

Covering Rectilinear Polygons by Rectangles § 4 Conclusions and Outlook

§ 4 Conclusions and Outlook

An upper bound for θ
α

We showed that there exists a constant approximation algorithm for the rectangle
cover problem and increased the lower bound for θ

α . There is still the open question
Erdös asked whether θ

α was bounded by a constant. Let us discuss this question a
bit further.

In the experiments using randomly generated instances, there was no instance con-
taining an odd-cycle with a length larger than 7 and I did not find any example of
such an instance in the literature. Let us assume that the largest possible odd-cycle
in a rectilinear polygon instance has length 7 and that we obtain such an instance
with the largest possible θ

α ratio. The combinatorial possibilities of such instances
with this largest θ

α ratio are bounded by a constant since the rectilinear polygon in-
stances are always two dimensional. If the θ

α is not already larger than our improved
bounds, we can try to use the construction showed in section 2 to create a sequence
that possibly increases the bound. If it does not increase the bound we can try to
combine the instances with the odd-cycles of length 7 with the instances with odd-
cycles of length 5. With these new constructs we can build a sequence similar to the
one in the second section which possibly inscreases the bound. It would mean that
we can construct the worst possible instance in means of the θ

α ratio and show that
an upper bound exists, but as long as we do not show that the length of odd-length
cycles in rectinlinear polygon instances are somehow bounded, it remains an open
question.

Linear programming approach

In [Heinrich-Litan and Lübbecke 2007] it is said that the rectangle cover problem
turns to be computationally very tractable. We can only agree with this statement.
In the experiments all randomly generated instances could have been as well solved
by iterative rounding to recieve an approximation algorithm of factor 2, i.e. there
existed always a rectangle variable with solution value ≥ 1

2 in every solution of
the experimental instances and after rounding this variable up to 1 and solving the
instance again, there was an other rectangle variable ≥ 1

2 etc.

At first I wish for a way to create random instances with a given relevancy ratio,
since it was very hard and time consumpting to create random instances with some

33

Covering Rectilinear Polygons by Rectangles § 4 Conclusions and Outlook

significant solutions. Moreover I hope that this work will open a different point of
view on the rectangle cover problem and instead of searching for an algorithm that
instantly creates a bound for θ

α , we try to solve the problem geometrically by using
already developed algorithms. This way it may be possible for us to observe other
properties of the problem and use them to answer Erdös’ question:

Is θ
α bounded by a constant?

34

Covering Rectilinear Polygons by Rectangles § 5 References

§ 5 References

Ahuja, Ravindra, K., Magnanti, Thomas, L., Orlin, James B. 1993. Network Flows -
Theory, Algorithms and Applications. Printice Hall, New Jersey.

Anil Kumar, V. and Ramesh, H. 2003. Covering rectilinear polygons with axis-parallel
rectangles. SIAM J. Comput. 32, 6, 1509-1541.

Berman, P. and DasGupta, B. 1997. Complexities of efficient solutions of rectilinear
polygon cover problems. Algorithmica 17, 4, 331-356.

Bern, M. and Eppstein, D. 1997. Approximation algorithms for geometric problems.
See Hochbaum [1996], Chapter 8, 296-345.

Chaiken, S., Kleitman, D. Saks, M., and Shearer, J. 1981. Covering regions by rec-
tangles. SIAM J. Algebraic Discrete Methods 2, 394-410.

Franzblau, D. 1989. Performance guarantees on a sweep-line heuristic for covering
rectilinear polygons with rectangles. SIAM J. Discrete Math. 2, 3, 307-321.

Garey, Michael, R., Johnson, David, S. 1979. Computers and Intractability. Bell Tele-
phone Laboratories.

Hannenhalli, S., Hubell, E., Lipschutz, R., and Pevzner, P. 2002. Combinatorial algo-
rithms for design of DNA arrays. Adv. Biochem. Eng. Biotechnol., 77, 1-19.

Heinrich-Litan, L. and Lübbecke,M.E. 2007. Rectangle Covers Revisited Computatio-
nally. ACM J. Exp Algorithmics 11, Article No. 2.6.

Marie, F. 1994. Polyominos and perfect graphs. Inform. Process. Lett. 50, 2, 57-61.

Masek, W. 1979. Some NP-complete set covering problems. Unpublished manuscript,
MIT.

Motwani, R., Raghunathan, A., and Saran, H. 1989a. Covering orthogonal polygons
with star polygons: The perfect graph approach. J. Compt. System Sci. 40, 19-48.

Motwani, R., Raghunathan, A., and Saran, H. 1989b. Perfect graphs and orthogonal-
ly convex covers. SIAM J. Discrete Math. 2, 371-392.

Schrijver, A. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin.

"Diopsis", Licensed under Creative Commons Attribution-Share Alike 3.0 via Wiki-
media Commons, http://commons.wikimedia.org/wiki/File:Diopsis.jpg#
mediaviewer/File:Diopsis.jpg

35

Covering Rectilinear Polygons by Rectangles § List of Figures

List of Figures

1 VLSI chip with thousands of integrated transistors. 4
2 An example showing a rectilinear polygon R with edges in black, two

holes with a large X, one of the pixels in red, two rectangles in blue,
and 8 vertices. The two vertices shaded green are concave and the
other six are convex. 5

3 Szemerédi’s original counter example to θ 6= α. 8
4 Example with θ 6= α without a hole. 8
5 A larger example with an odd cycle of length 7 with θ

α = 19
18 . The

shaded rectangles represent all other rectangles used in the optimal
cover, that do not contain the red pixels. 9

6 The new constructed polygon out of 2 original Szemerédi’s polygons.
It is now θ

α = 15
13 > 8

7 . 10
7 The new constructed polygon out of 3 original Szemerédi’s polygons. 10
8 The new constructed polygon out of 6 original Szemerédi’s polygons

for n = 3 and m = 1. 12
9 Type 1 chord, type 2 chord and type 3 chord from left to the right. . . 15
10 Horizontal partition in the first step of the algorithm producing 6 rec-

tangles. 15
11 The determined rectangle cover after the Extend part of the algorithm.

The rectangles are shown slightly smaller for better understanding. . 16
12 An example where the inequality p ≤ 2θ + h− 1 is actually tight.

Here is θ = 3, there are no holes and p = 5. 16
13 (a)An other example where the inequality p ≤ 2θ + h− 1 holds.

(b)We see that all the dotted left type 3 chords will produce the same
vertically expandable rectangle in the second part of the algorithm,
the same with all the dotted right type 3 chords, so counting them all
in the 2p ≤ 2θ + c1 + c3 inequality seems too much. 17

14 The blue dotted lines shall help in understanding the allignments.
(a)Two alligned type 3 chords.
(b)Two type 3 chords with the same width but different right and left
point coordinates, hence they are not alligned.
(c)Two type 3 chords with the same right point coordinates but diffe-
rent left point coordinates, hence they are not alligned.
(d)Two type 3 chords with the same left and right coordinates, but
a hole is in between them so they cannot be completely covered by
exactly one rectangle, hence they are not alligned. 18

36

Covering Rectilinear Polygons by Rectangles § List of Figures

15 The red dotted type 3 chords are all in the same chord-set S1 and the
blue dotted type 3 chords are all in an other chord-set S2. 19

16 An example where θ = 13 < 15 = |F3|. The different chord-sets are
the colored dotted lines, where every red chord builds his own set and
every 3 or 4 alligned blue chords are in the same chord-set together. . 20

17 The light violet area has to be covered by at least one of the mentioned
sleeker vertical expanded rectangles in every optimal solution. 20

18 Here is an example of our easier visualization of the chord-sets posi-
tions.
(a) 3 chords which build a chord-set for themselves, the big X are ho-
les.
(b) The corresponding visualization of the chord-sets.
(c) An instance where this positioning of the chords is possible. . . . 21

19 Examples of larger chord-sets.
(a) Three chord-sets with cardinality >1.
(b) Three different chord-sets, but the red one is in between the blue
and violet ones while the blue one is in between the violet one. 22

20 The horizontal straight lines corresponding to the chord-sets in Fig.
18 (a). Notice that we do not need to mark all holes since we only
care about the mentioned sleeker vertical rectangles that go trought
the horizontal straight lines. 23

21 The horizontal straight lines corresponding to the chord-sets in Fig.
18 (b). Notice that this time we have to add additional holes under the
lowest horizontal straight line, to prevent the creation of new possible
rectangle coverings. 23

22 An example of a larger chord set and two different chord sets in bet-
ween on the left. Notice that the red and blue chord set are different
since they cannot be both covered by exactly one rectangle.
On the right the corresponding horizontal straight lines and holes. . . 24

23 The violet vertical line is the split line in this horizontal straight line in-
stance with c = 2. We see two chord-sets split in two and their straight
line parts on the right of the split line can not be covered by rectangles
needed to optimally cover the two chord-sets with minimum right
coordinate. 28

24 The special case c = n and d = n. 29
25 The construct to show that the theorem can not be improved. We have

5 chord-sets covered by only 3 rectangles. 30

37

Covering Rectilinear Polygons by Rectangles § List of Figures

26 The purple area below this type 1 chord has to be covered by at least
one horizontally expanded rectangle. 31

27 At most four type 1 chords or chord-sets can be attached to the purple
area in the middle at once. 32

38

Covering Rectilinear Polygons by Rectangles § List of Figures

Statement of authorship

I hereby certify that this master thesis has been composed by myself, and describes
my own work, unless otherwise acknowledged in the text. All references and verba-
tim extracts have been quoted, and all sources of information have been specifically
acknowledged. It has not been accepted in any previous application for a degree.

Aachen, 25th September 2014

39

