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Abstract

This work evaluates whether optimization problems resulting from modelling the
optimal synthesis, design and operation of a decentralized energy supply system
have an embedded structure which can be exploited by decomposition methods in
solution algorithms. The objective is to determine if the the accuracy and/or the
problem size in terms of number of periods of time and number of units considered
may be increased, as these are limited if the branch-and-bound method combined
with the simplex method is used to solve the problems. A model of the problem is
formulated as a mixed-integer linear program as proposed by Yokoyama et al. (2002)
and Voll (2013). The model is analyzed and two embedded structures suitable for
decomposition are identified.
The first structure emphasizes the independent operation and design of every
component. The second structure emphasizes the design and operation of all
components and focuses on the independence of every period of time considered.
The model is reformulated using the Dantzig-Wolfe decomposition principle for
both proposed embedded structures. A numerical study is conducted where the
synthesis, design and operation of a fictional energy supply system is optimized
by both the branch-and-bound method combined with the simplex method and by
the branch-and-price method. A set of instances is created for different degrees
of complexity in terms of the number of units and the number of periods of time
considered.
The results show that the dual bounds obtained by solving the rootnode LP
relaxation can be improved in comparison to the conventional solution approach,
if the reformulation emphasizing independent components is utilized. The results
provide no evidence on improvements on the considered test set for the reformulation
emphasizing design and operation.
For the case of an optimal solution computing times required to solve the considered
instances of a test set are found to be reduced by utilizing the branch-and-price
method and the reformulation emphasizing components, if identical components are
considered in the energy supply system in comparison to the non-commercial solver
SCIP.
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Kurzfassung

In dieser Arbeit wird untersucht ob Optimierungsprobleme, die in der Strukturopti-
mierung von dezentralen Energieversorgungssystemen auftreten, eine eingebettete
Struktur aufweisen, die mit dekompositionsbasierten Optimierungsmethoden aus-
genutzt werden kann. Ziel ist es zu evaluieren, ob die Genauigkeit der Modelle oder
die Größe der untersuchten Systeme in Bezug auf die Anzahl der berücksichtigten
diskreten Zeitschritte und/oder der Anzahl der berücksichtigten Anlagen erhöht
werden kann. Diese sind bei dem aktuell angewendeten Lösungsverfahren, das auf
dem Branch-and-bound-Verfahren kombiniert mit dem Simplex-Verfahren basiert,
begrenzt.
Das Problem der Strukturoptimierung wird, wie von den Autoren Yokoyama et al.
(2002) und Voll (2013) vorgeschlagen, als gemischt-ganzzahliges lineares Programm
formuliert. Die Analyse des gemischt-ganzzahligen Programms ergibt, dass zwei
Dekompositionen des Problems möglich sind.
Charakteristisch für die erste identifizierte Struktur ist, dass alle Komponenten
einzeln dimensioniert und betrieben werden können. Die zweite gefundene Struktur
wird dadurch charakterisiert, dass die Auslegung und der Betrieb der Komponenten
unabhängig von den betrachteten Zeitpunkten ist.
Das gemischt-ganzzahlige Modell wird nach der Methode der Dantzig-Wolfe Dekom-
position für beide gefundenen Strukturen reformuliert. Zur Überprüfung der ge-
fundenen Reformulierungen wird die Strukturoptimierung eines fiktiven Energiev-
ersorgungssystems durchgeführt. Für dieses System werden Instanzen mit un-
terschiedlicher Komplexität, bezogen auf die berücksichtige Anzahl an diskreten
Zeitschritten und die berücksichtigte Anzahl an Komponenten, definiert. Alle In-
stanzen werden mit Lösern, die die Branch-and-bound-Methode kombiniert mit der
Simplex-Methode verwenden gelöst. Außerdem werden die Instanzen mit einem
Löser der die Branch-and-price-Methode anwendet gelöst.
Die Ergebnisse zeigen, dass die duale Schranke im Wurzelknoten mit der ersten Re-
formulierung, die auf der unabhängigen Dimensionierung und Betrieb jeder einzelnen
Komponente basiert, im Vergleich zu der bisherigen Lösungsmethode verbessert
werden kann. Eine Verbesserung durch die zweite Reformulierung, die auf unab-
hängigen Zeitpunkten basiert, kann nicht nachgewiesen werden.
Anhand der Ergebnisse kann gezeigt werden, dass, im Falle einer optimalen Lösung
der Instanz, im Vergleich zum frei verfügbaren Löser SCIP, geringere Lösungszeiten
mit der Reformulierung, die die unabhängige Dimensionierung und den Betrieb der
einzelnen Komponenten berücksichtigt, erreicht werden.
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1 Introduction

1.1 Present Situation

To satisfy the ever-increasing world’s energy demand is one of the fundamental
questions which have to be answered in future. A solution must be found in order
to ensure the prosperity of the international human society.
Today, global economic growth is mainly fuelled by exploiting fossil energy resources
accumulated during the past millennia. Future scenarios estimate the world’s energy
demand to increase further, driven by population growth and industrialization of
emerging nations (BP, 2013; IEA, 2013).
However, there are limitations to a fossil fuelled world economy. Emissions released
by the combustion of fossil fuels change the composition of the atmosphere signi-
ficantly. Scholars found evidence that mankind already has an effect on world´s
climate (Crutzen, 2002). A more important fact is that fossil resources are limited
so that future generations will face energy scarcity if mankind continues its current
rate of consumption of finite energy resources (Hubbert, 1956).
One possibility to overcome the disadvantages of an economy based on fossil re-
sources is to use energy which is converted from renewable resources. Today the
fastest growing primary energy source is energy converted from renewable resources
(Schiffer, 2013). Some characteristics of renewable energy converters are challenging
for engineers, such as their intermittent supply and geographically distributed struc-
ture due to their low energy density in comparison to fossil-fuel power plants.
A future transition from the current mainly fossil energy system into a mainly
renewable energy system could present many potential difficulties, and as yet, many
questions remain unanswered. Several trade-offs exist between the cost of energy,
energy security and emissions.
The degree of complexity resulting from the multitude of options available to com-
pose an energy supply system is impossible to manage manually. Therefore there is
a need for powerful analytical tools to evaluate different energy conversion options
and identify the most promising ones. The following question needs to be answered:

• What is the optimal structure, design and operational status of a mixed
fossil-renewable energy system with respect to diverging objectives, e.g. total
capital expenditure and/or greenhouse gas emissions?

1



1 Introduction

1.2 Method and Objective

A possibility to answer the prior stated research question is to formulate a mathem-
atical model of an energy supply system. This model can be optimized globally to
evaluate possible energy conversion options and obtain conclusions to determine
the optimal structure, design and operational status of an energy supply system i.e.
amongst others reduce total capital expenditure and/or greenhouse gas emissions.
One particular model formulation yields a mixed-integer linear program (MILP)
(Yokoyama et al., 2002; Voll, 2013).
Typically models for energy supply systems are based on equations for steady-state
energy and mass conservation. Restrictions occur from a demand, which has to
be fulfilled, as well as by technical restrictions. Binary decision variables occur for
decisions such as inclusion of an energy converter or its on/off status. Due to the
complexity and combinatorial possibilities in an energy supply system the resulting
MILP may be large in terms of the number of variables and equations.
Branch-and-price is a method to solve large-scale (mixed-) integer programs with a
considerable size (some billion variables) in a sufficient time, especially if the model
formulation has a block-diagonal structure with identical subproblems (Desrosiers
and Lübbecke, 2010). Branch-and-price is successfully applied to typical problems
from mathematical programming theory and practical applications (Barnhart et al.,
1998; Lübbecke and Desrosiers, 2005).
Usually the described MILPs are solved by applying the branch-and-bound method
combined with the simplex method (see description in Nocedal and Wright, 2006),
however accuracy of the models and the size of the energy supply system in terms of
the number of periods of time and number of units considered is limited to achieve
a solution within an acceptable time.
The objective of this work is to evaluate, whether the underlying problem has a
beneficial structure which may be exploited by decomposition. If suitable, the
branch-and-price method is applied to solve MILPs resulting from the modelling of
energy supply systems, so that the complexity or accuracy of the models may be
increased in comparison to the conventional solution algorithm.

1.3 Structure of the Thesis

In chapter 2 a literature review is performed to evaluate possible decomposition
methods and their application in energy engineering. An outline of the identified
decomposition methods Dantzig-Wolfe reformulation, Lagrangrean relaxation and
Benders’ decomposition is presented in chapter 3. A mixed-integer linear program
formulation as formulated by Yokoyama et al. (2002) and Voll (2013) is presented in
chapter 4. The model is analyzed to determine possible decomposition structures in
chapter 5. Numerical results of the identified structures are presented in chapter 6.
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2 Optimization of Energy Supply
Systems

Mathematical optimization has developed from a mere field of academic interest
into a thriving technology, pushing forward the frontiers of science in an increasingly
wide variety of different scientific domains. Mathematical optimization techniques
are widely applied and accepted in energy engineering (Biegler and Grossmann,
2004). In particular process system engineering is a vital source of new applications
and solution methods (Biegler and Grossmann, 2004).
Within the field of energy engineering a large range of different application areas of
mathematical optimization exist. One example is the synthesis, design and operation
of energy and process systems (Subrahmanyam et al., 1996; Yokoyama et al., 2002;
Voll, 2013; Rieder, 2013).
The unit commitment problem is an example where the optimal operation of an
existing energy system is considered (Sheble and Fahd, 1994; Padhy, 2004). In the
unit commitment problem electric power producing utilities minimize the operation
costs of their power producing units, while meeting the time-varying energy demands.
Constraints occur from technical restrictions, for example minimum up-time and
down-time of each unit and regulatory limitations to ensure reserve requirements
related to energy security issues.
Often the task of optimal synthesis and design is conducted simultaneously with
optimal operation (Frangopoulos et al., 2002; Yokoyama and Ito, 2006; Voll et al.,
2012; Voll, 2013; Voll et al., 2013; Wakui and Yokoyama, 2014).
In the case of real-time applications, for example supply chain optimization and
scheduling problems, many tools and knowledge from general optimization theory
can be applied (Biegler and Grossmann, 2004). Optimal control tasks to operate
plants or process systems is another area where a wide range of different applications
occur (Biegler and Grossmann, 2004). In particular, linear and non-linear model
predictive control is a well known field of application (e.g. Hölemann, 2011).
Optimization objectives may vary widely in energy engineering. Common objectives
are economic criteria such as net present value (NPV) (Voll, 2013) or annual total
cost (Yokoyama and Ose, 2012). Also physical entities are of interest such as total
entropy generation or carbon dioxide emissions (le Roux et al., 2012; Figliozzi, 2010).
These objectives may be considered simultaneously resulting in a multi-objective
approach where trade-offs occur (Bouvy and Lucas, 2007; Rieder et al., 2014).
Problems resulting from this wide range of applications are linked to all classes of
optimization (see section 3.1, p. 7).
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2 Optimization of Energy Supply Systems

Decomposition is a well known technique in optimization of energy systems. Model-
ling of multi-period design, planning and scheduling problems leads to mixed-integer
(non-)-linear programs which often have a specific structure. This embedded struc-
ture may be exploited by decomposition.
According to Grossmann and Biegler (2004) several decomposition schemes have
been proposed in the literature including Benders’ decomposition (Benders, 1962),
Lagrangean relaxation (Wolsey, 1998; Guignard, 2003) and Bilevel decomposition
(e.g. Iyer and Grossmann, 1998). Additionally reported are cutting plane methods,
augmented Lagrangean decomposition, splitting methods and nested decomposition.
Biegler and Grossmann (2004) do not explicitly mention Dantzig-Wolfe type decom-
position (Dantzig and Wolfe, 1961).
Sagastizábal (2012) applies Benders’ decomposition and Lagrangean relaxation to
optimize the behaviour of an independent system operator. Langrangean relaxation
is successfully applied by Rong et al. (2008) to optimize a trigeneration system
(electric power, heat and cooling) with storage and by Virmani et al. (1989) to
optimize the unit commitment problem. Finardi and Luiz da Silva (2006) apply
Lagrangean relaxation in a non-linear problem solving instances of the hydro unit
commitment problem.
Dantzig-Wolfe type reformulation is applied by Sanghvi and Shavel (1986) to the
investment planning for hydro-thermal power system expansion, solving problem
sizes of up to 30,000 rows and 54,000 columns.
Several authors exploit hierarchical structures between the levels of interest, i.e.
synthesis, design and operation (Frangopoulos et al., 2002). Subrahmanyam et al.
(1996) present a decomposition approach for batch plant design and operation. The
decomposition is based on the hierarchical relationship between the different time
scales of design and scheduling.
Yokoyama and Ito (2000) and Yokoyama et al. (2002) present a decomposition
method for mixed-integer linear programs with a block diagonal structure to con-
duct the operational planning of energy supply systems with storage. They apply
Dantzig-Wolfe reformulation to obtain a master problem and several identical sub-
problems which may be solved independently. However, the problem is solved by a
self developed algorithm which cannot guarantee finding the optimal solution. They
solve subproblems associated to minimize the reduced costs of the master problem,
however, not always to optimality as they apply a heuristic optimality criterion,
i.e. values of binary variables of a feasible solution of the subproblem with negative
reduced costs are likely to give a better feasible solution of the original problem
(p. 778, Yokoyama et al., 2002). This algorithm, although calculating solutions
efficiently, does not guarantee optimality.
Yokoyama and Ose (2012) and Yokoyama et al. (2014) present another approach
to decompose the aforementioned problem by utilizing a hierarchical relationship
between the design and operation variables. In this particular case they formulate
a model taking discrete capacities into account. They solve an upper level design
problem by the conventional branch-and-bound method combined with the simplex
one. A lower level operation problem is solved by giving the values for the design
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variables tentatively. They conduct a series of bounding operations to optimally
solve the mentioned problem.
Until now no author reported the application of branch-and-price (see section 3.2,
p. 9) to the problem of simultaneously optimizing synthesis, design and operation of
an distributed energy supply system. In particular optimality of a solution obtained
may not be guaranteed with the approaches reported by others (Yokoyama and Ito,
2000; Yokoyama et al., 2002).
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3 Theory of Large Scale
Optimization

3.1 Mathematical Programming

For the class of deterministic optimization problems this section provides an overview.
The classification approach is adapted from Biegler and Grossmann (2004).
Deterministic optimization can be differentiated into optimization with continuous
or discrete variables (see Fig. 3.1). Optimization problems with both types of
variables are possible. In case of continuous optimization linear programs (LP)
and non-linear programs (NLP) are important problem classes. Non-linearities
occur for example if part-load behaviour of energy conversion units is considered.
Quadratic programming (QP) is an important subclass of NLP with special solution
methods. An important question considering NLPs is, whether the problems are
convex or non-convex. The latter gives rise to multiple local optima. A special class
of problems with non-differentiable objective function is derivative free optimization
(DFO). These problems may be solved by simulated annealing (SA) or genetic
algorithms (GA). However, SA and GA do not guarantee optimality.

Deterministic Optimization

Continuous Discrete

MILP

MINLP
IP

CO

NLP,
QPLP 

 GO

SA

DFO

GA

Figure 3.1: Classification scheme of problem classes in deterministic optimization (Biegler
and Grossmann, 2004, adapted).

The combination of discrete and continuous optimization gives way to mixed-integer
linear programs (MILPs) and mixed-integer non-linear programs (MINLPs). In
case of non-convex optimization with local optima problem classes in this field are
classified as global optimization problems (GO). When variables are purely integer
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3 Theory of Large Scale Optimization

this is termed integer program (IP). A special case is combinatorial optimization
(CO). Note that there is a wide range of different optimization problems. An attempt
to provide a complete overview is presented by (NEOS, 2014).

3.1.1 Linear Programming

We define the problem

min cTx
s.t. Ax ≤ b

x ≥ 0 ,
(3.1)

where c ∈ Rn
+ is a vector of all constant cost coefficients to their respective variable

and ()T denote the transpose of a vector, x ∈ Rn
+ is a vector of continuous variables

of the problem. A ∈ Rm×n is the constraint matrix and b ∈ Rm are the right
hand sight values of the constraints. Problems of the same type as (3.1) are called
linear program (LP).
The most common method to solve LPs is the simplex method. See the textbook
by Nocedal and Wright (2006) for a detailed description of the method.

3.1.2 Mixed-Integer Linear Programming

We define the problem

min cTx + dTy
s.t. Ax + Dy ≤ b

x ≥ 0
y ∈ Zq+ ,

(3.2)

where c ∈ Rn and d ∈ Rq are vectors of all constant cost coefficients of their
respective variables, x ∈ Rn

+ is a vector of continuous variables of the problem,
y ∈ Zq+ is a vector of integer variables of the problem, A ∈ Rm×n and D ∈ Rm×q

are the constraint matrices of their respective variables and b ∈ Rm is the right
hand sight values of the constraints. Problems of the same type as problem (3.2)
are called mixed-integer linear program (MILP).
A possibility to solve the above formulated MILP is the branch-and-bound method.
A detailed description may be found in the textbook by Nocedal and Wright (2006).
Here, the method is briefly reviewed for the case of dichotomic branching.
The first step in the branch-and-bound method is to solve the linear programming
relaxation of (3.2), that is substituting the integrality constraint by y ≥ 0. The
solution of the linear relaxation is a lower bound on the optimal objective function
value of the integer problem. An upper bound on the objective function value
is obtained from every feasible integer solution. If an integer variable remains
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3.2 Branch-and-Price

fractional after solving the LP relaxation one branches and creates two subproblems.
At every branching decision two subproblems, called nodes, are added. This results
in a tree of nodes. In each subproblem a constraint is introduced which excludes the
fractional value of the variable and forces it to at least the next upper (up-branch)
or lower (down-branch) integer value. If the lower bound of a branch is higher than
the current valid upper bound of all active branches, this branch is terminated as
no node of this subtree will improve the current objective function value.

3.2 Branch-and-Price

The aim of many decomposition and reformulation approaches in integer program-
ming is to reduce symmetry and obtain stronger relaxations, to achieve faster
convergence of the solution algorithms. Solution algorithms often rely on the dy-
namic addition of variables (columns) and/or constraints (cutting planes) to the
problem (Desrosiers and Lübbecke, 2010). In particular, one aims to exploit embed-
ded structures of the problem.
When solving the linear relaxation in each node of a branch-and-bound tree by
column generation, this is called branch-and-price (Desrosiers and Lübbecke, 2010).
Branch-and-price is successfully applied to many different applications in industry
and science (Lübbecke and Desrosiers, 2005). Examples are vehicle routing, crew
and machine scheduling problems (Desrosiers et al., 1984; van den Akker et al.,
1999), the general assignment problem (Savelsbergh, 1997; Barnhart et al., 1998),
bin packing and cutting stock problems (Vanderbeck, 1999), and graph colouring
(Mehrotra and Trick, 1996).
Additional applications and an extensive body of literature are covered in the reviews
by Barnhart et al. (1998) and more recently by Lübbecke and Desrosiers (2005).
A comprehensive description of branch-and-price is presented by Desrosiers and
Lübbecke (2010).
In the subsequent sections the main underlying principles of branch-and-price as used
in this thesis are presented, following the description by Desrosiers and Lübbecke
(2005, 2010) and Lübbecke (2011).

3.2.1 Definitions

Definitions used in the subsequent sections on polyhedra and reformulation theory
are summarized briefly in this chapter (As presented in: Vanderbeck, 2010, 13.2.2).
Let X ⊆ Zn be the solution space of an integer linear program.

Definition 3.2.1. A polyhedron P ⊆ Rn is the intersection of a finite number of
half spaces. In other words, one can formulate the set P = {x ∈ Rn |Ax ≥ b},
with A ∈ Rm×n and b ∈ Rm.
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3 Theory of Large Scale Optimization

Definition 3.2.2. A polyhedron P is a formulation for X if X = P ∩ Zn.

Note that sets such as X have many different formulations. Let P 1, P 2 be two
formulations for X with P 1 ⊂ P 2. One calls P 1 a stronger formulation than P 2

because

z = min{cTx|x ∈ X} ≥ min{cTx|x ∈ P 1} ≥ min{cTx|x ∈ P 2}, (3.3)

with c ∈ Rn. The result is that the lower bound on z obtained from the LP
relaxation with formulation P 1 is always greater or equal to that obtained from the
LP relaxation of P 2.
Definition 3.2.3. Given X ⊆ Rn, the convex hull of X, denoted by conv(X), is
the tightest, i.e. the smallest closed convex set containing X.

Note that the convex hull of an integer set X is a polyhedron. The convex hull of
X is also the strongest possible formulation of X as every corner point of conv(X)
is an integer feasible solution.

3.2.2 Column Generation

Column generation is a method to solve linear programs by iteratively adding
variables to the model. In particular column generation is an applicable method to
solve linear programs with some trillions of variables. It utilizes the fact, that often
only a relatively small fraction of the total number of variables is needed to prove
optimality (Lübbecke, 2011). Column generation is often mentioned simultaneously
with Dantzig-Wolfe reformulation (see section 3.2.3). It is particularly effective
if the solved problem has a special structure, e.g. bordered block-diagonal with
identical subproblems (see section 3.2.4).
Let

min
∑
j∈J

cjλj

s.t.
∑
j∈J

ajλj ≤ b

λ ∈ Z|J |+ ,

(3.4)

be an integer program and called integer master problem, where cj ∈ R are the scalar
coefficients of the objective function, λj ∈ Z+ are the integer variables, aj ∈ Rm is
a coefficient column j of the coefficient matrix and b ∈ Rm is a vector of the right
hand side coefficients of the constraints.
The linear relaxation of (3.4), is called master problem (MP) and is defined as

min
∑
j∈J

cjλj

s.t.
∑
j∈J

ajλj ≤ b

λj ≥ 0 ∀ j ∈ J ,

(3.5)
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3.2 Branch-and-Price

where vectors have appropriate dimensions. Solving (3.5) is computationally ex-
pensive as |J | is large. Instead it is solved by column generation as follows.
Consider (3.6) which is called restricted master problem (RMP) where only a subset
J ′ ⊆ J of variables is considered.

min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≤ b [π]

λj ≥ 0 ∀ j ∈ J ′

(3.6)

In each iteration (3.6) is solved to optimality by applying the simplex method
(see Nocedal and Wright, 2006) and a primal as well as a dual optimal solution is
obtained, λ∗ ∈ Q|J

′|
+ and π∗ ∈ Qm

− , respectively.
From linear programming theory it is known that a linear problem is solved to
optimality, when there are no non-basic variables with negative reduced costs. As it
is computationally expensive to calculate the reduced costs of the |J \ J ′| variables,
in column generation this problem is solved as an optimization problem. Let X
define a generic set over which one can optimize

zPP = min
x∈X
{c(x) − (π∗)T a(x)} . (3.7)

This is a subproblem, called pricing problem, where the reduced costs of (3.5) are
minimized. The functions c(xj) = cj and a(xj) = aj denote that each column
j ∈ J is associated with an element xj ∈ X. Often this association may be
interpreted as a set of combinatorial objects such as paths or colour patterns, thus
each xj bears much more information than just its corresponding column a(xj)
(Desrosiers and Lübbecke, 2010).
If zPP < 0, there still is a vector xj with negative reduced costs. A corresponding
variable λj and coefficient column (c(xj), a(xj)) is added to the RMP and another
iteration starts. Else, zPP ≥ 0 proves that there is no variable with negative
reduced costs and the current λ∗ is an optimal solution to both the RMP and MP.

3.2.3 Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition principle (Dantzig and Wolfe, 1961) was developed
to exploit special embedded structures within the constraint matrix of linear pro-
grams. Later it was adapted to integer programs where reveals its ‘full strength’
(Desrosiers and Lübbecke, 2010). Assume a problem, where the constraint matrix is
very sparse and all constraints may be divided into easy constraints Dx ≤ d and
complicating constraints Ax ≤ b. Consider

min cx
s.t. Ax ≤ b

x ∈ X ,
(3.8)
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which is called original problem and is optimized with respect to the mixed-integer
set X = {x =

(
xZ

xQ

)
, xZ ∈ Zn−q+ , xQ ∈ Qq

+ |Dx ≤ d}. Matrices and vectors have
appropriate dimensions. The original problem is rather hard to solve when the
embedded structure of X is not considered. The variables x are called original
variables.
Note that the set X contains mixed-integer variables. In the following descriptions
assume X to be a pure integer set, where differences are stated when necessary
(Desrosiers and Lübbecke, 2010).

3.2.3.1 Convexification

Classically Dantzig-Wolfe decomposition is based on the representation theorems by
Minkowski and Weyl (Schrijver, 1986). The approach described in this section is
termed convexification because X is convexified.

Theorem 3.2.1. Each x ∈ X can be expressed as a convex combination of finitely
many extreme points {xp}p∈P plus a non-negative conic combination of finitely many
extreme rays {xr}r∈R of conv(X), i.e.

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr,
∑
p∈P

λp = 1, λ ∈ Q|P |+|R|+ . (3.9)

A so called extended formulation

min
∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≤ b [π]∑
p∈P

λp = 1 [π0]

λ ≥ 0
x =

∑
p∈P

xpλp +
∑
r∈R

xrλr

x ∈ Zn+ ,

(3.10)

is obtained by substituting x in (3.8) by (3.9) and applying the linear transformations
cj = cTxj and aj = Axj, j ∈ P ∪R. Vectors have appropriate dimensions. Note
that the optimal objective function values of (3.8) and (3.10) are equal. The extended
formulation is an integer master problem as (3.4).
The first constraints in (3.10) are called coupling constraints with respective dual
variables π and the second constraint is called convexity constraint with respective
dual variable π0. Note that by the last constraint, integrality is still imposed on the
original variables x ∈ X.
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3.2 Branch-and-Price

Let

min
∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≤ b [π]∑
p∈P

λp = 1 [π0]

λ ≥ 0

(3.11)

be the linear relaxation of (3.10). (3.11) is called master problem (MP). The number
of variables of (3.11) is high due to the cardinality of P ∪R, therefore an applicable
solution method is column generation. The restricted master problem (RMP) of
(3.11) is defined by only taking a subset of variables p ∈ P ′ ⊆ P, r ∈ R′ ⊆ R into
account. With respective dual variables π and π0, the pricing problem

zPP = min{cx − πAx − π0 |x ∈ X} (3.12)

is defined, which needs to be solved at each iteration of the column generation
algorithm. Ideally this pricing problem is solvable by a tailored combinatorial
algorithm which yields integer solutions to (3.12). If not, it needs to be solved by
some standard IP solver which may be very time consuming.
When solving (3.12) to optimality there are three possible outcomes (Lübbecke,
2011). First, if zPP < 0 and zPP finite, an optimal solution to the pricing problem
is an extreme point xp of X, and a variable with coefficient column [cxp, (Axp), 1]
is added to the RMP. Second, if zPP = −∞, one obtains an extreme ray xr of X,
and the column [cxr, (Axr), 1] is added to the RMP. And finally, if zPP ≥ 0 there
are no negative reduced costs columns anymore. This proves the optimal solution
of both RMP and MP.

3.2.3.2 Discretization

While in convexification conv(X) is reformulated, in discretization X itself is re-
formulated. The concept was introduced by Vanderbeck since ‘it allows for the
development of a unifying and complete theoretical framework to deal with all
relevant issues that arise in the implementation of a branch-and-price algorithm’
Vanderbeck (2000).

Theorem 3.2.2. (Nemhauser and Wolsey, 1988) Each x ∈ X can be expressed as
an integral combination of a finite set of integer points {xp}p∈P ⊆ X plus a finite
set of integer rays {xr}r∈R of X, i.e.

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr,
∑
p∈P

λp = 1, λ ∈ Z|P |+|R|+ . (3.13)
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Note that here the notation is kept as presented in (Desrosiers and Lübbecke,
2010), despite the authors slightly abused notation to ensure a better understanding.
In (3.13) the set P contains integer points which usually are not identical to the
corresponding extreme points of the convexification approach. Rays in R are scaled
to be integer.
Again, one obtains a so called extended formulation (3.14) by substituting x in (3.8)
by (3.13) and applying the linear transformations cj = cTxj and aj = Axj, j ∈
P ∪R. This yields the integer master problem

min
∑
p∈P

cpλp +
∑
r∈R

crλr

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≤ b∑
p∈P

λp = 1

λ ∈ Z|P |+|R|+ .

(3.14)

Note in this case integrality is required on λ variables.
There are some certain characteristics of the integer master problem (3.14) obtained
by applying the discretization approach (Vanderbeck, 2000):

• The LP relaxation of (3.14) gives the same dual bound as (3.10).
• If solved by column generation, the pricing problem of the linear relaxation of

(3.14) is the same as in (3.12). It is necessary to ensure that it can generate
integer solutions in the interior of X.

• Let X be bounded and (3.8) has a nonlinear objective function, then (3.14)
still is a linear integer program.

In case of a mixed-integer set X the discretization approach is generalized such that
integer variables are discretized and continuous variables are convexified (Vander-
beck and Savelsbergh, 2006). In case of X ⊆ {0, 1}n, i.e. binary programming,
convexification and discretization coincide.

3.2.4 Bordered Block-Diagonal Matrices

As mentioned in the sections before Dantzig-Wolfe decomposition works par-
ticularly well if the constraint matrix has a special, a bordered block-diagonal,
form. Mathematically this means that the set X decomposes into Xk = {xk ∈
Znk

+ |Dkxk ≤ dk}, k ∈ K, with all matrices and vectors of appropriate dimensions
and ∑k n

k = n,
∑
k q

k = q. This means that the original problem (3.8) may be
rewritten as

min
∑
k∈K

ckxk

s.t.
∑
k∈K

Akxk ≤ b

xk ∈ Xk k ∈ K,

(3.15)
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with all matrices and vectors of appropriate dimensions. Applying Dantzig-Wolfe
decomposition to the problem above, i.e. substitute each xk by (3.9) or (3.13) and
introduce λkj variables, j ∈ P k ∪ Rk, where P = ⋃K

k=1 P
k and R = ⋃K

k=1 R
k. An

important special case is when some or all (Dk,dk) are identical. Examples are
bin packing or using identical units in an energy supply system. This symmetry
may cause inefficiency in a branch-and-bound algorithm, as same solutions can be
expressed in many different ways by permuting K.
To cope with this symmetry one aggregates the master variables λkp, that is νp :=∑
k∈K λ

k
p and sums up the |K| convexity constraints. There is no need to aggregate

extreme rays (Desrosiers and Lübbecke, 2010). For a representative P 1 one obtains
the aggregated extended formulation

min
∑
p∈P 1

cpνp +
∑
r∈R

crλr

s.t.
∑
p∈P 1

apνp +
∑
r∈R

arλr ≤ b∑
p∈P 1

νp = K

ν ∈ Z|P
1|

+

λ ∈ Z|R|+ .

(3.16)

Analogously to (3.12) the corresponding k pricing problems are defined as
zkPP = min{ckxk − πkAkxk − πk0 |xk ∈ Xk}, ∀k ∈ K . (3.17)

If subproblems k are identical, it is sufficient to solve only one of the k subproblems
as each of them will generate exchangeable columns.

3.2.5 Linking Variables

Problems may occur which have independent structures in the constraint matrix that
are linked by variables. As mentioned before, the branch-and-price method benefits
from a bordered block-diagonal structure of the constraint matrix, in particular
when subproblems are identical. Different approaches exist to split variables or
constraints. See Guignard (2003) and Vanderbeck (2010) for examples. Here the
case that linking variables exist in the subproblems is discussed as presented by
Guignard (2003).
Consider the following integer master problem

min
∑
k∈K

ckxk + dy

s.t.
∑
k∈K

Akxk ≤ b

Dkxk ≤ dk ∀ k ∈ K
Ey + ∑

k∈K
Fkxk ≤ g

xk ∈ Znk

+ ∀ k ∈ K
y ∈ Zq+ ,

(3.18)
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where matrices and vectors have appropriate dimensions. Not that variable y is not
dependent on k, therefore this deters the easy constraints Ey + ∑

k∈K Fkxk ≤ g
to fully decompose in k subproblems.
A circumvention of this problem is to introduce aggregated copy constraints
(Guignard, 2003). Let y = y′k, k ∈ K be |K| aggregate copy constraints for problem
(3.18) and Zk = {(xk ,y′k) ∈ Znk

+ ×Z
qk

+ |Dkxk ≤ dk, E′ky′k + Fkxk ≤ g′k, k ∈ K},
then one obtains

min
∑
k∈K

ckxk + dy

s.t.
∑
k∈K

Akxk ≤ b

y′k = y ∀k ∈ K
y ∈ Zq+

(xk, y′k) ∈ Zk ∀k ∈ K ,

(3.19)

where matrices and vectors have appropriate dimensions. Now the easy constraints
in Zk decompose. Note that |K| additional linking constraints y = y′k need
to be considered in the inter master problem. Another possibility is to introduce
Hy = H′ky′k, k ∈ K, which in general yields a worse bound than the aforementioned
possibility (Guignard, 2003).

3.2.6 Branching

In general branch-and-price is a method to solve IPs and MILPs. When linear
relaxations of the master problem are solved by column generation fractional values
of the integer variables may be obtained. Therefore it is necessary to apply a
branch-and-bound scheme to obtain an integer solution.
Intuitively one would consider branching on the master variables. In the case of
convexification where there are no integer master variables this would be not feasible
and in the case of discretization this leads to an unbalanced branch-and-bound
search tree. Setting the down-branch to zero has no effect on the dual bound,
whereas in the up-branch it has a significant impact on the solution. In particular,
in the down-branch the regeneration of already generated solutions needs to be
forbidden in the pricing problem.
A characteristic of branching rules in the context of column generation is compatibility.
This means that branching should not complicate the pricing problem. For additional
reading on branching in this context the reader may be referred to Vanderbeck
(2010) and Vanderbeck and Wolsey (2010). Note that there exists tailored branching
rules for specific problems, e.g. in case of a set partitioning master problem (Ryan
and Foster, 1981).
In this section for the case of convexification branching on original variables and in
case of discretization branching as proposed by Vanderbeck (2010) and Vanderbeck
and Wolsey (2010) is presented.
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3.2.6.1 Convexification - Branching on Original Variables

The preferred approach in problems with only one pricing problem is convexification.
Recall that in convexification, integrality is required on the original variables x.
Considering (3.10) all xi variables with non integer column entries are branching
candidates, i.e. x∗i = ∑

j∈P∪R xjiλ∗j 6∈ Z+, with xji describing the i-th component of
xj, j ∈ P ∪R. After deciding to pick one branching candidate, two new problems
are created. In the down-branch xi ≤ bx∗i c and in the up-branch xi ≥ dx∗i e is
imposed. In general there are two options, either add the branching decision to
the master problem or to the pricing problem. As the up-branch may be handled
analogously (Desrosiers and Lübbecke, 2010), here only the implementation of the
down-branch is presented.

Master problem: The Reformulation of the branching constraint xi ≤ bx∗i c by
convexification ∑

p∈P
xpiλp +

∑
r∈R

xriλr ≤ bx∗i c (3.20)

is added to the master problem (3.10). Note that now a modification of the objective
function of the pricing problem is necessary and an additional dual variable is
included. A disadvantage of this approach is, that no integer points in the interior
of conv(X) can be generated from the pricing problem. This may result in missing
the optimal solution in the case of general integer variables x (see Desrosiers and
Lübbecke, 2010, p. 11).

Pricing Problem: If one introduces the constraint xi ≤ bx∗i c in the pricing, this
results into prohibiting the generation of extreme points and rays that violate the
branching decision. Additionally it has to be ensured that master variables already
present are eliminated. Constraints∑

j∈P∪R:
xji=1

λj = 0 or equivalently,
∑

j∈P∪R:
xji=0

λj = 1
(3.21)

are added to the master problem (3.10), which is, to some extent, modifying the
convexity constraint. The pricing problem is obtained by

min{cx − πAx − π0 |x ∈ X ∩ {x | xi ≤ bx∗i c}} . (3.22)

Despite that this may complicate the pricing problem, this option is to be preferred.
It has the advantage of generating a potentially stronger dual bound from the master
problem relaxation, because the bound change is also convexified, i.e.

min{cx |Ax ≤ b,x ∈ conv(X), xi ≤ bx∗i c}
≤ min{cx |Ax ≤ b,x ∈ conv(X ∩ {x | xi ≤ bx∗i c})} .

(3.23)
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3 Theory of Large Scale Optimization

Another advantage of changing the pricing problem is, that now its domain is
partitioned and it is possible to generate points in the interior of conv(X) after the
branching.
The presented methodology applies to any node in the tree and may as well be
generalized to mixed-integer programs (Desrosiers and Lübbecke, 2010).

3.2.6.2 Discretization - ‘Vanderbeck’ Branching

As mentioned previously symmetry is a cause for major inefficiencies and therefore
should be avoided in mathematical programs. In case of identical subproblems a
possibility to avoid this, is to aggregate original variables ∑k∈K xk = z. This results
in a single pricing problem. However, when branching decisions on the original
variables are introduced, the variables again are disaggregated and one obtains
distinct pricing problems (Villeneuve et al., 2005). Clearly this does not eliminate
symmetry from original variables xk (Vanderbeck, 2010).
Let

xk =
∑
p∈Pk

xpλkp , (3.24)

be a unique projection from the master variables λ into the space of original variables
x. There are some shortcomings in disaggregation and projection of master variables
into original variable space. For example in the aggregated master problem (3.16)
disaggregating variables νp = ∑

k∈K λ
k
p by using (3.24) to calculate an original

solution is not advantageous, a this projection is not unique and integrality of ν
does not lead necessarily to integrality of x.
To avoid symmetry and shortcomings at the same time, one needs a trick that
includes a unique projection from λ in x variables without the direct correspondence
(3.24).
An attempt by Vanderbeck (2010) is to obtain values x∗1, ...,x∗K by summing up the
master variables in a lexicographic order of the corresponding xp. Let

λ∗kp = min

1, νp −
k−1∑
κ=1

λ∗κp, max{0, k −
∑

q:xq≺xp

ν∗q}

 , (3.25)

be for all k ∈ K and p ∈ P , where xq ≺ xp denotes that xq precedes xp in that
ordering. The original variables are calculated by applying (3.24). A characteristic
of the lexicographic sorting is, that one always works with a unique representative
solution x out of the many symmetric possibilities. This is used to break symmetry
in integer programs (Margot, 2010).
A branching decision on fractional aggregated original variables y∗i = ∑

p∈P xpiν∗p 6∈
Z+ may be introduced by imposing

yi =
∑
p∈P

xpiν∗p ≤ by∗i c , or yi =
∑
p∈P

xpiν∗p ≤ dy∗i e . (3.26)
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3.2 Branch-and-Price

However, Vanderbeck (2010) states that this simple rule may only give a little
improvement on the dual bound.
There are some more advanced approaches which introduce auxiliary original vari-
ables in the original formulation (Vanderbeck, 2010).
The most general branching rule is to split the master variables via modifying the
convexity constraint (Vanderbeck and Wolsey, 2010). For a fractional sum of all
aggregated master variables ∑

p∈P :xpi≥li
νp = θ 6∈ Z+ , (3.27)

where index i stands for for each corresponding original variable xi and an integer
bound li, one creates two branches with∑

p∈P :xpi≥li
νp ≥ dθe , or

∑
p∈P :xpi≤li−1

νp ≥ K − bθc . (3.28)

This essentially is a modification of the master problem. In the pricing problem
xi ≥ li and xi ≤ l1−1 need to be specified. A fractional θ in (3.27) is not guaranteed
and one may need to impose additional bounds. This yields a generalized partition
in a nested way (Vanderbeck and Wolsey, 2010; Desrosiers and Lübbecke, 2010). A
more detailed description and several technical details may be found in (Vanderbeck
and Wolsey, 2010).
Some important facts to note are that the last rule provides the strongest dual
bound and implies only a small impact like bound changes on the pricing problem.
Points in the interior of conv(X) may be generated and the depth of the search tree
is polynomially bounded (Desrosiers and Lübbecke, 2010).

3.2.7 Implementations and Frameworks

Several frameworks exist to implement branch-and-price algorithms, e.g. ABACUS
(Jünger and Thienel, 2000), BCP (Ralphs and Ladányi, 2001), MINTO (Nemhauser
et al., 1994), SCIP (Achterberg, 2009) and SYMPHONY (Ralphs et al., 2013). A
code which performs Dantzig-Wolfe decomposition of a general MIP and solves the
subproblems by column generation is BaPCod (Vanderbeck, 2014).
The software framework DIP (Galati, 2010) is an open-source software framework
to implement a variety of decomposition-based bounding algorithms, e.g. Dantzig-
Wolfe decomposition, Lagrangean relaxation and different cutting plane methods.
A branch-and-cut-and-price solver for MIPs is GCG (Gamrath and Lübbecke, 2010),
which is used for the computational study in this thesis. GCG is based on the
SCIP-framework and performs Dantzig-Wolfe decomposition on a generic problem.
The structure for the decomposition is either provided by the user or detected by
some plug-in detectors implemented in GCG. Some features already implemented are
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3 Theory of Large Scale Optimization

branching rules for every generic problem and stabilization techniques (du Merle
et al., 1999). The code is open source and is jointly developed by the Chair of
Operations Research, RWTH Aachen University and Zuse-Institut Berlin.

3.3 Alternative Decomposition Techniques

Multiple decomposition techniques exist in mathematical programming theory,
however this thesis focuses on branch-and-price. To give an overview common
decomposition techniques Lagrangean relaxation and Benders´ decomposition are
presented here, as they may be alternatives to Dantzig-Wolfe decomposition. A
comprehensive overview and a detailed description of the aforementioned methods
is presented in detail in the literature (Guignard, 2003; Vanderbeck, 2010; Benders,
1962; Geoffrion, 1972).

3.3.1 Lagrangean Relaxation

Lagrangean relaxation is a well known decomposition technique in integer and
mixed-integer programming. Different authors report a successful application to
energy engineering problems (Finardi and Luiz da Silva, 2006; Rong et al., 2008;
Sagastizábal, 2012).
In this section a short introduction to Lagrangean relaxation is presented, following
the detailed descriptions of Guignard (2003) and Vanderbeck (2010).
Assume the optimization problem

zP = min
x
{cx |Ax ≥ b,Dx ≥ d, x ∈ Zn+} , (3.29)

with matrices and vectors of appropriate dimensions. Similar to Dantzig-Wolfe
reformulation it consists out of difficult constraints Ax ≥ b and relatively easy
constraints Dx ≥ d. The first mentioned set of constraints are considered difficult,
in the sense that removing Ax ≥ b from the problem and introducing them in the
objective function penalized by cost π results in a problem which is more tractable.
This leads to

L(π) := min
x
{cx + π(b − Ax) |Dx ≥ d, x ∈ Zn+} , (3.30)

which is called Lagrangean relaxation. Note that for any non-negative dual variable
π ≥ 0 the dual function L(π) provides a lower bound on the solution of the original
problem (3.29). Let x∗ denote an optimal solution of (3.29) then the following is
valid cx∗ ≥ cx∗ + π(b − Ax∗) ≥ L(π)).
The task now is to maximize this bound over a set of admissible dual vectors, that
is finding the tightest Lagrangean lower bound. Problem

zLD = max
π

L(π) = max
π≥0

min
x∈X
{cx + π(b − Ax)} (3.31)
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is called the Lagrangean dual, where X = {x ∈ Zn+ |Dx ≥ d}. The Lagrangean
dual is reformulated as a linear program by assuming that the set X is non-empty
and bounded. Note that the Lagrangean subproblem achieves its optimum at an
extreme point xp of conv(X), this leads to

zLD = max
π≥0

min
p∈P
{cxp + π(b − Axp)} . (3.32)

If an additional variable σ is introduced, which represents a lower bound on the
values (c − πA)xp, one can rewrite (3.31) as

zLD = max (πb + σ)
s.t. πAxp ≤ cxp ∀p ∈ P

π ≥ 0
σ ∈ R1 .

(3.33)

Taking the dual of LP (3.33) gives

zLD = min
∑
p∈P

(cxp)λp

s.t.
∑
p∈P

(Axp)λp ≥ b∑
p∈P

λp = 1

λ ∈ R|P |+ ,

(3.34)

which is an master problem as (3.11) and may be solved by column generation.
Let x(π) denote an optimal solution of (3.30) for some π ≥ 0, then x(π) is called a
Lagrangean solution (Guignard, 2003). The following theorem states the optimality
criterion for Lagrangean relaxation.

Theorem 3.3.1. (Guignard, 2003)

1. If x(π) is an optimal solution of (3.30) for some π ≥ 0, then cx(π) +
π(Ax(π) − b) ≤ zLD

2. If in addition x(π) is feasible for (3.29), then cx(π) + π(Ax(π) − b) ≤
zP ≤ zLD

3. If in addition π(Ax(π) − b) = 0, then x(π) is an optimal solution of (3.29),
and zP = cx(π).

3.3.2 Benders´ Decomposition

A different approach to Dantzig-Wolfe reformulation and Lagrangean relaxation
where usually columns are generated and problems are decomposed by their con-
straints, is the decomposition approach presented by Benders (1962). The approach
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is based on decomposition by variables, and the solution involves generation of rows.
Commonly the decomposition by variables is referred to as Benders´ decomposition.
Noonan and Giglio (1977) and Sagastizábal (2012) report on successful examples
of applying Benders´ decomposition to problems in energy engineering. In this
section the basic principle of Benders´ decomposition is outlined as presented by
Vanderbeck (2010).
Classically variable decomposition deals with MILPs as defined in (3.2), where one
assumes that the integer variables are important decision variables. The optimization
is decomposed in two stages, where on the first stage the integer variables are fixed
and associated continuous variables are calculated. Benders´ decomposition differs
from simple hierarchical decomposition as information from pricing the continuous
variables is taken into account (Vanderbeck, 2010). Note that if the problem has a
bordered block-diagonal structure, the subproblem obtained when fixing the integer
variables decomposes.
Benders´ decomposition is based on a reformulation of an initial MILP as a linear
integer program (Vanderbeck, 2010). The resulting reformulation has typically an
exponential number of constraints. This is solved by branch-and-cut. Note that
specific cuts are obtained during the solution process. For a detailed description the
reader may be referred to the literature (Benders, 1962; Geoffrion, 1972).
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4 A MILP for Distributed Energy
Supply Systems

In the following sections a mixed-integer linear model formulation, as presented by
Yokoyama et al. (2002) and Voll (2013), for the simultaneous synthesis, design and
operation of a distributed energy supply system is derived.

4.1 Problem Definition

Energy supply systems have diversified in recent years in terms of conversion tech-
nologies and primary energy sources (PES). This is partly caused by the shift to
unconventional fossil PES and also by increasing usage of renewable PES. Due to the
low energy densities of renewable PES in comparison to fossil ones, renewable energy
conversion units tend to possess lower capacities than fossil ones. Consequently the
number of units in a renewable energy system is much larger than in fossil ones.
Also the growing usage of components for combined heat and power (CHP), such
as micro gas turbines, stationary gas engines and fuel cells, increases the total
number of conversion units in an energy supply system. This is also caused by lower
capacities per unit, as the capacities of these units typically range from 10 kW to 1
MW. Hence, if the demand stays on a constant level, in energy systems with a large
share of CHP and renewable energy converters the total number of units in these
systems increases.
Frangopoulos et al. (2002) define the task of synthesizing an energy supply system
as a hierarchical problem, which can be differentiated into the three levels: synthesis,
design and operation. The cost-efficient synthesis, design and operation of a diverse
energy system leads to a problem which is impossible to solve manually in a suffi-
cient time. A possibility to cope with this difficulty is to define the problem as an
optimization problem. As there are interdependencies between the different levels
of interest, it is advantageous to optimize the structure, design and operation of an
energy system simultaneously. For example, energy conversion units usually have
their highest efficiency at a certain load. Thus, design decisions have a significant
impact on a cost-effective operation.
It is assumed that, in the beginning, an initial superstructure of the energy supply
system is given, which contains all candidates for selection. In Fig. 4.1 an exemplary
superstructure for an energy supply system is illustrated. The initial superstructure
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Superstructure Design Operation

Unit

Selected

Not selected

On Status

Off Status

Demand

Figure 4.1: Unit selection and operation from an initial superstructure (Yokoyama et al.,
2002, adapted).

is designed so that it is possible to fulfil at least the required energy demand. In the
problem there are two decisions which have to be made. First, if a conversion unit
is selected from the superstructure and second, if the unit is on or off in a specific
period of time. The capacity of each unit may vary in a specified range and the
load allocated to each unit in a certain period may vary within its capacity and a
lower limit.
To assess the economic performance of the energy supply system, the net present
value (NPV) of the investment of a grassroots energy supply system is adopted,
i.e. the system is planned from scratch. Note that the specific case of grassroots
synthesis can easily be expanded to the more general case of retrofit of existing
energy supply systems. The generally concave investment cost degression function
is linearized for every energy conversion unit by a piecewise linear function.
In this problem aggregated energy demands for multiple periods are defined. Con-
straints in this problem occur from quasi-stationary energy balances for each period
and technical restrictions to model the part load performance of every unit. To
cope with the nonlinear part load performance, again, a piecewise linear function
for each component is introduced.
In this formulation the quality levels, i.e. temperatures and pressures, of all energy
forms delivered are assumed to be constant (Voll, 2013).
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4.2 Model Formulation

For the problem defined above, a model formulation is derived as presented by
Yokoyama et al. (2002) and Voll (2013). The model is formulated for a simple
generic energy system as depicted in Fig. 4.2, p. 27.

4.2.1 Notation

The following indices, sets, variables and parameters are defined.

1. Indices

• n - Unit number

• t - Period of time

• d - Number of segment of piecewise linear function (part load performance)

• i - Number of segment of piecewise linear function (investment cost
degression)

2. Sets

• N - Set of all energy conversion units

• T - Set of all discrete periods of time

• D - Set of all segments of piecewise linear function (part load performance)

• I - Set of all segments of piecewise linear function (investment costs
degression)

3. Continuous variables

• V̇ndt - Output power of unit n using segment d in period of time t

• V̇nt - Nonlinear output power of unit n in period of time t

• U̇ndt - Input power of unit n using segment d in period of time t

• U̇nt - Nonlinear input power of unit n in period of time t

• ξndt - Auxiliary variable to substitute bilinear term δndt ·
∑
i∈I V̇

N
ni

• V̇ N
ni - Capacity of unit n using segment i

• V̇ N
n - Nonlinear capacity of unit n

• ICn - Investment cost of unit n

• CF - Net cash flow of investment

• NPV - Net present value of investment
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4. Binary variables

• yni - (Non)-existence of unit n using segment i

• yn - (Non)-existence of unit n

• δndt - On-/off- status of unit n using segment d in period of time t

• δnt - On-/off-status of unit n in period of time t

5. Parameters

• pU - Constant price for each unit of energy purchased

• pS - Constant price for each unit of energy sold

• ϕ - Discount rate of investment

• tCF - Time horizon of investment

• PV F (ϕ, tCF ) - Present value factor of investment

• pMn - Constant maintenance cost for each unit n

• ∆tt - Length of every period of time t

• Ėt - Energy demand in every period of time t

• ηNn - Constant efficiency of unit n

• vnd, vnd - Lower and upper bound on V̇ndt for every unit n and segment d

• V̇
N

ni, V̇
N

ni - Lower and upper bound on V̇ N
ni for every unit n and segment i

•
(

dIC
dV̇ N

)
ni

- Slope of segment i of unit n

• IC0
ni - Intercept segment i of unit n

•
(

du
dv

)
nd

- Slope of segment d of unit n

• u0
nd - Slope of segment d of unit n

4.2.2 Objective Function and Balance Equations

In the following section the objective function of the problem and the balance
equations are defined. In this section nonlinearities in the objective function are
kept and linearized in the subsequent sections.
From economic theory, multiple objective functions exist to assess the economic
performance of an energy system, such as: total annual cost, profit, net present
value, shareholder value and many more. In this thesis, following the description by
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Voll (2013), the economic performance of the investigated energy supply system is
assessed by the net present value1. The NPV is defined by

NPV := PV F · CF − IC , (4.1)

with variables and parameters as defined in the previous section and PV F =
((ϕ + 1)tCF − 1)/(ϕ · (ϕ + 1)tCF ). The net cash flow CF is the sum of all annual
revenues from feed-in electricity minus annual energy delivery and maintenance
costs. Note that the net cash flow is assumed to be constant for every year.

N&

unit n

ntntV δ,&
ntU&

tE&

tt∆N
nn Vy &,

ntntnt

outputinput

t

tt∆

1=t ...2=t maxt

Figure 4.2: Flowsheet of a generic energy supply system. A generic energy conversion
unit n converts input power U̇nt into output power V̇nt to fulfil a time varying
energy demand Ėt. Each unit has a capacity V̇ N

n . The (non)-existence
is modelled by the binary variable yn and the on/off-status of the unit at
every period is modelled by a binary variable δnt. Each period has a length
∆tt, t ∈ {1, 2, ..., tmax} = T (Voll, 2013, adapted).

For a generic energy system, as illustrated in Fig. 4.2, equation (4.1) can be rewritten
as

PV F ·
∑
n∈N

(∑
t∈T

(
− pU ·∆tt · U̇nt

(
V̇nt, δnt, V̇

N
n

)
+ pS ·∆tt · V̇nt

)

− pMn · ICn
(
yn, V̇

N
n

))
−

∑
n∈N

ICn
(
yn, V̇

N
n

)
. (4.2)

Equation (4.2) is the objective function of the problem and is maximized with
respect to the continuous capacity V̇ N

n , the continuous output power V̇nt and binary
variables yn and δnt that model the decisions if the unit is selected (yn = 1) or not
(yn = 0) and if the unit is on (δnt = 1) or off (δnt = 0) in period t, respectively.
The net cash flow is determined by three terms: Firstly the costs of annual energy
delivery are calculated by multiplying a constant purchase price for energy pU with
the input power U̇nt and the length of a period ∆tt; secondly the maintenance costs
are calculated by multiplying a constant price for maintenance pMn which is assumed
to be a fixed percentage of the investment costs ICn; thirdly the annual revenues

1Kasas et al. (2011) identified the NPV as the best suited economic criterion to asses single-
objective flowsheet optimization.
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from electricity feed-in are calculated by multiplying a constant price for energy
sold pS with the length of a period ∆tt and the output power V̇nt. Note that in
(4.2) the terms for the input power U̇nt and investment costs ICn are not further
specified here as this is presented in the subsequent sections.
The quasi-stationary energy balance of the system for every period is given by∑

n∈N
V̇nt = Ėt ∀ (t ∈ T ) , (4.3)

where the output power of every unit at the current period is summed up and the
sum has to equal the correspondent energy demand.

4.2.3 Investment Cost

In general the investment costs per output power of a unit tend to decrease when
its capacity increases (see Fig. 4.3, ICn(V̇ N

n )). To develop a linear formulation of
the problem the investment cost degression curve ICn

(
yn, V̇

N
n

)
in (4.2) is linearized

by a piecewise linear function, where i ∈ I denotes the i-th segment. Thus in (4.2),∑
n∈N ICn(yn, V̇ N

n ) is replaced by ∑n∈N
∑
i∈I ICn(yni, V̇ N

ni ).
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Figure 4.3: Piecewise linear function to linearize nonlinear investment cost degression with
I ∈ {1, 2} (Voll, 2013, adapted).

In Fig. 4.3 the linearization approach by a piecewise linear function is illustrated.
The constraints

ICn
(
yni, V̇

N
ni

)
=
∑
i∈I

IC0
ni · yni +

(
dIC
dV̇ N

)
ni

· V̇ N
ni

 ∀ (n ∈ N) (4.4)
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are added to the optimization problem, where IC0
ni and

(
dIC
dV̇ N

)
ni

denote the intercept
and slope of segment i for every component n. The following constraints ensure
that if a component exists and the segment i is used, the continuous variable for
the capacity will stay within its upper and lower bound V̇

N

ni and V̇
N

ni, respectively.

yni · V̇
N

ni ≤ V̇ N
ni ≤ yni · V̇

N

ni ∀ (n ∈ N, i ∈ I) (4.5)

It is necessary to ensure that only one of the segments of the piecewise linear function
to model the investment cost degression is active. This is ensured by introducing
constraints ∑

i∈I
yni ≤ 1 ∀ (n ∈ N) . (4.6)

4.2.4 Part Load Performance

For every unit n the relationship between input power U̇nt and output power V̇nt,
that is the part load performance characteristic, is

U̇nt
(
V̇nt, V̇

N
ni

)
= V̇nt

ηnt
(
V̇nt , V̇ N

ni

) ∀ (n ∈ N, t ∈ T ) , (4.7)

where ηnt
(
V̇nt, V̇

N
ni

)
is the efficiency of a unit n which depends nonlinearily on

the current output power and capacity of the unit. For the case of a chiller the
relationship of input to output power is referred to as coefficient of performance
(COPnt(V̇nt, V̇ N

ni )).
To derive a linear formulation of the problem the relationship between output power
and input power is approximated by a piecewise linear function for every unit n,
where d ∈ D denotes the d-th segment. Thus, in (4.2) and (4.3) all occurrences of
δnt and V̇nt are replaced by ∑d∈D δndt and

∑
d∈D V̇ndt, respectively.

In this thesis it is assumed that the part load performance of a unit is valid for a
certain type of technology regardless of their respective capacities (Voll, 2013). This
leads to equation

U̇ndt
(
V̇ndt, δndt, V̇

N
ni

)
= 1

ηNn

(
u0
nd ·

nonlinear︷ ︸︸ ︷
δndt ·

∑
i

V̇ N
ni

 +
(
du
dv

)
nd

· V̇ndt
)
, (4.8)

to express the performance characteristic, defined for all n ∈ N, d ∈ D, t ∈ T . In
(4.8) ηNn is the efficiency of each component at its respective nominal capacity and
u0
nd,

(
du
dv

)
nd

are intercept and slope of unit n and equation d, respectively, scaled by
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the current capacity of the unit, i.e. vnd = V̇ndt/
∑
i V̇ni, und = U̇ndt/

∑
i V̇ni.

Constraint

δndt ·

∑
i

V̇ N
ni


︸ ︷︷ ︸

nonlinear

·vnd ≤ V̇ndt ≤ δndt ·

∑
i

V̇ N
ni


︸ ︷︷ ︸

nonlinear

·vnd , (4.9)

defined for all n ∈ N, d ∈ D, t ∈ T , is adopted to ensure that V̇ndt stays within its
lower and upper limits, vnd and vnd respectively, when in in operation (δndt=1), or
zero if not (δndt = 0).
For the case of an absorption chiller the scaled performance characteristic expressed
by a piecewise linear function with d ∈ {1, 2} is illustrated in Fig. 4.4. Note that
und and vnd as relative numbers do not depend on time anymore.

1ndv
du









11 tn

ndv

021  tntn 
0

2nu

ndu

12 tn

0
1nu 2ndv

du








1nv 12 nv21 nn vv 
0

)( ndnd vu

Figure 4.4: Piecewise linear function to linearize part load performance of an absorption
chiller (d ∈ {1, 2}). Input power and output power scaled by their capacity
(Voll, 2013, adapted).

4.2.5 Linearization of Part Load Performance Characteristic

In (4.8) and (4.9) the bilinear term δndt ·
(∑

i V̇
N
ni

)
remains a nonlinearity in the

problem. The term is linearized by utilizing the method presented by Glover (1975),
which allows the formulation of the problem linearly and to reproduce the behaviour
of the nonlinearity perfectly.
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The bilinear term δndt ·
(∑

i V̇
N
ni

)
is substituted by an auxiliary continuous variable

ξndt and the constraints

∑
i∈I

V̇ N
ni + (δndt − 1) ·max

i

{
V̇
N

ni

}
≤ ξndt ≤

∑
i∈I

V̇ N
ni , (4.10)

δndt ·min
i

{
V̇
N

ni

}
≤ ξndt ≤ δndt ·max

i

{
V̇
N

ni

}
, (4.11)

are introduced, defined for all n ∈ N, d ∈ D, t ∈ T . Note that (4.8) and (4.9) change
by the substitution, defined for all n ∈ N, d ∈ D, t ∈ T , to:

U̇ndt
(
V̇ndt, δndt, ξndt

)
= u0

nd

ηNn
· ξndt +

(
du
dv

)
nd

1
ηNn
· V̇ndt (4.12)

ξndt · vnd ≤ V̇ndt ≤ ξndt · vnd (4.13)

Constraints (4.10, 4.11) guarantee the perfectly correct reproduction of the bilinear
term δndt ·

(∑
i V̇

N
ni

)
:

• If δndt = 1, then by (4.10), ξndt = 1 ·
(∑

i V̇
N
ni

)
=
(∑

i V̇
N
ni

)
and stays within

its bounds by (4.11);

• If δndt = 0, then by (4.11), ξndt = 0 ·
(∑

i V̇
N
ni

)
= 0, while (4.10) stays valid.

4.2.6 Linking of Design and Operation

As mentioned previously it is necessary to link design and operation. The constraints
∑
d∈D

δndt ≤
∑
i∈I

yni ∀ (n ∈ N, t ∈ T ) (4.14)

are introduced to ensure that every unit n is operated at a period of time t, only
if it exists. Additionally this constraints ensures that only one segment d of the
piecewise linear function to linearize the part load performance of a unit is utilized.

The aforementioned formulation leads to the following optimization problem:

Find V̇ N
ni , V̇ndt, ξndt, δndt, yni ∀ (n ∈ N, d ∈ D, i ∈ I, t ∈ T ),

which maximize (4.2)
subject to (4.3) - (4.6), (4.10) - (4.14)

V̇ N
ni , V̇ndt, ξndt ≥ 0 ∀ (n ∈ N, d ∈ D, i ∈ I, t ∈ T ),
δndt, yni ∈ {0, 1} ∀ (n ∈ N, d ∈ D, i ∈ I, t ∈ T ).
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To enable better reading compact notation

c
(0)
nd = PVF ·∆tt · (−pU) · u

0
nd

ηNn
, (4.15)

c
(1)
nd = PVF ·∆tt ·

(−pU) ·
(
du
dv

)
nd

1
ηNn

+ pS

 , (4.16)

c
(2)
ni = IC0

ni ·
(
1 + PVF · pMn

)
, (4.17)

c
(3)
ni =

(
dIC
dV̇ N

)
ni

·
(
1 + PVF · pMn

)
, (4.18)

defined for all (n ∈ N, d ∈ D, t ∈ T, i ∈ I) and

max
i∈I

{
V̇ N
ni

}
= V̇

N

nimax
∀ (n ∈ N) , (4.19)

min
i∈I

{
V̇ N
ni

}
= V̇

N

nimin
∀ (n ∈ N) , (4.20)

are introduced. Considering (4.15) - (4.18) in (4.2) yields the following compact
formulation of the objective function:

max
∑
n∈N

∑
t∈T

∑
d∈D

(
c

(0)
nd · ξndt + c

(1)
nd · V̇ndt

)
−
∑
n∈N

∑
i∈I

(
c

(2)
ni · yni + c

(3)
ni · V̇

N
ni

)
. (4.21)
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5 Model Analysis and Dantzig-Wolfe
Reformulation

In the following chapter the structure of the constraints of the model presented in
chapter 4 is analyzed. The analysis focuses on exploring symmetries in the model,
which may be exploited by Dantzig-Wolfe reformulation. Two structures suitable for
Dantzig-Wolfe decomposition are presented and the respective master and pricing
problems are formulated.

5.1 Model Analysis
As presented in the chapter 4 the model formulation yields the MILP

(OP) := max
∑
n∈N

∑
t∈T

∑
d∈D

(
c

(0)
nd · ξndt + c

(1)
nd · V̇ndt

)
−
∑
n∈N

∑
i∈I

(
c

(2)
ni · yni + c

(3)
ni · V̇

N
ni

)
(5.1)

s.t.

∑
n ∈ N

∑
d∈D

V̇ndt = Ėt ∀ t ∈ T (5.2)

yni · V̇
N

ni ≤ V̇ N
ni ≤ yni · V̇

N

ni ∀ (n ∈ N, i ∈ I) (5.3)∑
i∈I

yni ≤ 1 ∀ (n ∈ N) (5.4)∑
d∈D

δndt ≤
∑
i∈I

yni ∀ (n ∈ N, t ∈ T ) (5.5)

∑
i∈I

V̇ N
ni + (δndt − 1) · V̇

N

nimax
≤ ξndt ≤

∑
i∈I

V̇ N
ni ∀(n ∈ N, d ∈ D, t ∈ T ) (5.6)

ξndt · V̇ nd ≤ V̇ndt ≤ ξndt · V̇ nd ∀ (n ∈ N, d ∈ D, t ∈ T ) (5.7)

δndt · V̇
N

nimin
≤ ξndt ≤ δndt · V̇

N

nimax
∀ (n ∈ N, d ∈ D, t ∈ T ) (5.8)

δndt, yni ∈ {0, 1} ∀ (n ∈ N, d ∈ D, ... (5.9)
i ∈ I, t ∈ T ) ,

with notation (4.19, 4.20), which is termed original problem of the optimization of
synthesis, design and operation of a decentralized energy supply system and called
(OP).
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5 Model Analysis and Dantzig-Wolfe Reformulation

5.1.1 Decomposition by Components

Consider constraints (5.2) as coupling constraints and constraints (5.3) - (5.9) as one
part which may be decomposed for each component n, then problem (OP) has a
bordered block-diagonal structure. An interpretation for this decomposition is that
the design and operation of a component n is independent from other components.
All components are linked by the energy balance and, together, have to fulfil the
energy demand at every period of time. Hence, a subproblem for each component
may be specified and solved independently. Each subproblem is much smaller than
the overall problem and may be solved efficiently.
To describe the embedded structures, problem (OP) is expressed using vectors and
matrices for variables and constraints. All variables are expressed as vector

x = ((x1)T , (x2)T , (x3)T , ..., (x|N |)T )T (5.10)
with,
xn = (ξn11, ..., ξn|D||T |,

V̇n11, ..., V̇n|D||T |,

V̇ N
n1 , ..., V̇

N
n|I|,

δn11, ..., δn|D||T |,

yn1, ..., yn|I|)T ∀n ∈ N . (5.11)

Then (OP) is rewritten as

max cTx
s.t.
Ax = b∑

n∈N
Dnxn ≤ d

x ∈ X = X1 × · · · ×XN ∀n ∈ N ,

(5.12)

with matrices and vectors of appropriate dimensions and

Xn =
{
xn =

(
xQ

xZ

)
|xQ ∈ Qα

+, xZ ∈ Zβ+, ...

α = (2 · |D| · |T |+ |I|), β = (|D| · |T |+ |I|)
}
, ∀n ∈ N . (5.13)

The problem has a bordered block diagonal structure. The border Ax = b results
from the energy balances (5.2) which link all components at every period of time.
Constraints Dnxn ≤ d correspond to (5.3) - (5.9) which have a block diagonal
form, where one block corresponds to one energy conversion unit. These blocks are
identical in the case of identical units considered and then may be aggregated (see
section 3.2.4, p. 14).
Fig. 5.1 illustrates the identified structure of the problem. The figure displays the
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5.1 Model Analysis

Figure 5.1: Structure of the constraint matrix of problem OP. Constraints sorted to
illustrate the decomposition emphasizing components. Exemplary instance
with three boilers and three absorption chillers in the initial superstructure.
Three periods of time are considered. Generated with GCG. Note that block
sizes do not correspond to the notation in (5.12).

incidence matrix for all constraints and variables in (OP). Note that block sizes do
not correspond to the notation in (5.12). The horizontal border displayed at the top
of the constraint matrix represents the energy balances which link all components
for every period of time. For every component a subproblem may identified.

5.1.2 Decomposition by Design and Operation

The constraint matrix of problem (OP) has another embedded structure which may
be exploited by Dantzig-Wolfe reformulation. To examine this structure, vectors

x = ((x1)T , (x2)T , (x3)T , ..., (x|T |)T )T , (5.14)
with
xt = (ξ11t, ..., ξ|N ||D|t,

V̇11t, ..., V̇|N ||D|t,

δ11t, ..., δ|N ||D|t)T ∀ t ∈ T , (5.15)
and

y = V̇ N
11 , ..., V̇

N
|N ||I|,

y11, ..., y|N ||I|)T , (5.16)
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5 Model Analysis and Dantzig-Wolfe Reformulation

are introduced. Considering vectors x and y problem (OP) may be rewritten as

max cT1 x + cT2 y
s.t. By + 0x ≤ b
Fy +

∑
t∈T

Dtxt ≤ d

x ∈ X = X1 × · · · ×XT

y ∈ Y

(5.17)

with matrices and vectors of appropriate dimensions and 0 as a matrix with only
zeros. The sets X t and Y are defined by

X t =
{
xt =

(
xQ

xZ

)
|xQ ∈ Qγ

+, xZ ∈ Zθ+, ...

γ = 2 · |N | · |D|, θ = |N | · |D|
}
∀ t ∈ T , (5.18)

Y =
{
y ∈ Z2·|N |·|I|

+

}
. (5.19)

Rewriting problem (OP) in (5.17) shows that the constraint matrix of the problem
has an arrowhead structure, i.e. it has a horizontal and a vertical border.

Figure 5.2: Structure of the constraint matrix of problem (OP). Constraints sorted to
illustrate the decomposition emphasizing design and operation. Exemplary
instance with four boilers and four absorption chillers considered in the initial
superstructure. Four periods of time considered. Generated with GCG. Note
that block sizes do not correspond to notation in (5.17).
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The constraint matrices are displayed in Fig. 5.2, where block sizes do not correspond
to the notation in (5.17). The horizontal border is caused by coupling constraints
(5.3) and (5.4) which do not depend on the period of time. These constraints limit
the existence and capacity of every unit n. If capacity and existence are fixed the
units may be operated at every period of time independently. The matrix expression
Fy + Dtxt ≤ d corresponds to constraints (5.2) and (5.5) - (5.9). They do not
fully decompose at every period of time as they are linked by variables y, hence the
vertical border in Fig. 5.2. These are exactly the variables to describe the existence
of a unit and its capacity. However, this drawback may be eliminated by introducing
copy constraints (see section 3.2.5).

5.2 Dantzig-Wolfe Reformulation Emphasizing
Components

Problem (OP) is reformulated in the discretization version for mixed-integer linear
programs as, in the case of identical units, the subproblems may be aggregated.
The reformulation of a mixed-integer linear program in the discretization version is
presented by Vanderbeck and Savelsbergh (2006) and is applied to problem (OP)
in this thesis. In this approach continuous variables are convexified whereas integer
variables are discretized.
A finite set P n for every subproblem n in (5.3) - (5.9) is defined and called generating
set containing p generators. A generator is a solution of every subproblem n, where
an integer point is obtained for every integer variable and at least one or more
extreme points for every continuous variable. In contrast to discretization on a
pure integer set, performing discretization on mixed-integer sets requires to impose
integrality on a sum of master variables. In particular on master variables which
have the same integer values in the coefficient columns. A unifying framework
for both convexification, discretization of integer and mixed-integer problems is
presented by Vanderbeck and Savelsbergh (2006).
To keep notation tractable, the LP relaxation of the aggregated master problem is
presented. Reformulating (OP) by introducing

V̇ndt =
∑
p∈Pn

V̇pndtλ
n
p , (5.20)

V̇ N
ni =

∑
p∈Pn

V̇ N
pniλ

n
p , (5.21)

ξndt =
∑
p∈Pn

ξpndtλ
n
p , (5.22)

δndt =
∑
p∈Pn

δpndtλ
n
p , (5.23)

yni =
∑
p∈Pn

ypniλ
n
p , (5.24)
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defined for all n ∈ N, d ∈ D, t ∈ T, i ∈ I, the LP relaxation of the aggregated integer
master problem of the reformulation emphasizing components for an arbitrary set
P 1 takes the form

max
∑

p∈P 1

∑
t∈T

∑
d∈D

(
c

(0)
1d · ξp1dt + c

(1)
1d · V̇p1dt

)
−
∑
i∈I

(
c

(2)
1i · yp1i + c

(3)
1i · V̇

N
p1i

) · νp (5.25)

s.t.

∑
p∈P 1

∑
d∈D

V̇p1dt · νp = Ėt ∀ t ∈ T [πt] (5.26)

∑
p∈P 1

νp = |N | [π0] (5.27)

ν ≥ 0 (5.28)

with the aggregated master variable νp = ∑
n∈N λ

n
p . No extreme rays occur as all

variables are bounded. The corresponding pricing problem is defined by

max
∑
t∈T

∑
d∈D

(
c

(0)
1d · ξ1dt + (c(1)

1d − πt) · V̇1dt

)
−
∑
i∈I

(
c

(2)
1i · y1i + c

(3)
1i · V̇

N
1i

)
− π0 (5.29)

s.t.

y1i · V̇
N

1i ≤ V̇ N
1i ≤ y1i · V̇

N

1i ∀ (i ∈ I) (5.30)∑
i∈I

y1i ≤ 1 (5.31)∑
d∈D

δ1dt ≤
∑
i∈I

y1i ∀ (t ∈ T ) (5.32)

∑
i∈I

V̇ N
1i + (δ1dt − 1) · V̇

N

1imax
≤ ξ1dt ≤

∑
i∈I

V̇ N
1i ∀(d ∈ D, t ∈ T ) (5.33)

ξ1dt · V̇ 1d ≤ V̇1dt ≤ ξ1dt · V̇ 1d ∀ (d ∈ D, t ∈ T ) (5.34)

δ1dt · V̇
N

1imin
≤ ξ1dt ≤ δ1dt · V̇

N

1imax
∀ (d ∈ D, t ∈ T ) (5.35)

δ1dt, y1i ∈ {0, 1} ∀ (d ∈ D, i ∈ I, t ∈ T ) , (5.36)

Where πt, ∀ t ∈ T are the corresponding dual variables of constraints (5.26) and π0
is the dual variable of the aggregated convexity constraint (5.27). By constraints
(5.36) the above stated pricing problem is still a mixed-integer linear program, which
has to be solved at every iteration of the column generation algorithm. Depending
on the size of the problem considered this may cause longer solution times compared
to problems where the pricing problem can be solved with a tailored combinatorial
algorithm.
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5.3 Dantzig-Wolfe Reformulation Emphasizing
Design and Operation

For this reformulation the original variables are expressed as convex combination of
p ∈ P extreme points of conv(X)

V̇ndt =
∑
p∈P

V̇pndtλp , (5.37)

V̇ N
ni =

∑
p∈P

V̇ N
pniλp , (5.38)

ξndt =
∑
p∈P

ξpndtλp , (5.39)

δndt =
∑
p∈P

δpndtλp , (5.40)

yni =
∑
p∈P

ypniλp , (5.41)
∑
p∈P

λp = 1 , (5.42)

λp ≥ 0, ∀ p ∈ P , (5.43)

defined for all n ∈ N, d ∈ D, t ∈ T, i ∈ I. And the set X defined as

X =
{
V̇ndt, V̇

N
ni , ξndt ∈ R+, δndt, yni ∈ Z+ | (5.2), (5.5) − (5.9)

}
, (5.44)

defined for all (n ∈ N, i ∈ I, d ∈ D, t ∈ T ). Introducing (5.37) - (5.43) in (OP) a
extended formulation

max
∑
p∈P

∑
n∈N

∑
t∈T

∑
d∈D

(
c

(0)
nd · ξpndt + c

(1)
nd · V̇pndt

)
−
∑
i∈I

(
c

(2)
ni · ypni + c

(3)
ni · V̇

N
pni

) · λp

(5.45)
s.t.
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∑
p∈P

∑
i∈I

ypni · λp ≤ 1 ∀n ∈ N [π(1)
n ] (5.46)

∑
p∈P

(
ypni · V̇

N

ni − V̇ N
pni

)
· λp ≤ 0 ∀ (n ∈ N, i ∈ I) [π(2)

ni ] (5.47)

∑
p∈P

(
− ypni · V̇

N

ni + V̇ N
pni

)
· λp ≤ 0 ∀ (n ∈ N, i ∈ I) [π(3)

ni ] (5.48)

∑
p∈P

λp = 1 [π0] (5.49)

λp ≥ 0 ∀p ∈ P (5.50)∑
p∈P

V̇pndtλp = V̇ndt , (5.51)

∑
p∈P

V̇ N
pniλp = V̇ N

ni , (5.52)

∑
p∈P

ξpndtλp = ξndt , (5.53)

∑
p∈P

δpndtλp = δndt , (5.54)

∑
p∈P

ypniλp = yni , (5.55)

yni, δndt ∈ {0, 1} (5.56)

is obtained, where π(1)
n , π

(2)
ni , π

(3)
ni and π0 are the dual variables of their respective

constraints defined for all n ∈ N, i ∈ I. The corresponding pricing problem is
defined by

max
∑
n∈N

∑
t∈T

∑
d∈D

(
c

(0)
nd · ξndt + c

(1)
nd · V̇ndt

)
−
∑
n∈N

∑
i∈I

(
c

(2)
ni · yni + c

(3)
ni · V̇

N
ni

)
− π0 (5.57)

c
(2)
ni = c

(2)
ni − π(1)

n · (1) − π
(2)
ni · (V̇

N

ni) − π
(3)
ni · (−V̇

N

ni) (5.58)

c
(3)
ni = c

(3)
ni − π

(2)
ni · (−1) − π

(3)
ni · (1) (5.59)

s.t.

∑
n ∈ N

∑
d∈D

V̇ndt = Ėt ∀ t ∈ T (5.60)∑
d∈D

δndt ≤
∑
i∈I

yni ∀ (n ∈ N, t ∈ T ) (5.61)

∑
i∈I

V̇ N
ni + (δndt − 1) · V̇

N

nimax
≤ ξndt ≤

∑
i∈I

V̇ N
ni ∀(n ∈ N, d ∈ D, t ∈ T ) (5.62)

ξndt · V̇ nd ≤ V̇ndt ≤ ξndt · V̇ nd ∀ (n ∈ N, d ∈ D, t ∈ T ) (5.63)

δndt · V̇
N

nimin
≤ ξndt ≤ δndt · V̇

N

nimax
∀ (n ∈ N, d ∈ D, t ∈ T ) (5.64)

δndt, yni ∈ {0, 1} ∀ (n ∈ N, d ∈ D, ... (5.65)
i ∈ I, t ∈ T ) .
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Note that variables yni and V̇ N
ni may be considered as linking variables, as they do

not depend on t. An interesting fact is that problem (5.57) - (5.65) is a mixed-integer
linear program. This may be a disadvantage as it has to be solved at every iteration
of the column generation algorithm.
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6 Numerical Study

A numerical study is conducted to evaluate whether the proposed reformulations
are beneficial in solving the described optimization problem. The evaluation of
the results aims to elucidate if the accuracy of the model and/or the size of the
investigated energy supply system may be increased in terms of the number of units
in the superstructure and/or the number of periods of time considered. To achieve
this a set of instances is defined with varying degrees of complexity, in terms of
the number of units in the superstructure and/or the number of periods of time
considered.
The instances are solved by the branch-and-cut solvers SCIP 3.1.0.1 (Achterberg,
2009) and CPLEX 12.5.0 (IBM, 2011) and by the branch-and-price solver GCG 2.0.0
(Gamrath and Lübbecke, 2010). For each instance a model is implemented using
the GAMS modeling language (Rosenthal, 2014). These models are exported as
CPLEX LP1 files and each problem is solved with the different solvers. As GCG
undertakes the Dantzig-Wolfe reformulation automatically, the problem file and a
corresponding text file containing the decomposition are passed to GCG.
The numerical experiments are conducted on a DELL™ Optiplex 990 desktop PC
with an Intel™ i7-2600 CPU with 3400 Mhz and 16 GB memory. The operating
system is the Linux based openSUSE 13.1 64-bit. All calculations are obtained with
the solver settings at default values and by using only one thread of the multicore
CPU. The aggregation of subproblems in MILPs as original problems is still under
development in GCG. First results presented in this chapter utilize a prerelease version
of GCG if subproblems are aggregated.
The following chapter presents firstly the definition and characterization of the
considered instances; followed by the results of solving the LP relaxation in the
rootnode of all instances, in order to evaluate the strength of the initial problem
formulation; and lastly results of the optimal solution of the instances.

6.1 Instance Definition

To conduct a numerical study a fictional energy supply system is assumed. The
superstructure of the system is depicted in Fig. 6.1 and contains n ∈ N = B ∪ A
energy conversion units. To leave solution times at a reasonable level only two types

1CPLEX LP format encodes LPs and MILPs. It was developed by CPLEX Optimization Inc.,
see description for example in http://plato.asu.edu/cplex_lp.pdf
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Figure 6.1: Scheme of the superstructure of the considered fictional energy supply system.
A set of n ∈ B identical boilers supply heat to the absorption chillers (ACs)
and to fulfil the heating demand Ėheatt . A set of n ∈ A ACs converts heat into
cooling and fulfils the cooling demand Ėcoolt .

of energy conversion units are considered: n ∈ B boilers to provide heat and n ∈ A
absorption chillers (ACs) to provide cooling. The boilers convert natural gas into
heat to fulfil the heating demand and to power the ACs. ACs convert heat into
cooling and fulfil the cooling demand. The part load behaviour of each component
is taken into account by a piecewise linear function. The general model parameters
and the parameters of the part load behaviour are taken from Voll (2013) and
listed in the appendix on p. 65. Some characteristic data of the considered energy
conversion units is presented in Tab. 6.1.
The heating and cooling demands are calculated from hourly data provided by
the chair of Technical Thermodynamics. The data is derived from real world
measurements in an existing energy supply system. The data set contains a spatially
aggregated heating and cooling demand for every hour of a representative year. The
energy demands are discretized by the number of periods of time considered, i.e.
if t periods are considered demands will be calculated from the hourly data with
a constant value during each period. The length of each period is calculated in a
way that the total amount of energy required remains constant if the discretized
and the hourly demands are summed up over the regarded year. The hourly data is
presented in Fig. B.1 and Fig. B.2, p. 68.
For the specific instances the general model formulation in chapter 4, p. 23 needs to
be adapted. The generic energy balance (4.3) is removed from the problem and an
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6.1 Instance Definition

energy balance (6.1) for heating and (6.2) for cooling is adopted instead.
∑
n∈B

∑
d∈D

(
V̇ndt

)
−

∑
n∈A

∑
d∈D

(
c

(0)
nd · ξndt + c

(1)
nd · V̇ndt

)
= Ėheat

t ∀ t ∈ T (6.1)

−
∑
n∈A

∑
d∈D

(
V̇ndt

)
= Ėcool

t ∀ t ∈ T (6.2)

Also the objective function needs a modification as only boilers consume primary
energy. The objective function (4.21) is changed to:

max
∑
n∈B

∑
t∈T

∑
d∈D

(
c

(0)
nd · ξndt + c

(1)
nd · V̇ndt

)
−
∑
n∈N

∑
i∈I

(
c

(2)
ni · yni + c

(3)
ni · V̇

N
ni

)
. (6.3)

The investigations are undertaken for three, four and five identical boilers and
absorption chillers each and t = {1, ..., 7} periods of time. The number of equations
and variables of the instances are presented in Tab. 6.2 - 6.4. All parameters may
be found in the appendix (see section B.1, p. 67). The following naming convention
is introduced for all instances considered. All instances are named n<y>t<x>, where
<y> refers to the total number of energy conversion units and <x> refers to the
number of periods of time considered in the problem.

Table 6.1: Characteristic data of components boiler and absorption chiller (AC) (Voll,
2013), ICn - Investment cost of component n, ηNn - Efficiency at nominal power
of component n.

Technology Parameter
Thermal power range Investment cost Maintenance cost ηNn

in MW in e×103 % of ICn -
Boiler 0.10 - 14.0 34 - 380 15 0.90
AC 0.05 - 6.50 75 - 520 1 0.67

Table 6.2: Number of constraints, binary variables and continuous variables and the total
number of variables of instances n6t<x>, x ∈ {1, ..., 7}.

Instance Constraints Binary Continuous Total

n6t1 110 24 36 60
n6t2 190 36 60 96
n6t3 270 48 84 132
n6t4 350 60 108 168
n6t5 430 72 132 204
n6t6 510 84 156 240
n6t7 590 96 180 276
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Table 6.3: Number of constraints, binary variables and continuous variables and the total
number of variables of instances n8t<x>, x ∈ {1, ..., 7}.

Instance Constraints Binary Continuous Total

n8t1 146 32 48 80
n8t2 252 48 80 128
n8t3 358 64 112 176
n8t4 464 80 144 224
n8t5 570 96 176 272
n8t6 676 112 208 320
n8t7 782 128 240 368

Table 6.4: Number of constraints, binary variables and continuous variables and the total
number of variables of instances n10t<x>, x ∈ {1, ..., 7}.

Instance Constraints Binary Continuous Total

n10t1 182 40 60 100
n10t2 314 60 100 160
n10t3 446 80 140 220
n10t4 578 100 180 280
n10t5 710 120 220 340
n10t6 842 140 260 400
n10t7 974 160 300 460

6.2 Results and Discussion

In the following two sections the results of the conducted numerical study are
presented and discussed. These results allow the evaluation of the quality of the
reformulations and optimal solution times. To solve the defined instances the
following solvers are considered and abbreviations used are introduced:

• The branch-and-cut solver CPLEX (IBM, 2011).

• The branch-and-cut solver SCIP (Achterberg, 2009).

• The branch-and-price solver GCG with the reformulation emphasizing compon-
ents (GCG n) (see section 5.2, p. 37).

• The branch-and-price solver GCG with the reformulation emphasizing com-
ponents and aggregation of identical pricing problems (GCG n AGG) (see sec-
tion 5.2, p. 37).

• The branch-and-price solver GCG with the reformulation emphasizing design
and operation (GCG t) (see section 5.3, p. 39).
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6.2.1 Evaluation of Formulation Strength

To evaluate the strength of the model formulation, the results of the solution of the
instances in the rootnode are compared for the different solvers utilized. As the
dual bound of GCG n and GCG n AGG are equal in the rootnode only the results of
GCG n are presented. To measure the quality of a formulation

GAP = z∗ − zDBroot
zDBroot

(6.4)

is defined, with z∗ as the optimal objective value of the instance and zDBroot the
value of the dual bound of the rootnode solution, i.e. the solution value of the LP
relaxation in the rootnode. The difference of both, scaled by the dual bound in the
rootnode, gives a measure to quantify the relative distance to the optimal value. If
this distance is low for one solver compared to another solver on the same instance,
then it is likely that this solver converges faster to the optimal solution.
In Fig. 6.2 - 6.4 the results for the measure GAP for the rootnode solutions of all
instances utilizing the different solvers are presented.
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Figure 6.2: Results for the measure GAP of the rootnode solution as defined in (6.4) for

instances n6tx, x ∈ {1, ..., 7}. Results for different solvers and decompositions.
‘GCG n’ - Solver GCG with decomposition by emphasizing components, ‘GCG
t’ - Solver GCG with decomposition by emphasizing design and operation.

The minimum and maximum value, the value of the median and the 0.75- and
0.25-quantile values for the results of the different solvers on the set of instances are
calculated and presented in Tab. 6.5.

47



6 Numerical Study

The results show that in most cases the lowest value for GAP is obtained by utilizing
GCG and the decomposition by components (GCG n). The value of the median of
solver GCG n, 0.77 %, calculated from the values for all instances is the lowest of
all solvers. Thus the reformulation is successful and a tighter formulation of the
problem is obtained.

Table 6.5: Maximum, 0.75-quantile, median, 0.25-quantile and minimum values of GAP
for all solvers and instances.

Quantile CPLEX SCIP GCG n GCG t
in % in % in % in %

Maximum 3.91 4.51 1.8 7.51
0.75-Quantile 2.72 3.96 1.2 3.61
Median 1.95 3.08 0.77 3.28
0.25-Quantile 0.63 2.35 0.62 2.85
Minimum 0.00 0.00 0.00 0.44

The second best values for GAP are obtained by the branch-and-cut solver CPLEX.
For some instances values for GAP are obtained which are in the same range as the
values provided by GCG n or even better. The values obtained for the solver SCIP
are higher in comparison to GCG n and CPLEX with a median of 3.08 %.
By solving the rootnode of all instances by utilizing the solver GCG with the decom-
position by emphasizing design and operation (GCG t) the highest values for GAP
in comparison to the other solvers are obtained. This results in a value of 3.28 % of
the median, which is slightly higher than the one obtained with the solver SCIP.
As a result for this set of instances the reformulation by emphasizing design and
operation has no improving effect on the dual bound obtained by solving the LP
relaxation in the rootnode. There is the possibility that this may be different
if instances with an increasing number of periods of time are considered, as the
decomposition GCG t decomposes partly for every period of time.
An interesting result is that the difference between the values of GAP calculated
by utilizing solvers GCG n and CPLEX is higher for instances n10tx compared to
differences of instances n6tx (compare in Fig. 6.2 and 6.4). This is a plausible
result as symmetry increases when changing from instances n6tx to n10tx which is
exploited by GCG n.
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Figure 6.3: Results for the measure GAP of the rootnode solution as defined in (6.4) for
instances n8tx, x ∈ {1, ..., 7}. Results for different solvers and decompositions.
‘GCG n’ - Solver GCG with decomposition by emphasizing components, ‘GCG
t’ - Solver GCG with decomposition by emphasizing design and operation.

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

n10t1

n10t2

n10t3

n10t4

n10t5

n10t6

n10t7

GAP in -

In
st

an
ce

s

GCG t GCG n SCIP CPLEX
Figure 6.4: Results for the measure GAP of the rootnode solution as defined in (6.4) for

instances n10tx, x ∈ {1, ..., 7}. Results for different solvers and decompositions.
‘GCG n’ - Solver GCG with decomposition by emphasizing components, ‘GCG
t’ - Solver GCG with decomposition by emphasizing design and operation.
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6.2.2 Performance of Solvers

6.2.2.1 Geometric Mean of Solution Times

To compare the performance of the different solution alternatives all solvers are
utilized to solve the instances defined in section 6.1 to optimality.
Let s ∈ S be the set of solvers available for optimization and m ∈ M the set of
instances to be solved to optimality. t∗ms is defined as the computing time required
by solver s to solve instance m to optimality. Let

t∗s =
 ∏
m∈M

t∗ms

 1
|M|

∀s ∈ S (6.5)

be the geometric mean of solution times for each solver s ∈ S calculated from
the product of solution times t∗ms achieved on instances m ∈ M . The different
solvers are compared with respect to their geometric mean t∗s. The results are
presented in Fig. 6.5 for every solver. The number of solved instances are dis-
played and the relative speed of a solver compared to the speed of solver SCIP
are reported. Unsolved or failed instances are accounted for with the time limit of 3 h.
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Figure 6.5: Comparison of the geometric mean t∗ of all solution times for the different
solvers and decompositions. Unsolved or failed instances are accounted for
with the time limit of 3 h. ‘GCG n’ - Solver GCG with decomposition by
emphasizing components, ‘GCG n AGG’ - Solver GCG with decomposition by
emphasizing components and aggregation of the pricing problems, ‘GCG t’ -
Solver GCG with decomposition by emphasizing design and operation.

50



6.2 Results and Discussion

The only solver able to solve all problems to optimality is the solver CPLEX. Fur-
thermore it is relatively the fastest solver of all alternatives with its geometric mean
ranging at only 0.07 times the value of the solver SCIP.
GCG with different decompositions and aggregation applied fails to solve all instances.
The minimum of 5 solved instances of the total 21 instances is obtained by utilizing
GCG t. Remarkable is the increase in solved instances and reduction of computing
time by introducing aggregation of pricing problems. The geometric mean of the
solutions times of GCG n AGG ranges at 0.60 times the value of SCIP, where GCG n
without aggregation ranges at 3.89 times. This is in particular interesting as GCG n
AGG fails to solve 4 instances less than SCIP and each fail triggers a penalty of 3 h.
In total the results show that algorithmically and efficiently the commercial solver
CPLEX is superior to the other alternatives. It solves all instances of the test set
and its geometric mean is one magnitude lower than the next competitor. However,
decomposition in particular by emphasizing components may improve solution times
if identical subproblems are available. GCG n AGG with aggregated pricing problems
is able to compete and underbid the non-commercial branch-and-cut solver SCIP.

6.2.2.2 Performance Profile

A possibility to compare the performance of different optimization solvers on solving
a set of m ∈ M instances is to calculate a performance profile (Dolan and Moré,
2002). A performance profile is defined as the ‘distribution function of a performance
metric (Dolan and Moré, 2002)’.
Let t∗ms be the computing time required to solve instance m by solver s. The
performance of solver s on instance m is compared to the best solver in instance m
by defining

rms = t∗ms
mins∈S{t∗ms}

(6.6)

as the performance ratio. A limit rM is introduced so that rM ≥ rms
∀ (s ∈ S,m ∈M), and rM = rms if a solver s fails to solve the instance m. Dolan
and Moré (2002) show that rM does not have an effect on the performance evaluation.
To assess the overall performance of a solver s

Ps(τ) = 1
|M |
· size{m ∈M | log2(rms) ≤ τ}, ∀ s ∈ S (6.7)

is defined, where P (τ) is the probability that the performance ratio of solver s is
within a constant parameter τ ∈ R of the best possible ratio, scaled by log2. For
each solver the performance profile Ps : R 7→ [0, 1] is a piecewise constant function.
Performance profiles allow an unbiased comparison of different solvers on a test
set. The best solvers are in the upper left corner of the graph (e.g. Fig. 6.6). The
performance profile calculated for all solver alternatives considered in this thesis is
presented in Fig. 6.6.
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Figure 6.6: Probability P (τ) scaled by log()2 for every solver that the performance ratio

(6.6) is within a factor τ ∈ R of the best possible ratio. log2(rM ) = 18.04.
‘GCG n’ - Solver GCG with decomposition by emphasizing components, ‘GCG
n AGG’ - Solver GCG with decomposition by emphasizing components and
aggregation of the pricing problems, ‘GCG t’ - Solver GCG with decomposition
by emphasizing design and operation.

The profile is generated setting log2(rM) = 18.04 for all instances which a solver
fails to solve. Analyzing these results, as in the case of the geometric mean of
solution times, it becomes clear that CPLEX outperforms all other alternatives as
it is always the fastest alternative. The solver GCG n AGG slightly outperforms the
solver SCIP for τ lower then 8. For τ greater then 8 SCIP is faster on more instances.
For all values of τ GCG n and GCG t are inferior to the prior mentioned alternatives.

This section is concluded by a comment on the inferior performance of GCG t in
comparison to the other solver alternatives. The results provide no evidence, that
the reformulation is beneficial. This may also be caused by the chosen reformulation
technique, i.e. Dantzig-Wolfe reformulation. From the analysis of the structure (see
section 5.1.2) a decomposition utilizing the method proposed by Benders (1962)
may be more suitable. If the variables describing existence and capacity are fixed
the problem decomposes into t subproblems for each period of time which then may
be solved independently.
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The initially formulated objective of this thesis is to evaluate, whether the accuracy
or the size of the model of a decentralized energy supply system may be increased
in terms of number of units or number of periods of time considered, if the struc-
ture of a resulting mixed-integer linear program is exploited by a solver utilizing
decomposition.
To evaluate possible decomposition approaches a literature review is performed to
identify available decomposition approaches in energy engineering and in particular
in the field of optimization of energy supply systems.
An outline of the identified decomposition methods based on Dantzig-Wolfe re-
formulation (Dantzig and Wolfe, 1961), Lagrangrean relaxation (Guignard, 2003)
and Benders’ decomposition (Benders, 1962) is presented, with an emphasis on
the detailed description of Dantzig-Wolfe reformulation and its application in a
branch-and-bound framework termed branch-and-price.
The formulation of the task to optimize the synthesis, design and operation of a
generic decentralized energy supply system as a mixed-integer linear program is
presented as formulated by Yokoyama et al. (2002) and Voll (2013). The model is
analyzed to explore symmetries in the problem which are exploitable by decomposi-
tion.
The analysis identifies two embedded structures suitable for Dantzig-Wolfe decom-
position. The decompositions and the respective reformulations of the presented
mixed-integer linear program are introduced.
In the first identified structure the decomposition by components is emphasized.
An interpretation is that each component may be sized and operated independently
of the other components. The components are linked by the energy balances for
every period of time, where all components together need to fulfil the respective
energy demand. If the energy balances are considered in an overall master problem,
a subproblem is obtained for every component considered. In case of Dantzig-Wolfe
decomposition and identical components considered, theses subproblems may be
aggregated and only one of these aggregated subproblems needs to be solved at
every iteration of the solution process.
The second identified structure emphasizes the design and operation of all com-
ponents. The selection of a unit and its capacity is not dependent on the periods
of time. Hence, the constraints limiting the capacity and the existence link the
periods of time. The constraint matrix does not fully decompose into an independent
subproblem for every period of time, as the periods are linked by the mentioned
variables for existence and capacity.
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A numerical study is performed to evaluate whether the proposed reformulations
are beneficial when solving the described optimization problems. A set of instances
is defined to optimize a fictional energy supply system with different degrees of
complexity in terms of the number of units in the superstructure and the number of
periods of time considered. As solvers the branch-and-cut solvers SCIP (Achterberg,
2009), CPLEX (IBM, 2011) and the branch-and-price solver GCG (Gamrath and Lüb-
becke, 2010) with the specified decompositions are utilized.
To evaluate the quality of the different formulations the LP relaxation in the root-
node of all instances is solved and the obtained dual bound is compared to the
optimal objective function value of each instance. This is a measure to indicate
how good the formulation of the problem is. The results indicate that the solver
GCG with the decomposition by components achieves a tighter formulation of the
problem and the lowest values for the quality measure comparing the dual bound
to the optimal objective function value with a median of 0.77 % in comparison to
CPLEX (median: 1.95 %), SCIP (median: 3.08 %) and GCG with the decomposition
emphasizing design and operation (median: 3.28 %). From the results no evidence
is found that for the considered set of instances the reformulation by emphasizing
design and operation improves the dual bounds in the rootnode. However, the iden-
tified embedded structure is a major source for symmetry in the problem. Possibly
other decomposition methods, for example Benders’ decomposition, may perform
better.
To evaluate the performance in solving problems to optimality the solvers are utilized
to optimize all instances of the defined test set. From the results the geometric mean
of the computing time required to solve all instances to optimality is calculated for
each solver. The results show that CPLEX is superior to the other alternatives as it
is the only solver which is able to solve all 21 instances of the test set to optimality
and the geometric mean of the solution times is one magnitude lower than the
next competitor. GCG with the decomposition by components and an aggregation of
subproblems is able to compete and underbid the non-commercial solver SCIP, with
its geometric mean of the solution times ranging at only 0.6 times of the result for
solver SCIP.
The evaluation of the performance of the proposed solvers by performance profiles
confirms the previous results. CPLEX is found to be the fastest solver on every
instance. The results for GCG with the decomposition emphasizing components and
aggregated subproblems and for SCIP show that both are able to solve about 50 %
of the instances in less then 64 times of the required solution time of CPLEX.

Future perspective:

An interesting perspective is to include additionally different conversion unit types,
e.g. CHP-units, wind turbines and turbo-chillers, and verify if an aggregation of
subproblems still is possible and beneficial. In future further improvements of GCG
for a trouble free optimization of mixed-integer linear programs with aggregation
are to be expected and hence the solution performance can be estimated to further
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increase. An alternative would be to implement a branch-and-price code from
scratch specifically adapted to energy engineering problems.
However, the results of this thesis also show the superior performance of commercial
branch-and-cut solvers such as CPLEX which may be tuned additionally to exploit
the inherent symmetry of the problems described in this thesis.
An interesting field are models where the capacity of a component is considered as
discrete values. Reformulations proposed in this thesis are applicable in the same
way to these models. In particular if the discreteness is adopted to circumvent
nonlinearities, the reformulations may improve overall solution performance.
A last comment focuses on the evaluation of the pricing problems. As these need to
be solved at every iteration of the solution process a tailored combinatorial algorithm
to solve these problems is a great advantage. Future studies could focus on this
specific detail.
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A Linear Equipment Models

A.1 Investment Cost Degression

Table A.1: Nodes of piecewise linear function to describe investment cost degression as
presented by Voll (2013). AC: Absorption Chiller.

Technology Node 1 Node 2 Node 3
n V̇

N

n1 ICn(V̇ N

n1) V̇
N

n1 = V̇
N

n2 ICn(V̇
N

n1) V̇
N

n2 ICn(V̇
N

n2)
in kW in e in kW in e in kW in e

Boiler 100 34343 700 49245 14000 379580
AC 50 68493 750 154012 6500 522651

A.2 Part Load Performance

Table A.2: Nodes of piecewise linear function to describe part load performance of the
components as presented by Voll (2013). AC - Absorption Chiller, v - scaled
output power, u - scaled input power

Technology Node 1 Node 2 Node 3
n vn1 un1(vn1) vn1 = vn2 un2(vn2) vn2 un2(vn2)

in - in - in - in - in - in -
Boiler 0.2 0.2184 0.6 0.6094 1.0 1.0004
AC 0.2 0.2722 0.6 0.4833 1.0 0.9833
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A Linear Equipment Models

Table A.3: General parameter of the components as presented by Voll (2013). ηNn is the
efficiency or coefficient of performance of component n operating at its full
capacity, pMn are the maintenance costs for every unit n given as a fraction of
its investment costs.

Technology Parameter
n ηNn in - pMn in -
Boiler 0.9 0.15
AC 0.67 0.01
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B Data of Instances

B.1 Parameter of Instances

Table B.1: General parameter equal for all instances.

Symbol Description Value Unit

ϕ Discount rate of investment 8 %
tCF Time horizon of investment 10 years
pU Price for natural gas 0.06 eper kWh

Table B.2: Characteristics of energy demand data set.

Quantile Heating demand in kW Cooling demand in kW

Maximum 9196.9 -1000.7
0.95-Quantile 5447.1 -1343.9
0.75-Quantile 3799.8 -1670.2
Median 3012.8 -2726.0
0.25-Quantile 2154.2 -3836.0
0.05-Quantile 1522.0 -7087.7
Minimum 1500 -13910.3
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B Data of Instances
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Figure B.1: Sorted heating demand in kW of energy supply system for every hour of a
year.
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Figure B.2: Sorted cooling demand in kW of energy supply system for every hour of a
year.
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B.1 Parameter of Instances

Table B.3: Time dependent input data for all instances.

Instances Period Parameter

n<x>t1 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 1

n<x>t2 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 0.0001
2 1500 -1001 2.0785

n<x>t3 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 0.0001
2 5348 -7455 0.1045
3 1500 -1001 1.8111

n<x>t4 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 0.0001
2 6631 -9607 0.0133
3 4066 -5304 0.3262
4 1500 -1001 1.4988

n<x>t5 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 0.0001
2 7273 -10683 0.0031
3 5348 -7455 0.0797
4 3424 -4228 0.4617
5 1500 -1001 1.3810

n<x>t6 t Eheat
t in kW Ecool

t in kW Fraction in -
1 9197 -13910 0.0001
2 7658 -11328 0.0012
3 6118 -8746 0.0266
4 4578 -6165 0.1578
5 3039 -3583 0.6035
6 1500 -1001 1.2600

n<x>t7 t Eheat
t in kW Ecool

t in kW Fraction in -
1 4272 -2173 0.3333
2 3308 -2553 0.2500
3 2444 -3384 0.1667
4 2333 -4014 0.0833
5 2289 -4903 0.1667
6 9463 -1372 0.0001
7 1473 -13976 0.0001
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B.2 Numerical Results of Instances

B.2 Numerical Results of Instances

B.2.1 Numerical Results of the Evaluation of Formulation
Strength

Table B.4: Results of the solution of the LP relaxation in the rootnode for instances n6tx,
x ∈ {1, ..., 7}.

Instance Values
z* in e

n6t1 Solver t* root in s Dual Bound Root GAP
1,11E+008 CPLEX 0,01 1,11E+08 0,00%

SCIP 0 1,11E+008 0,00%
GCG n 0 1,11E+008 0,00%
GCG t 0 1,10E+008 0,44%

n6t2 Solver t* root in s Dual Bound Root GAP
2,50E+007 CPLEX 0,01 2,48E+007 0,63%

SCIP 0,2 2,44E+007 2,35%
GCG n 0,1 2,48E+007 0,62%
GCG t 4 2,42E+007 3,31%

n6t3 Solver t* root in s Dual Bound Root GAP
2,06E+007 CPLEX 0,03 2,02E+007 2,35%

SCIP 0,2 2,02E+007 2,36%
GCG n 1,3 2,05E+007 0,73%
GCG t 6,1 2,03E+007 1,78%

n6t4 Solver t* root in s Dual Bound Root GAP
3,36E+007 CPLEX 0,04 3,31E+007 1,67%

SCIP 0,3 3,26E+007 3,18%
GCG n 0,3 3,31E+007 1,72%
GCG t 11 3,24E+007 3,90%

n6t5 Solver t* root in s Dual Bound Root GAP
3,81E+007 CPLEX 0,05 3,76E+007 1,46%

SCIP 0,3 3,72E+007 2,61%
GCG n 0,4 3,76E+007 1,41%
GCG t 13,5 3,69E+007 3,22%

n6t6 Solver t* root in s Dual Bound Root GAP
4,37E+007 CPLEX 0,08 4,29E+007 1,90%

SCIP 0,5 4,25E+007 2,90%
GCG n 0,2 4,29E+007 1,80%
GCG t 10,6 4,23E+007 3,44%

n6t7 Solver t* root in s Dual Bound Root GAP
3,00E+007 CPLEX 0,5 2,93E+007 2,54%

SCIP 0,6 2,93E+007 2,41%
GCG n 0,8 2,98E+007 0,88%
GCG t 19,6 2,91E+007 3,28%
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B Data of Instances

Table B.5: Results of the solution of the LP relaxation in the rootnode for instances n8tx,
x ∈ {1, ..., 7}.

Instance Values
z* in e

n8t1 Solver t* root in s Dual Bound Root GAP
1,05E+008 CPLEX 0,01 1,05E+08 0,05%

SCIP 0,1 1,04E+008 0,70%
GCG n 0,1 1,05E+008 0,06%
GCG t 3,7 1,04E+008 0,84%

n8t2 Solver t* root in s Dual Bound Root GAP
2,50E+007 CPLEX 0,04 2,49E+007 0,38%

SCIP 0,2 2,39E+007 4,41%
GCG n 0,1 2,48E+007 0,62%
GCG t 6,3 2,41E+007 3,61%

n8t3 Solver t* root in s Dual Bound Root GAP
2,80E+007 CPLEX 0,06 2,79E+007 0,41%

SCIP 0,3 2,70E+007 3,99%
GCG n 0,1 2,79E+007 0,62%
GCG t 11,9 2,72E+007 3,28%

n8t4 Solver t* root in s Dual Bound Root GAP
3,34E+007 CPLEX 0,07 3,27E+007 1,95%

SCIP 0,3 3,21E+007 3,96%
GCG n 1,1 3,31E+007 0,99%
GCG t 11,8 3,10E+007 7,51%

n8t5 Solver t* root in s Dual Bound Root GAP
3,80E+007 CPLEX 0,09 3,76E+007 1,18%

SCIP 0,7 3,72E+007 2,28%
GCG n 0,3 3,79E+007 0,35%
GCG t 24,8 3,66E+007 3,73%

n8t6 Solver t* root in s Dual Bound Root GAP
4,35E+007 CPLEX 0,1 4,23E+007 2,74%

SCIP 0,8 4,25E+007 2,31%
GCG n 0,7 4,30E+007 1,20%
GCG t 31,6 4,22E+007 2,97%

n8t7 Solver t* root in s Dual Bound Root GAP
3,00E+007 CPLEX 0,19 2,92E+007 2,72%

SCIP 1,1 2,90E+007 3,59%
GCG n 0,4 2,96E+007 1,41%
GCG t 38,4 2,89E+007 3,69%
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Table B.6: Results of the solution of the LP relaxation in the rootnode for instances n10tx,
x ∈ {1, ..., 7}.

Instance Values
z* in e

n10t1 Solver t* root in s Dual Bound Root GAP
1,05E+008 CPLEX 0,04 1,05E+08 0,06%

SCIP 0,1 1,04E+008 0,89%
GCG n 0,1 1,05E+008 0,06%
GCG t 3,7 1,04E+008 0,84%

n10t2 Solver t* root in s Dual Bound Root GAP
2,50E+007 CPLEX 0,05 2,44E+007 2,63%

SCIP 0,1 2,39E+007 4,51%
GCG n 0,1 2,48E+007 0,62%
GCG t 16,4 2,41E+007 3,61%

n10t3 Solver t* root in s Dual Bound Root GAP
2,80E+007 CPLEX 2,86 2,73E+007 2,85%

SCIP 0,5 2,70E+007 3,99%
GCG n 0,15 2,79E+007 0,62%
GCG t 33 2,72E+007 3,28%

n10t4 Solver t* root in s Dual Bound Root GAP
3,34E+007 CPLEX 0,11 3,24E+007 3,01%

SCIP 0,3 3,21E+007 3,96%
GCG n 0,1 3,31E+007 0,99%
GCG t 15,2 3,23E+007 3,36%

n10t5 Solver t* root in s Dual Bound Root GAP
3,79E+007 CPLEX 0,13 3,72E+007 2,01%

SCIP 0,2 3,67E+007 3,45%
GCG n 0,5 3,76E+007 0,85%
GCG t 101 3,69E+007 2,85%

n10t6 Solver t* root in s Dual Bound Root GAP
4,33E+007 CPLEX 0,15 4,20E+007 3,02%

SCIP 0,3 4,20E+007 3,08%
GCG n 0,6 4,30E+007 0,77%
GCG t 100 4,22E+007 2,57%

n10t7 Solver t* root in s Dual Bound Root GAP
2,99E+007 CPLEX 0,33 2,88E+007 3,91%

SCIP 0,9 2,88E+007 3,91%
GCG n 0,8 2,96E+007 1,20%
GCG t 82,4 2,89E+007 3,54%
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B.2.2 Numerical Results of the Performance of Solvers

Table B.7: Numerical results for computing times required by solvers to solve instances to
optimality. Entries marked with an asterisk are set to value of 3 h as solvers
failed to solve this instance.

Instance CPLEX SCIP GCG n GCG n AGG GCG t
t* in s t* in s t* in s t* in s t* in s

n6t1 0.01 0.03 0.25 0.06 3.41
n6t2 0.02 0.25 2.18 0.19 5334.53
n6t3 2.37 20.94 1429 46.87 10800∗
n6t4 0.09 138.3 457 126.43 10800∗
n6t5 7.2 1510.3 10800∗ 10800∗ 10800∗
n6t6 17.03 1005.49 10800∗ 10800∗ 10800∗
n6t7 120.77 12216.36 10800∗ 874 10800∗
n8t1 0.01 0.1 0.7 0.13 10.94
n8t2 0.11 0.8 36.2 0.3 5276.1
n8t3 0.55 17.8 10800∗ 4.6 10800∗
n8t4 56.29 11751.5 10800∗ 488.8 10800∗
n8t5 623.43 7019.4 10800∗ 10800∗ 10800∗
n8t6 10224.83 10800∗ 10800∗ 10800∗ 10800∗
n8t7 92.4 10800∗ 10800∗ 10800∗ 10800∗
n10t1 0.04 0.8 4.8 0.1 4.8
n10t2 0.09 5 432.5 0.3 10800∗
n10t3 0.06 200.2 10800∗ 0.17 10800∗
n10t4 230.48 10800∗ 10800∗ 10800∗ 10800∗
n10t5 86.99 10800∗ 10800∗ 10800∗ 10800∗
n10t6 16200.13 10800∗ 10800∗ 10800∗ 10800∗
n10t7 25539.92 10800∗ 10800∗ 10800∗ 10800∗
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C MILP for Discrete Capacities

If only a small range of capacities are under consideration of the different energy
conversion units considered in an energy supply system it may be beneficial to
introduce discrete values for the capacity of each unit n. The formulation in
chapter 4.2, p. 25 can be easily adapted to this case. The following indices, sets,
variables and parameters are introduced

1. Indices

• n - Unit number

• t - Period of time

• d - Number of segment of piecewise linear function (part load performance)

• k - Number of capacity

2. Sets

• N - Set of all energy conversion units

• T - Set of all discrete periods

• D - Set of all segments of piecewise linear function (part load performance)

• K - Set of all capacities of unit n

3. Continuous variables

• V̇nkdt - Output power of unit n with capacity k using segment d in period
t

4. Binary variables

• ynk - (Non)-existence of unit n with its k-th capacity

• δnkdt - Operational status of unit n with capacity k using segment d in
period t

5. Parameters

• c
(0)
nkd - constant cost parameters

• c
(1)
nkd - constant cost parameters

• c
(2)
nk - constant investment cost for unit n with capacity k
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C MILP for Discrete Capacities

• Ėt - Energy demand in every period t

• V̇
N

nkd, V̇
N

nkd - Lower and upper bound on V̇nkd for every unit n and capacity
k segment d

By this the model may be derived. Note decompositions as described in chapter 5
may be applied to this model.

max
∑
n∈B

∑
k∈K

∑
d∈D

∑
t∈T

(
c

(0)
nkd · δnkdt + c

(1)
nkd · V̇nkdt

)
−
∑
n∈N

∑
k∈K

(
c

(2)
nk · ynk

)
(C.1)

s.t.

∑
n ∈ N

∑
k∈K

∑
d∈D

(
V̇nkdt

)
= Ėt ∀ t ∈ T (C.2)

δnkdt · V̇ nkd ≤ V̇nkdt ≤ δnkdt · V̇ nkd ∀ (n ∈ N, d ∈ D, k ∈ K, t ∈ T ) (C.3)∑
d∈D

δnkdt ≤ ynk ∀ (n ∈ N, t ∈ T, k ∈ K) (C.4)∑
k∈I

ynk ≤ 1 ∀ (n ∈ N) (C.5)

δnkdt, ynk ∈ {0, 1} ∀ (n ∈ N, d ∈ D, ... (C.6)
k ∈ K, t ∈ T )
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