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Abstract

The problem of optimizing a multilinear polynomial on binary variables without
additional constraints arises in a variety of applications. We are interested in reso-
lution methods based on reformulations of this nonlinear problem into a linear or a
quadratic one, an approach that attempts to draw benefit from the existing literature
on integer linear and quadratic programming.

In the context of linear reformulations we consider the standard linearization,
a well-known reformulation method that consists in introducing an auxiliary vari-
able to represent each higher-degree monomial, where the association of auxiliary
variables to monomials is achieved using linear constraints. A first contribution of
this thesis is a characterization of cases for which the continuous relaxation of the
standard linearization provides integer solutions. Additionally, we define a class of
valid inequalities called 2-links modeling interactions between pairs of intersecting
monomials. For functions with exactly two nonlinear monomials, we prove that
the 2-links together with the standard linearization inequalities completely describe
the convex hull of their feasible integer points. Moreover, the 2-link inequalities
strengthen the standard linearization and greatly improve resolution times for a class
of specially structured problems.

A broader definition is considered for quadratic reformulations: a quadratization
is a quadratic function depending on the original variables and on a set of auxiliary
binary variables, such that, when minimized only over the auxiliary variables, the
original multilinear polynomial is recovered. We study several properties of quadra-
tizations such as requiring a small number of auxiliary variables. A notable contri-
bution is the definition of a quadratization for monomials with a positive coefficient
using only a logarithmic number of variables, which improves previously published
bounds by orders of magnitude. This result is especially interesting because every
multilinear polynomial can be quadratized by reformulating its monomials sepa-
rately. We also consider quadratizations of a different nature defined by splitting
each monomial into two subterms to be associated with an auxiliary variable each.
Defining such quadratizations using the smallest possible number of variables is an
NP-hard problem, for which we define heuristic algorithms that identify sets of vari-
ables appearing frequently as a subterm of the original monomials, and substituting
each set by the same auxiliary variable.

Finally, this thesis presents a comparison of the resolution times of several lin-
ear and quadratic reformulations, using a commercial solver, over different classes
of instances. Experimental results show that reformulations exploiting the struc-
ture of the original nonlinear problems, for example by better modeling interactions
between monomials, have best resolution times for many instances.
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Chapter 1

Introduction

A pseudo-Boolean function is a mapping f : {0, 1}n → R that assigns a real value to each
tuple of n binary variables (x1, . . . , xn). Pseudo-Boolean functions have been extensively used
and studied during the last century and especially in the last 50 years, due to its theoretical
interest and also because they model problems in a wide range of areas such as reliability
theory, computer science, statistics, economics, finance, operations research, management
science, discrete mathematics, or computer vision (see [24, 40] for a list of applications and
references).

In most of these applications f has to be optimized, therefore we are interested in the
problem

min
x∈{0,1}n

f (x), (1.1)

which is NP-hard even when f is quadratic.
It is well-know that every pseudo-Boolean function f can be represented uniquely as a

multilinear polynomial [66, 67].

f (x1, . . . , xn) =
∑

S∈2[n]

aS

∏
i∈S

xi, (1.2)

where [n] = {1, . . . , n}, 2[n] is the set of subsets S ⊆ [n] and aS ∈ R is a coefficient assigned
uniquely to each subset S . Notice that, given a pseudo-Boolean function f , finding its unique
multilinear expression depends on the size of the input f which can be exponential in n. Let
deg( f ) denote the degree of the polynomial representation of f .

Unless otherwise specified, we consider that a pseudo-Boolean function is given by its
unique multilinear expression. We will refer to a problem of type (1.1), where f is given
by its unique multilinear expression (1.2) as a pseudo-Boolean, nonlinear, polynomial or
multilinear optimization problem.

Pseudo-Boolean functions are closely related to set functions, which are of great interest
in discrete mathematics and operations research. Set functions assign a real value to each
subset S of a given set of elements {1, . . . , n}. Given a set function, we can obtain a pseudo-
Boolean function by replacing every set S by its characteristic vector. This link between

1



Chapter 1. Introduction

pseudo-Boolean functions and set functions enables the use of pseudo-Boolean optimization
techniques to solve classical problems that are formulated in terms of set functions.

General nonlinear optimization problems currently attract great interest from the math-
ematical programming and optimization community, and several techniques have been pro-
posed for their resolution, such as enumerative methods, algebraic methods, linear reformu-
lations and quadratic reformulations, which are then solved using a linear or quadratic solver,
respectively. It is not clear whether one of the previous techniques is generally better than the
others. In fact, the performance of the different approaches seems to depend on the under-
lying structure of the problem, among other factors. Unconstrained nonlinear optimization
problems in binary variables are surveyed in [24, 40], and the constrained case is reviewed
in [68]. Nonlinear integer programming has been reviewed in [71, 85], and there exist many
recent surveys on mixed-integer nonlinear programming (MINLP) [16, 32, 42, 61, 84] and
global optimization [26, 53], which are more general problems.

This thesis focuses on methodological aspects of the resolution of unconstrained nonlin-
ear optimization problems in binary variables. More precisely, we examine resolution tech-
niques based on linear and quadratic reformulations of nonlinear problems by introducing
artificial variables. We also refer to linear reformulations as linearizations and to quadratic
reformulations as quadratizations. This approach attempts to draw benefit from the exten-
sive literature on integer linear and quadratic programming and has been recently considered
by several authors [4, 5, 30, 31, 46, 47, 49, 51]. The remainder of this chapter consists of
Section 1.1, which presents some relevant applications of the pseudo-Boolean optimization
framework, and Section 1.2, which describes the structure of this thesis and summarizes its
main contributions.

1.1 Selected applications

In order to highlight the applicability of the framework of pseudo-Boolean optimization prob-
lems, we describe in detail a set of applications that are especially interesting in the context
of this thesis. We start with four classical applications in applied mathematics and theoretical
computer science: the maximum satisfiability problem, the maximum cut problem and the
simple plant location problem. Then, we briefly describe an energy minimization framework
that models several problems in the area of computer vision. These applications come from
an engineering context, and interestingly much recent progress in methodological questions
related to reformulations has been made by the computer vision community. Quadratic re-
formulations have proven to be extremely useful in the resolution of problems such as image
restoration. Moreover, Chapter 4 and Part III present the results of computational experi-
ments, many instances of which are inspired from the image restoration problem in computer
vision. Finally we describe an application in supply chain design which is especially interest-
ing because the formulation of the problem is not directly given as a multilinear polynomial,
which represents an additional challenge to the use of our reformulation techniques.

2



1.1. Selected applications

1.1.1 Classical applications
Maximum satisfiability The maximum satisfiability problem or MAX-SAT is currently
one of the most relevant and well-studied problems in fields as theoretical computer science,
artificial intelligence or applied mathematics. We present here a natural pseudo-Boolean
formulation for the MAX-SAT problem as given by Boros and Hammer [24].

Let us first formally define the MAX-SAT problem. Given a set of binary variables
(x1, . . . , xn) ∈ {0, 1}n, the set of literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n, } consists of the set
of variables xi and their complements x̄i = 1− xi for all i = 1, . . . , n. A clause C ⊆ L is a sub-
set of literals. A binary assignment x ∈ {0, 1}n satisfies a clause C if the Boolean disjunction
of the literals in C takes value 1 for this assignment, that is, if

∨u∈Cu = 1.

Consider a family C ⊆ 2L of clauses. The MAX-SAT problem consists in finding a binary
assignment x satisfying a maximum number of clauses of C.

The pseudo-Boolean formulation of the MAX-SAT problem is a direct consequence of the
observation that a binary assignment x ∈ {0, 1}n satisfies a clause C if, and only if

∏
u∈C ū = 0.

Then, the maximum satisfiability problem is equivalent with the maximization problem

max
x∈{0,1}n

∑
C∈C

1 −∏
u∈C

ū

 .
A particular case is the MAX-k-SAT problem where each clause C ∈ C contains exactly

k literals. MAX-SAT is an NP-complete problem and so is MAX-k-SAT even when k = 2.

Maximum cut The maximum cut problem or MAX-CUT is a well-known problem in graph
theory. We describe it here in detail due to its importance in quadratic binary optimization.
We use the notations in [24].

Let G = (V, E) be a graph and consider a subset of vertices S ⊆ V . A cut δ(S ) ⊆ E is
defined as the edges with exactly one endpoint in S . The MAX-CUT problem consists in
finding a subset S that maximizes the cardinality |δ(S )|.

Let us represent a subset S by its characteristic vector x ∈ {0, 1}V where xi = 1 if i ∈ S
and xi = 0 otherwise. Then, a pseudo-Boolean formulation for the MAX-CUT problem is

max
S⊆V
|δ(S )| = max

x∈{0,1}V

 ∑
(i, j)∈E

(xi x̄ j + x̄ix j)

 .
The cut polytope is the convex hull of all incidence vectors of edge sets representing cuts

of G. De Simone showed in [43] that the cut polytope is equivalent to the boolean quadric
polytope

BQP = {(x, y) ∈ {0, 1}|V |+|E| | yi j = xix j},

providing the equivalence between the MAX-CUT problem and quadratic optimization in
binary variables.

3



Chapter 1. Introduction

The boolean quadric polytope was first introduced by Padberg, who initiated a system-
atic study of its characteristics and facets [94]. The facial structure of the cut polytope was
studied before by Barahona, Grötschel and Mahjoub [8, 9], but the identification with the cor-
responding results on the boolean quadric polytope was only possible after the establishment
of their equivalence in [43]. Boros, Crama and Hammer derived bounds on the problem of
unconstrained quadratic optimization in binary variables as well as a correspondence between
facets of the boolean quadric polytope and the cone of nonnegative quadratic pseudo-Boolean
functions [17], and defined new facets for the cut polytope based on this correspondence in
[23]. Boros and Hammer considered the problems of maximum-2-satisfiability and weighted
signed graph balancing and established classes of facets for these problems, that were de-
rived from equivalent results in quadratic binary optimization [22]. Finally, a further lower
bound as well as a compact formulation for the MAX-CUT problem on a particular class of
graphs was given in [18].

The simple plant location problem The simple plant location problem (SPLP) is a classi-
cal problem in operations research that was first formulated as a pseudo-Boolean optimiza-
tion problem by Hammer [64]. We present in detail a formulation by Dearing, Hammer and
Simeone [44].

Given a set of customers and a set of potential plant locations, the objective of the SPLP
is to optimally locate a set of plants in order to minimize costs for operating the plants and for
serving the customers. More precisely, we are given the following parameters: let P = {i | i =

1, . . . , p} be the set of potential plant locations and fi, i ∈ P the fixed cost for opening a plant
at location i. Let D = { j | j = 1, . . . , d} be the set of customers. Finally, let ci j, i ∈ P, j ∈ D
be the unit transportation cost from plant i to customer j.

The demand of each customer is considered to be one unit and it is assumed that the
capacity of each opened plant is sufficient to meet the demand of all customers, meaning that
we are in the context of what is also called uncapacitated plant location.

A standard integer programming formulation of the SPLP is given by defining variables
yi = 1 if a plant is open at location i and 0 otherwise, and xi j = 1 if customer j is served by
plant i and 0 otherwise.

min
p∑

i=1

d∑
j=1

ci jxi j +

p∑
i=1

fiyi (1.3)

s.t.
p∑

i=1

xi j = 1, j ∈ D (1.4)

xi j ≤ yi, j ∈ D, i ∈ P (1.5)
xi j ∈ {0, 1}, yi ∈ {0, 1}, j ∈ D, i ∈ P (1.6)

An equivalent formulation of the SPLP in the form (1.1) is presented in [44] by using the
well-known property that in some optimal solution, each customer j will receive its entire
unit of demand from one open plant, namely, the plant with minimum transportation cost to

4



1.1. Selected applications

customer j. For each j ∈ D, let j(·) be the index of the permutation of the location indices
i ∈ P, such that the transportation costs from j(i) to j satisfy

c j(1) j ≤ c j(2) j ≤ · · · ≤ c j(p) j,

and consider the complemented y-variables ȳ j = 1 − y j.
Since each customer will receive its demand from a single plant, a cost c j(1) j is incurred

if, and only if, y j(1) = 1, a cost c j(2) j is incurred if, and only if, ȳ j(1)y j(2) = 1, and similarly
a cost c j(k) j is incurred if, and only if, ȳ j(1)ȳ j(2) . . . ȳ j(k−1)y j(k) = 1. The x-variables are then
substituted in the objective function (1.3) by noticing that if for a given j, we have j(r) = i,
then xi j =

∏r−1
k=1 ȳ j(k)y j(r). Constraints (1.5) become redundant with this substitution. When

substituting xi j in (1.4), the following equation is satisfied for each j

p∑
i=1

r−1∏
k=1

ȳ j(k)y j(r) +

p∏
i=1

ȳ j(i) = 1, j ∈ D,

where term
∏p

k=1 ȳ j(k) represents an infeasible solution, meaning that none of the plants is
assigned to customer j. The infeasibility of such a solution is enforced by adding terms
M j

∏p
i=1 ȳ j(i), with M j being a large cost to the objective function. The resulting pseudo-

Boolean formulation of the SPLP is

min
d∑

j=1

 p∑
i=1

c j(i) j

i−1∏
k=1

ȳ j(k)y j(i)

 + M j

p∏
i=1

ȳ j(i)

 +

p∑
i=1

fiyi (1.7)

s. t. yi ∈ {0, 1}

In [44], the pseudo-Boolean formulation of the SPLP is then transformed to a set covering
and to a weighted vertex packing problem on a graph, which has later proved to be useful in
other contexts, like for the resolution of the p-median problem [60].

1.1.2 Computer vision
A relevant area of application of pseudo-Boolean optimization methods in engineering is
computer vision. These applications are of particular interest in the context of this thesis
because much progress on quadratic reformulations of pseudo-Boolean optimization prob-
lems has been made in recent years by the computer vision community. Many computer
vision problems such as image restoration, stereo or segmentation can be formulated as en-
ergy minimization problems, which are closely related to the pseudo-Boolean optimization
framework.

We use here the definitions and notations provided by Ishikawa [74] to formally define
the energy minimization model. Let P be a set of pixels and L a set of labels. Let C ⊆ 2P be
a set of subsets of pixels. Elements C ∈ C are called cliques. Let LP be the set of labelings,
that is the set of functions X : P → L assigning a label Xp ∈ L to a pixel p ∈ P. An energy
function

E : LP → R
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Chapter 1. Introduction

associates a real value to each labeling X ∈ LP. It is assumed that E(X) is decomposable into
a sum

E(X) =
∑
C∈C

fC(XC), (1.8)

where fC(XC) is a function that depends only on the labels XC associated to a given clique C
by the labeling X.

A labeling X can also be seen as a random variable taking values in the set of labels L at
each pixel. The terminology Markov Random Fields (MRF) is frequently used to designate
a system consisting of random variables X together with an energy function E(X).

The order of an energy function is the number of pixels in the largest clique minus one, for
example, a first-order MRF contains cliques of size one and size two. The terms concerning
cliques of size one usually represent the disagreement between the label that is assigned to a
pixel p and the observed data. The terms concerning cliques of sizes larger than one are used
to model interactions between different pixels.

For example, in the image restoration problem, a blurred image is given as an input, and
the objective is to produce a sharp and well-defined image as an output. The variables X
represent the color that each pixel p should have in the output image. The terms concerning
cliques of size one model the fact that the label of the output pixel should not be too different
from the label of the same pixel in the blurred input image. The terms concerning larger
cliques model the fact that pixels that are within the same neighbourhood or clique should
have similar labels, as it happens in “natural” images. Using more complex terms to model
clique interactions, one can also model the fact that inside objects, the pixels of a clique
should have similar labels while at the edges of objects, labels should be different.

A key idea behind decomposition (1.8) is that for this type of problems, what matters are
local interactions between pixels, and interactions between distant pixels, for example at two
opposite corners of an image, do not play any role.

If we assume that the set of labels is binary, i.e., L = {0, 1}, an energy function (1.8)
can be represented by a multilinear polynomial (1.2), where the terms concerning a clique C
will have degree |C|. Early models in computer vision only considered functions of degree
two, because efficient optimization algorithms were only known for the quadratic case. The
development of such efficient algorithms was one of the main motivations to define quadratic
reformulation techniques within the computer vision community. Using quadratic reformu-
lations, one can consider higher-degree polynomials which potentially provide more accurate
models, and then apply efficient minimization algorithms for the quadratic case.

In the context of this thesis we will consider the following reformulations originating
from the computer vision field, which aim at defining a quadratization for each term of a
multilinear expression (1.2) separately: Kolmogorov and Zabih [80], and later Freedman and
Drineas [56] defined a quadratization for non-linear monomials with a negative coefficient,
Ishikawa [74] provided a quadratization for non-linear monomials with a positive coefficient.
These quadratizations are reviewed in detail in Chapters 5 and 6. We are also interested
in quadratizations of a different nature, which consider several monomials of a multilinear
expression at the same time, such as those defined by Fix, Gruber, Boros and Zabih [52],
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Rosenberg [96] and Anthony, Boros, Crama and Gruber [5], which are reviewed in detail in
Chapters 5 and 7.

As for the quadratic binary optimization algorithms, let us first notice that in formula-
tion (1.8), the set of labels is not necessarily binary. However, assuming that the set of labels
is binary is not a big loss of generality, because several of the optimization algorithms con-
sider at each iteration a binary decision related to the labels that has to be optimized, such as
swapping a label or not, or extending a label to neighboring pixels or not. Such algorithms are
often called move-making algorithms, and two of the most representative algorithms in this
category are α-expansion moves and α-β-swap moves [27]. Later, α-expansion moves were
generalized to fusion moves [82, 83]. In each iteration of these algorithms, the optimal deci-
sion of whether expanding (or swapping) or not, is reached by solving a minimum cut problem
in a certain graph, and these procedures are therefore often called graph cut algorithms in the
computer vision community. When the quadratic function is submodular, that is, when it con-
tains no quadratic terms with a positive coefficient, the quadratic binary optimization problem
can be solved efficiently with graph cuts, a result that was first established by Hammer [63].
When the function is not submodular, the performance of the resolution of each iteration in
this type of algorithms has been greatly improved using roof duality bounds and persistency
techniques, which allow to determine the integer values that a subset of variables will take at
the optimum. These concepts were first introduced by Hammer, Hansen and Simeone [65],
and the technique is often referred to as QPBO (Quadratic Pseudo-Boolean Optimization)
in the computer vision community. An extensive set of computational experiments using
persistencies, roof duality and an improved roof duality bound has been presented by Boros,
Hammer, Sun and Tavares [25]. The idea of persistencies is examined in detail in Section 8.3
of Chapter 8.

Other quadratic minimization algorithms that are not related to graph-cuts are also used
in computer vision, such as belief propagation or tree-reweighted message passing. General
purpose minimization algorithms such as simulated annealing or local search have also been
applied to computer vision problems, but they turn out to be very slow in practice. We
refer the reader to two recent and surveys for an extensive computational comparison of the
performance of various computer vision techniques on a large set of instances [78, 102].

1.1.3 Joint supply chain network design and inventory management
The problem of joint supply chain network design and inventory management considers a
supply chain consisting of one or more suppliers, a set of retailers and a set of potential
locations for distribution centers (DCs).

There are four objectives to optimize simultaneously: the location of the DCs, the as-
signment of retailers to DCs, the replenishment policy of the DCs and their levels of safety
stocks. The first two objectives relate to the supply chain network design problem and the last
two relate to the inventory management problem. Moreover, the last two objectives are mod-
eled using the economic order quantity (EOQ) which leads to square roots in the objective
function.

The model that is presented here is an integer nonlinear program in binary variables that
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was first defined by Shen, Coullard and Daskin [101]. Their resolution technique consists in
reformulating the problem as a set covering problem, relying on the assumption that each cus-
tomer has identical variance-to-mean ratio, and then solve the reformulation using a branch-
and-price algorithm. Later on, You and Grossmann [105] presented a heuristic method based
on Lagrangean relaxation and Lagrangean decomposition methods that does not require to
assume identical variance-to-mean ratios.

The precise formulation considers a set of retailers i ∈ I with independent demands,
following a normal distribution N(µi, σ

2
i ). The potential DCs are denoted by j ∈ J. The

replenishment lead time L of the DCs is considered to be the same for all suppliers. It is
assumed that no stock is held by the retailers and that the DCs use a (Q, r) policy for inventory
management. The following sets of variables are defined: x j = 1 if a DC is opened at location
j, and 0 otherwise and yi j = 1 if retailer i is assigned to DC j, and 0 otherwise.

The objective function consists of four terms. The first term is a classical representation
of the facility location cost ∑

j∈J

f jx j,

where f j is the fixed installation cost for DC j.
The second term represents the transportation costs from DCs to retailers and is defined

as ∑
j∈J

∑
i∈I

χdi jµiyi j,

where χ are the days per year and di j is unit transportation cost from j to i.
The third term takes into account the ordering and shipping costs from the supplier to

the DCs and the working inventory holding costs and it is obtained by an estimation of a
deterministic EOQ model associated to a (Q, r) policy. It reads as follows

β
∑
j∈J

a j

∑
i∈I

χµiyi j +
∑
j∈J

√
2θh(F j + βg j)

∑
i∈I

χµiyi j,

where β is a weight factor associated with the transportation cost, θ is a weight factor asso-
ciated with the inventory cost, a j is the unit transportation cost from the supplier to the DC
at candidate site j, g j is the fixed transportation cost from the supplier to the DC at candidate
site j, h is the inventory holding cost per unit of product per year and F j is the fixed cost of
placing an order at distribution center j.

Finally, the fourth term represents the safety stock costs, and is defined as

θhzα
∑
j∈J

√∑
i∈I

Lσ2
i yi j,

where zα
√

Lσ is the optimal safety stock level to guarantee a service level α when demands
are normally distributed for one retailer (zα is a standard normal deviate such that Pr(z ≤
zα) = α).
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The final model can be summarized as follows,

min
∑
j∈J

 f jx j +
∑
i∈I

d̂i jyi j + K j

√∑
i∈I

µiyi j + q
√∑

i∈I

σ̂2
i yi j

 (1.9)

s.t.
∑
j∈J

yi j = 1, ∀i ∈ I (1.10)

yi j ≤ x j, ∀i ∈ I,∀ j ∈ J (1.11)
x j ∈ {0, 1}, ∀ j ∈ J (1.12)
yi j ∈ {0, 1}, ∀i ∈ I,∀ j ∈ J (1.13)

where we have used the simplified expressions in [105] using

d̂i j = βχµi(di j + a j)

K j =

√
2θhχ(F j + βg j)

q = θhzα
σ̂2

i = Lσ2
i .

Notice that problem (1.9) does not exactly fit in our framework because of two reasons:
first, the objective function is not given as a multilinear expression and second, the formu-
lation contains additional constraints (1.10)–(1.11). Even if this thesis focuses on uncon-
strained polynomial optimization, several of the considered methods could potentially be
adapted to accommodate constraints. However, the fact of having a non-multilinear objective
function in such a precise application is especially challenging, and motivates the exploration
of new linearization and quadratization methods for pseudo-Boolean functions that are not
given as a multilinear polynomial. As mentioned at the beginning of this chapter, computing
the multilinear expression of (1.9) might be very costly, because one might have to enu-
merate all values of x j and yi j, which would be equivalent to solving the problem by pure
enumeration, and this is clearly impracticable for reasonably large instances.

A possibility that we started to explore is to define an approximate multilinear expression
for (1.9) by using a Taylor expansion of the square root terms. Even though this method
would not give an exact solution of the problem because it only approximates the objective
function, it has the advantage of generating a multilinear polynomial. The Taylor expansion
enables to improve the quality of the approximation by increasing the degree, possibly at
the expense of higher computing costs, which is a classical quality vs. time trade-off arising
in many optimization problems. However, we encountered memory problems by trying to
implement a Taylor expansion of reasonable degree even for relatively small instances.

1.1.4 Other applications
We have only highlighted here a few selected applications, but there are many more. A de-
tailed exposition of applications in graph theory, data mining, classification, learning theory,
artificial intelligence or game theory among others can be found in [24, 40].
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Finally, we also point the reader to the recent surveys [37, 81] on constraint satisfaction
problems and valued constraint satisfaction problems, the latter being rather a generalization
than an application of the pseudo-Boolean optimization framework.

1.2 Main contributions and structure of the thesis
This thesis is concerned with a study of methodological aspects of the resolution of uncon-
strained nonlinear optimization problems in binary variables using linear and quadratic refor-
mulation techniques, which we also call linearizations and quadratizations, respectively.

This thesis is organized in three parts. Part I is concerned with linear reformulations,
Part II is concerned with quadratic reformulations, and Part III presents the results of an
extensive set of computational experiments comparing the performance of several linear and
quadratic reformulation methods defined in Part I and Part II. The purpose of this introductory
section is to highlight the main contributions of this thesis and to describe the structure of each
part.

Part I: Linear reformulations

Our contributions regarding linear reformulations are based on a well-known linearization
technique, called the standard linearization, which defines a linear reformulation of a mul-
tilinear problem by introducing a set of auxiliary variables, each one representing a higher-
degree monomial. The equivalence between variables and monomials is imposed by introduc-
ing constraints, which we call standard linearization inequalities. Even though the standard
linearization was first proposed in the late fifties [54, 55, 58, 59, 104, 106], it has attracted
much recent interest from the optimization community [30, 31, 46, 47, 48, 49, 51].

Chapter 2 presents a detailed literature review on the standard linearization and posi-
tions the results of this thesis. We are mainly concerned with polyhedral descriptions of
the polytope defined by the standard linearization inequalities, which we call the standard
linearization polytope.

Chapter 3 presents a characterization of multilinear functions for which the standard lin-
earization polytope has integer vertices, which implies that the corresponding nonlinear bi-
nary optimization problems can be solved by continuous linear programming. This charac-
terization is given in terms of the balancedness of the matrix defined by the standard lin-
earization inequalities, and also in terms of the acyclicity of the hypergraph associated with a
multilinear polynomial. These results are derived from a more general case, that takes into ac-
count the signs of the coefficients of the multilinear polynomial. Moreover, the conditions of
the characterization can be checked in polynomial time. The results presented in this chapter
can be found in [28].

Chapter 4 defines a class of valid inequalities, called 2-link inequalities or 2-links, that
strengthen the standard linearization formulation. The main result of this chapter states that
for multilinear polynomials with exactly two higher-degree monomials, the polytope obtained
by adding the 2-links to the standard linearization polytope has integer vertices. Moreover, it
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is also shown that the 2-link inequalities are facet-defining for multilinear polynomials with
a special structure that we call nested, where each higher degree monomial is completely
contained in another monomial. This chapter also presents the results of some computational
experiments, comparing the resolution times of the standard linearization in a branch & cut
framework using different sets of cuts. The use of the 2-link inequalities leads to promising
results, especially for a class of instances with a special structure, inspired from the image
restoration problem in computer vision. The results presented in this chapter have been pub-
lished in [41].

Part II: Quadratic reformulations

The second part of this thesis focuses on quadratic reformulations or quadratizations. We
consider a multilinear polynomial f (x) depending on a set of variables x ∈ {0, 1}n. The
starting point of this second part of the thesis is a definition by Anthony, Boros, Crama and
Gruber [5], stating that a quadratization is a quadratic function g(x, y) depending on the orig-
inal variables x and on a set of new variables y ∈ {0, 1}m, such that minimizing g over (x, y)
is equivalent to minimizing f over x, without requiring additional constraints. This defini-
tion is very general, and not all quadratizations will be equally “good”. A desirable property
of a quadratization is to use a small number of auxiliary y variables. However, this is not
the only criterion one could think of, since having good optimization properties or exploit-
ing the structure of the polynomial (e.g. by modeling interactions between monomials) also
are reasonable criteria to define interesting quadratizations. Similar approaches were already
defined in the seventies [96], and several recent publications consider quadratic reformu-
lations [4, 5, 30, 31]. There are several factors explaining the recent interest in quadratic
reformulations, such as a tendency towards a better understanding and resolution of nonlin-
ear problems, but also the recent improvements in the field of quadratic binary optimization
both in theorical aspects and in software developement, which justify the use of quadratic
reformulations.

Chapter 5 presents a detailed literature review on quadratizations and positions our contri-
butions. We already point out here the fact that, since every multilinear polynomial consists
of monomials with a positive coefficient (positive monomials) and monomials with a nega-
tive coefficient (negative monomials), it is clear that every pseudo-Boolean function can be
reformulated by defining a quadratization for negative monomials, and a quadratization for
positive monomials. Such procedures are called termwise quadratizations. The case of nega-
tive monomials is well-solved and there exists a quadratization using a single y variable which
additionally has good optimization properties. Interestingly, the case of positive monomials
is much less understood and the current best published bound on the number of auxiliary
variables to use is linear in n, the dimension of the original variable space.

Chapter 6 presents quadratizations for positive monomials using a logarithmic number of
auxiliary variables in n, and a proof that a logarithmic bound is best possible. These results are
derived from lower and upper bounds on the number of auxiliary variables required to define
a quadratization for more general classes of pseudo-Boolean functions, such as symmetric
functions or functions with many zeros. All results in this chapter can be found in [19].
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Chapter 7 focuses on quadratizations of a different nature, based on the idea of pair-
wise covers [5], which consists in splitting each monomial in two different parts, and then
substituting each part by an auxiliary variable. In this way, each term is “covered” by two
auxiliary variables, allowing the definition of a quadratic reformulation associated to the pair-
wise cover. Determining the smallest number of variables required to define quadratizations
based on pairwise covers is an NP-hard problem, even for polynomials of degree three. In this
chapter, we define heuristic algorithms to generate quadratizations based on pairwise covers
that try to minimize the number of required auxiliary variables. The main idea behind the
presented heuristics is that whenever several monomials of the input function contain a cer-
tain set of variables as a subterm, then this set can be associated to the same auxiliary variable
in all monomials containing it. Moreover, the number of required auxiliary variables can be
heuristically minimized by trying to determine sets of variables that occur often as a subterm
of the monomials in the original multilinear function. A property that makes this type of
quadratizations particularly interesting is that they capture some of the structural properties
of the original polynomial problem.

Part III: Computational experiments

The third part of this thesis is concerned with computational experiments aimed at testing the
performance of several linearization and quadratization methods defined in Part I and Part II.

An extensive set of instances is considered. Some of these instances are highly unstruc-
tured random polynomials while others have very specific structures, arising in application
fields like computer vision or statistical mechanics.

Chapter 8 is the main chapter of Part III, containing a description of the instances, of the
methods tested and of the technical specifications of the linear and quadratic solver that is
used to solve the reformulations. A set of preliminary experiments with the aim of improving
the performance of quadratic resolutions using the persistency property is also presented.
Finally, the results of the final set of experiments comparing the computational performance
of the considered linearization and quadratization methods are presented and analyzed. For
most instances we compare the standard linearization, the standard linearization with 2-link
inequalities, several termwise quadratization methods and several quadratizations based on
pairwise covers.

Chapter 9 is an extension of the previous set of experiments, which introduces a heuristic
method to choose the subset of “most interesting” 2-link inequalities. The standard lineariza-
tion with 2-link inequalities presents in general a very good performance but has the drawback
of requiring a high memory consumption and model creation time for large instances. The
heuristic algorithm presented in this chapter tries to overcome these drawbacks.

Chapter 10 is the final chapter of this thesis, and presents some concluding remarks and
several possible future research directions, concerning both theoretical and computational
aspects.
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Linear reformulations
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Chapter 2

Introduction to linearizations

The first part of this thesis presents several results related to linear reformulation methods of
the nonlinear optimization problem

min
x∈{0,1}n

f (x), (1.1)

defined on binary variables x ∈ {0, 1}n. An important advantage of linearization approaches is
that they allow the resolution of nonlinear binary programs by using integer linear program-
ming techniques, and can thus benefit from the great theoretical and computational advances
in integer linear programming of the last decades.

As a reminder, let [n] = {1, . . . , n} and let 2[n] be the set of subsets of indices in [n]. Let
aS ∈ R denote a value associated uniquely with every S ∈ 2[n]. When |S | = 1, we write ai

instead of a{i} for simplicity. Let us introduce notation S ⊆ 2[n] to define the set of subsets S
such that aS , 0 and |S | ≥ 2. We assume that f is given by its unique multilinear expression

f (x1, . . . , xn) =
∑
S∈S

aS

∏
i∈S

xi +
∑
i∈[n]

aixi. (2.1)

All contributions presented in this part of the thesis are based on the so-called standard
linearization, a well-known linearization method that has been defined for functions given in
the form (2.1). The standard linearization procedure consists in substituting each nonlinear
monomial

∏
i∈S xi by a new variable yS , and imposing yS =

∏
i∈S xi as a constraint for all

S ∈ S.
We denote by XS L the set of binary points satisfying these constraints, that is,

XS L = {(x, y) ∈ {0, 1}n+|S| | yS =
∏
i∈S

xi, ∀S ∈ S}, (2.2)

and we denote its convex hull by P∗S L:

P∗S L = conv(XS L). (2.3)

Then, the problem of optimizing (2.1) is equivalent to the linear programming problem

min
(x,y)∈P∗S L

L f (x, y) =
∑
S∈S

aS yS +
∑
i∈[n]

aixi. (2.4)
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In order to obtain a 0–1 linear programming formulation of our problem, the polynomial
equation yS =

∏
i∈S xi can be expressed using the following constraints, to be called standard

linearization inequalities in the sequel:

yS ≤ xi, ∀i ∈ S (2.5)

yS ≥
∑
i∈S

xi − (|S | − 1), (2.6)

yS ≥ 0 (2.7)

More precisely, when xi is binary for all i ∈ S , the feasible solutions of the constraints
(2.5)–(2.7) are exactly the solutions of the polynomial equation yS =

∏
i∈S xi. (The integral-

ity requirement does not need to be explicitly stated for yS : when the original variables xi

are binary, then yS automatically takes a binary value too.) So, if we define the standard
linearization polytope associated with f as

PS L = {(x, y) ∈ [0, 1]n+|S| | (2.5), (2.6), ∀S ∈ S}, (2.8)

then the inequalities defining PS L provide a valid formulation of XS L in the sense that XS L is
exactly the set of binary points in PS L.

The standard linearization was proposed by several authors independently [54, 55, 104,
106], in a slightly different form from (2.5)–(2.7) and with integrality constraints on the
variables yS . The initial formulation was later improved by Glover and Woolsey, in a first
contribution by adding fewer constraints and variables in the reformulation [58], and in a
second contribution by introducing continuous auxiliary variables rather than integer ones
[59].

As in [36], we say that a system of linear inequalities is a perfect formulation of a set X
if the system exactly describes the convex hull of X.

It is a known fact that, when f contains a single nonlinear monomial, the standard lin-
earization inequalities define a perfect formulation for the set of points XS L. Formally,

Remark 1. When S contains a single nonlinear monomial S , the inequalities (2.5)–(2.7) and
the bound constraints 0 ≤ xi ≤ 1 for i ∈ [n] provide a perfect formulation of XS L. That is,
P∗S L = PS L.

This remark appears to be part of the folklore of the field of nonlinear binary optimization.
It can be easily derived by direct arguments, and it also follows from related results, e.g., by
McCormick [90] and by Al-Khayyal and Falk [1] for the quadratic case, by Crama [39] and
by Ryoo and Sahinidis [99] for the general case of degree higher than two (see also [89]).

However, for the general case when f contains an arbitrary number of nonlinear mono-
mials, finding a concise perfect formulation of P∗S L is probably hopeless (unless P = NP).
Moreover, PS L provides a very weak relaxation of P∗S L when f contains an arbitrary number
of nonlinear monomials.
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2.1 Literature review and contributions
In this first part of the thesis, we are mainly concerned with polyhedral descriptions of the set
of integer points satisfying the standard linearization inequalities XS L.

Chapter 3 provides a characterization of multilinear functions f for which PS L = P∗S L,
that is, cases for which inequalities (2.5)–(2.7) and the bound constraints 0 ≤ xi ≤ 1, for
i ∈ [n] provide a perfect formulation of XS L. This characterization is given in terms of
the acyclicity of the hypergraph associated with the monomial set of f , and in terms of the
balancedness of the matrix defining constraints (2.5)–(2.7). This result is derived from a
more general result that takes into account the signs of the coefficients of the monomials of
f . Moreover, the conditions of the characterization can be checked in polynomial time. These
results extend those provided for the quadratic case by Hansen and Simeone [69], and for the
polynomial case considering coefficient signs by Crama [38, 39]. Some statements of our
results have been provided independently and using a proof technique (relying, in particular,
on decomposition arguments) by Del Pia and Khajavirad [45, 47]. The details of how our
results relate to earlier results are described in Section 3.1.1. The contents of Chapter 3 can
also be found in [28].

Chapter 4 goes one step further, by defining a class of valid inequalities that strengthen
the standard linearization. These inequalities are called 2-link inequalities or 2-links because
they model interactions between pairs of monomials with a non-empty intersection. We prove
here that the 2-link inequalities, together with the standard linearization inequalities provide a
perfect formulation of the set of points XS L associated to a multilinear function f with exactly
two higher-degree monomials. It is also shown that the 2-link inequalities are facet-defining
for functions where the monomials are nested, meaning that every monomial is completely
contained in another monomial. The case of nested monomials has also been considered
by Fischer et al. [51], in a more general context optimizing a nonlinear objective function
with nested monomials over variables belonging to a matroid polytope. Finally, the results
of an extensive set of computational experiments show that the 2-link inequalities can be
very helpful when solving a class of instances inspired from the image restoration problem
in computer vision by linearization. The contents of Chapter 4 have been published in [41].

Several recent papers investigate questions related to the standard linearization technique.
We have briefly mentioned recent work on complete descriptions of the standard lineariza-
tion polytope by Del Pia and Khajavirad [45, 47]. The same authors also defined a class of
valid inequalities generalizing the 2-link inequalities presented in Chapter 4 [47]. Del Pia and
Khajavirad also recently provided decomposability results for the set of points XS L extend-
ing previous results for the quadratic case [48], and a framework for deriving facet-defining
inequalities based on lifting operations, among other techniques, for the standard lineariza-
tion polytope [46]. Buchheim and Rinaldi [30] proved that one can completely describe the
convex hull P∗S L of the set of points XS L, by providing a complete polyhedral description of
a quadratic reformulation of the original polynomial, and derived as a consequence that the
separation problem of the nonlinear problem reduces to the separation problem of the cut
polytope. Other recent contributions less related to the results in this thesis can be found in
[29, 49, 91].
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Chapter 3

Berge-acyclic multilinear 0–1
optimization problems

This chapter provides a characterization of multilinear functions for which the standard lin-
earization inequalities define a perfect formulation of the set of integer points in XS L defined
in Chapter 2, implying that the corresponding nonlinear binary optimization problems can be
solved by continuous linear programming. 1

The results of this chapter are given for the maximization of a multilinear polynomial (the
minimization case is analogous). As a reminder, the multilinear problem is

max
x∈{0,1}n

f (x) =
∑
i∈[n]

cixi +
∑
S∈S

aS

∏
j∈S

x j, (3.1)

where [n] = {1, . . . , n}, S ⊆ {S ∈ 2[n] | |S | ≥ 2}, c ∈ Rn, and a ∈ RS.
Observe that the monomials in the multilinear expression (3.1) are uniquely associated

to a hypergraph H = ([n],S), where [n] is the set of vertices of the hypergraph, and S is
the set of subsets of variables. Similarly, the standard linearization polytope PS L defined in
Chapter 2 is uniquely defined for a given hypergraph H, independently of the coefficients
of the monomials. Since the results of this chapter rely on this association of the standard
linearization inequalities with the hypergraph defining the monomial set, in this chapter we
denote the standard linearization polytope associated to a hypergraph by PH

S L. For the sake of
simplicity, in this chapter we denote [n] by V . We refer to elements i ∈ V as vertices, and to
elements S ∈ S as edges.

We aim at characterizing the instances for which the polytope PH
S L has only integer ver-

tices. One of our main results characterizes integrality of PH
S L in terms of the properties of

the hypergraph H = (V,S). More precisely, we show that PH
S L has only integer vertices if and

only if H is Berge-acyclic. Furthermore, we show that Berge-acyclicity of H is equivalent
to the constraint matrix of PH

S L being balanced; for this, we rely on a fundamental result by
Conforti and Cornuéjols [35]. We derive these characterizations from a more general result,

1The contents of this chapter have been obtained together with Christoph Buchheim and Yves Crama, and
have been submitted for publication [28].
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taking into account the signs of the coefficients of the nonlinear terms of f . As a byproduct,
we deduce the existence of an efficient algorithm for testing whether a given sign pattern of
the nonlinear terms guarantees integrality or not. These results generalize those obtained by
Padberg [94] and by Hansen and Simeone [69] for the quadratic case, and by Crama [39]
for the general case. In fact, a main objective of this chapter is to state more explicitly, to
unify and to clarify the relation between these earlier characterizations in terms of associated
polyhedra, matrices or hypergraphs, and to provide simpler, self-standing proofs for their
equivalence. More details will be given in Section 3.1.

3.1 Definitions and statement of the main results
This section formally introduces relevant definitions and states the main results of this chap-
ter. Let H = (V,S) be a finite hypergraph. We assume throughout that S does not contain
singletons. We denote by P(H) the set of multilinear expressions f of type (3.1), obtained by
defining the coefficients c ∈ RV and a ∈ RS. For the sake of simplicity, we assume aS , 0 for
all S ∈ S.

Let us rewrite the standard linearization inequalities as

−yS + xi ≥ 0 ∀i ∈ S ,∀S ∈ S, (3.2)

yS −
∑
i∈S

xi ≥ 1 − |S | ∀S ∈ S, (3.3)

We denote by MH
S L the matrix of coefficients of the left-hand-sides of (3.2) and (3.3).

Definition 1. Given a multilinear expression f ∈ P(H), its linearized form is defined as

L f (x, y) =
∑
i∈V

cixi +
∑
S∈S

aS yS ,

where the coefficients ci and aS are exactly the same as in f .

As already mentioned in Chapter 2, all integer points (x, y) ∈ PH
S L are such that yS =∏

j∈S x j for all S ∈ S. As a consequence, maximizing the linearized form L f over the integer
points of PH

S L is equivalent to maximizing f (x) over {0, 1}n.
Notice that when maximizing a linearized form L f over PH

S L, constraints (3.2) are not
binding when the coefficient aS is negative, and constraints (3.3) are not binding when aS is
positive. This observation motivates the following definitions.

Definition 2. A signed hypergraph H(σ) is a hypergraph H = (V,S) together with a sign
pattern σ ∈ {−1, 1}S. The set of positive edges of H(σ) is S+ = {S ∈ S : σS = 1} and the set
of negative edges is S− = {S ∈ S : σS = −1}.

Clearly, every element f ∈ P(H) (or the associated linearized form L f ) defines a sign
pattern by setting σS := sgn(aS ) and hence, induces a signed hypergraph H(σ). Sign pat-
terns can thus be considered as equivalence classes of P(H) with respect to the signs of the
coefficients.
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Definition 3. The signed standard linearization polytope PH(σ)
S L associated with a signed hy-

pergraph H(σ) is the polytope defined by the constraints

−yS + xi ≥ 0 ∀i ∈ S ,∀S ∈ S+, (3.4)

yS −
∑
i∈S

xi ≥ 1 − |S | ∀S ∈ S−, (3.5)

and by the bounds 0 ≤ xi ≤ 1 for all i ∈ V, and 0 ≤ yS ≤ 1 for all S ∈ S. We denote the
matrix of coefficients of the left-hand-sides of (3.4) and (3.5) by MH(σ)

S L .

The notion of cycles in hypergraphs will frequently be used in this chapter. Several defi-
nitions of cycles in hypergraphs have been given in the literature, such as Berge-cycles [11],
α-cycles [10], special cycles [3] (also called weak β-cycles [50]), or γ-cycles [50]. In our
context, we use the following definitions.

Definition 4. Given a hypergraph H = (V,S), a Berge-cycle C of length p is a sequence
(i1, S 1, i2, S 2, . . . , ip, S p, ip+1 = i1) where

1. p ≥ 2,

2. ik, ik+1 ∈ S k for k = 1, . . . p − 1 and ip, i1 ∈ S p,

3. i1, . . . , ip are pairwise distinct elements of V, and

4. S 1, . . . , S p are pairwise distinct elements of S.

If, additionally, S k ∩ {i1, . . . , ip} = 2 for all k = 1, . . . , p, we call C a special cycle of H.

(In the definition of special cycles, it is usually assumed that p ≥ 3. We only impose here
that p ≥ 2.) Given a Berge-cycle C, we denote by VC = {i1, . . . , ip} its set of vertices and by
SC = {S 1, . . . , S p} its set of edges.

Lemma 1. Any hypergraph containing a Berge-cycle also contains a special cycle.

Proof. Let C = (i1, S 1, i2, S 2, . . . , ip, S p, i1) be a Berge-cycle of minimal length in H = (V,S).
We claim that C is special. Assume on contrary that C is not special and that, without loss of
generality, |S 1 ∩ VC | > 2. Choose ik ∈ (S 1 ∩ VC) \ {i1, i2}. Then (i1, S 1, ik, S k+1, . . . , S p, x1) is
a Berge-cycle strictly shorter than C, contradicting the choice of C. �

We next extend the classical definition of negative cycles in signed graphs [70].

Definition 5. A negative (special) cycle in a signed hypergraph H(σ) is a (special) cycle
containing an odd number of negative edges.

Finally, we recall the definition of balanced matrices [11, 35].

Definition 6. A matrix M with all entries in {−1, 0, 1} is balanced if in every submatrix of M
having exactly two non-zeros per row and two non-zeros per column, the sum of the entries
is a multiple of four.
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The main result of this chapter is the following characterization. The proof will be given
in Section 3.2.

Theorem 1. Given a hypergraph H = (V,S) and a sign pattern σ ∈ {−1, 1}S, the following
statements are equivalent:

(a) For all f ∈ P(H) with sign pattern σ, every vertex of PH
S L maximizing L f is integer.

(b) MH(σ)
S L is balanced.

(c) H(σ) has no negative special cycle.

(d) PH(σ)
S L is an integer polytope.

Remark 2. As shown in [34], it can be checked efficiently whether a matrix with entries
in {−1, 0, 1} is balanced. This implies that all conditions in Theorem 1 can be checked effi-
ciently.

Remark 3. Theorem 1 characterizes the sign patterns σ that guarantee integer optimal so-
lutions for all f ∈ P(H) with sign pattern σ. This does not exclude, however, that some
functions with a sign pattern different from σ also lead to integer optimal solutions. This
depends on the (relative) values of the coefficients aS and ci. As an example, consider the
quadratic function

f (x1, x2, x3) = x1x2 + x1x3 − x2x3 −Mx1

with M ∈ R. The corresponding hypergraph H(σ) contains a negative special cycle, but for
large enough values of M the optimal vertices of PH

S L with respect to L f are all integer.

Corollary 1. Given a hypergraph H, the following statements are equivalent:

(a) PH
S L is an integer polytope.

(b) MH
S L is balanced.

(c) H is Berge-acyclic.

Proof. We claim that each of the statements (a), (b) and (c) is equivalent to the respective
statement (a), (b) and (c) in Theorem 1 holding for all σ ∈ {−1, 1}S. The result then follows
from Theorem 1. For (a), this equivalence is obvious.

For (b), it is clear that if MH
S L is balanced, then MH(σ)

S L is balanced for all σ, since every
submatrix of MH(σ)

S L is also a submatrix of MH
S L. Assume now that MH

S L is not balanced. Thus,
it contains a submatrix B with exactly two nonzeros per row and per column such that the sum
of its entries is congruent with 2 modulo 4. As long as there are two rows in B corresponding
to constraints of type (3.2) and (3.3) for the same edge S ∈ S, the matrix B must contain a
submatrix of the form

B′ =

(
+1 −1
−1 +1

)
,
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where all other entries of B in the rows and columns of B′ are zero by the choice of B. The
sum of elements of B′ is zero, thus we can recursively delete the corresponding rows and
columns from B and finally assume that, for each S ∈ S, B only contains rows associated
with constraints of type (3.2), or only contains a row associated with a constraint of type (3.3).
We may then define a sign pattern σ by setting σS = 1 if B contains a row corresponding
to (3.2) for S , σS = −1 if B contains the row corresponding to (3.3) for S , and σS ∈ {−1, 1}
arbitrarily otherwise. Then, by construction, the matrix B is a submatrix of MH(σ)

S L , showing
that MH(σ)

S L is not balanced.
For (c), if H is Berge-acyclic, then clearly H(σ) has no negative special cycle, for any

sign pattern σ. Conversely, assume that H contains a Berge-cycle C. By Lemma 1, we may
assume that C is a special cycle. Define a sign pattern σ such that σS = −1 for exactly one
edge of C and σS = 1 otherwise. Then C is a negative special cycle in H(σ). �

3.1.1 Relation with earlier results
For ordinary graphs, i.e., for hypergraphs H = (V,S) where |S | = 2 for all edges S ∈ S
(corresponding to quadratic functions f ), Padberg [94] proved that PH

S L has integer vertices
if and only if H is an acyclic graph. Corollary 1 generalizes Padberg’s result to the case of
higher-degree multilinear expressions.

Similarly, Theorem 1 extends results obtained by Hansen and Simeone [69] for the quadratic
case (see also Michini [91]). The equivalence of conditions (b) and (d) in Theorem 1 for
functions of arbitrary degree was first stated in Crama [38, 39]. However, the proof of this
result was omitted from the published version [39]; in the technical report [38], the result
was derived from a more general one whose proof was partially erroneous. Essentially, this
earlier proof relied on the “observation” that a certain matrix M(ψ) is balanced if and only
if a related matrix M∗(ψ) is balanced, a claim which is unfortunately wrong in the general
setting of [38]. Although it would be possible to fix the proof in [38] for the particular case
of multilinear polynomials – or canonical expressions, in the terminology of [38, 39] – it is
probably more natural to derive it from strong results subsequently obtained by Conforti and
Cornuéjols [33, 35], as we explain in Section 3.2. So, we find it useful to provide here, for
the record, a complete correct proof of the equivalence of (b) and (d). Moreover, as compared
with [38, 39], Theorem 1 clarifies the link between the integrality properties of PH

S L, PH(σ)
S L ,

and translates the results in terms of the acyclicity of certain hypergraphs.
Theorem 1 and Corollary 1 have been independently derived from Crama’s earlier results

by Del Pia and Khajavirad [45], and the same authors have used different proof techniques
(relying, in particular, on decomposition arguments) to establish Corollary 1 in [47].

3.2 Proof of the main theorem
In this section, we present a proof of Theorem 1 in the form of four separate propositions. We
first show that condition (d) implies condition (a) in Theorem 1. This is a direct consequence
of the following:
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Proposition 1. Let f ∈ P(H) with a sign pattern σ ∈ {−1, 1}S. Then the two optimization
problems

max
(x,y)∈PH

S L

L f (x, y),

and
max

(x,y)∈PH(σ)
S L

L f (x, y) (3.6)

have the same sets of optimal solutions.

Proof. Since PH
S L ⊆ PH(σ)

S L , it suffices to show that every optimal solution of problem (3.6)
belongs to PH

S L. So let (x∗, y∗) be such an optimal solution and consider any edge S ∈ S.
Assume first that (x∗, y∗) violates (3.2) for some j ∈ S , so that y∗S > x∗j. By definition

of PH(σ)
S L , this is possible only if σS = −1, we thus have aS < 0. We can now decrease y∗S

to x∗j without leaving the polyhedron PH(σ)
S L , since the resulting vector satisfies y∗S −

∑
i∈S x∗i =

−
∑

i∈S \{ j} x∗i ≥ −(|S |−1). As aS < 0, this contradicts the assumption that (x∗, y∗) is an optimal
solution of (3.6).

Now assume that (x∗, y∗) violates (3.3). Then y∗S <
∑

i∈S x∗i − |S |+1, σS = +1, and aS > 0.
We can now increase y∗S to

∑
i∈S x∗i − |S | + 1 without leaving PH(σ)

S L , as
∑

i∈S x∗i − |S | + 1 ≤ x∗j
for all j ∈ S . We again obtain a contradiction to the optimality of (x∗, y∗). �

We next observe that (b) implies (d) in Theorem 1. For this, consider the generalized set
covering polytope Q(A) corresponding to a matrix A with entries in {−1, 0,+1}, defined as

Q(A) := {x : Ax ≥ 1 − n(A), 0 ≤ x ≤ 1},

where n(A) denotes the column vector whose ith component ni(A) is the number of negative
entries in row i of A. We recall a fundamental result on balanced matrices:

Theorem 2 (Conforti and Cornuéjols [33, 35]). Let M be a matrix with entries in {−1, 0,+1}.
Then M is balanced if and only if for each submatrix A of M, the generalized set covering
polytope Q(A) is integral.

Since PH(σ)
S L is exactly the generalized set covering polytope Q(MH(σ)

S L ), we obtain

Proposition 2. Given σ ∈ {−1, 1}S, if MH(σ)
S L is balanced, then PH(σ)

S L is integral.

We next show that (a) implies (c) in Theorem 1. This is equivalent to showing

Proposition 3. Let σ ∈ {−1, 1}S and assume that H(σ) has a negative special cycle C. Then
there exists f ∈ P(H) with sign pattern σ such that some optimal vertex of PH

S L with respect
to L f is not integer.
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Proof. Let C = (i1, S 1, i2, S 2, . . . , ip, S p, ip+1) be a negative special cycle in H(σ) = (V,S),
with ip+1 = i1, and consider the sets S+

C := SC ∩ S
+ and S−C := SC ∩ S

−. Moreover, consider
the partition of the set VC given by the following subsets:

V++ := {ik ∈ VC : S ik−1 ∈ S
+
C and S ik ∈ S

+
C},

V−− := {ik ∈ VC : S ik−1 ∈ S
−
C and S ik ∈ S

−
C},

V+− := {ik ∈ VC : S ik−1 ∈ S
+
C and S ik ∈ S

−
C},

V−+ := {ik ∈ VC : S ik−1 ∈ S
−
C and S ik ∈ S

+
C}.

Note that the following identity holds for all x ∈ RV :∑
S k∈S

−
C

xik −
∑

S k∈S
+
C

xik+1 =
∑
j∈V−−

x j +
∑
j∈V+−

x j −
∑
j∈V+−

x j −
∑
j∈V++

x j =
∑
j∈V−−

x j −
∑
j∈V++

x j. (3.7)

We will define an objective function h = L f corresponding to some f ∈ P(H) with sign
pattern σ, as well as a fractional point (x̂, ŷ) ∈ PH

S L such that h(x̂, ŷ) > h(x, y) for all integer
points (x, y) ∈ PH

S L. This will imply the result.
The function h with sign pattern σ is defined by

h(x, y) := µ

 ∑
j∈V\VC

x j

 +
∑
j∈V−−

x j −
∑
S∈S−C

yS −
∑
j∈V++

x j +
∑
S∈S+

C

yS + ε (
∑
S∈S+

yS −
∑
S∈S−

yS ),

where µ is chosen large enough so that all x j with j ∈ V\VC take value one when maximizing
h over PH

S L, and where ε is small and positive. Define (x̂, ŷ) as follows:

• x̂i = 1
2 , for xi ∈ VC,

• x̂i = 1, for xi ∈ V\VC,

• ŷS = 1
2 , for S ∈ S+

C,

• ŷS = 0, for S ∈ S−C,

• ŷS = 1
2 for S ∈ S\SC containing at least one vertex in VC, and

• ŷS = 1 for S ∈ S\SC containing no vertex in VC.

It can be verified that (x̂, ŷ) ∈ PH
S L and that

h(x̂, ŷ) = µ|V\VC | +
|V−− |

2 −
|V++ |

2 +
|S+

C |

2 + ε t(ŷ) = µ|V\VC | +
|S−C |

2 + ε t(ŷ),

where t(ŷ) stands for the multiplier of ε, and where the second equality follows from iden-
tity (3.7).

It remains to prove that h(x̂, ŷ) > h(x, y) for all integer points (x, y) ∈ PH
S L. By the choice

of µ, we may assume x j = 1 for all j ∈ V\VC. Moreover, by integrality of (x, y) ∈ PH
S L, we
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have yS =
∏

i∈S xi for all S ∈ S. Now, since C is a special cycle, and using (3.7) again, we
can express h(x, y) as follows:

h(x, y) = µ|V\VC | +
∑
j∈V−−

x j −
∑

ek∈E−C

xik xik+1 −
∑
j∈V++

x j

+
∑

ek∈E+
C

xik xik+1 + ε t(y)

= µ|V\VC | +
∑

ek∈E−C

[
xik(1 − xik+1)

]
−

∑
ek∈E+

C

[
(1 − xik)xik+1

]
+ ε t(y).

We will prove that ∑
ek∈E−C

[
xik(1 − xik+1)

]
−

∑
ek∈E+

C

[
(1 − xik)xik+1

]
≤
|E−C |−1

2 , (3.8)

implying that
h(x, y) ≤ µ|V\VC | +

|E−C |−1
2 + ε t(y) < h(x̂, ŷ)

for every integer point (x, y) ∈ PH if ε is small enough.
Let us consider two edges ek, e` ∈ E−C with k < ` and such that there is no other negative

edge between ek and e` in the cycle C. If there is no positive edge between ek and e` in C,
i.e., if ` = k + 1, then we cannot simultaneously have xik(1 − xik+1) = 1 and xi`(1 − xi`+1) = 1.
If there is at least one positive edge between ek and e`, then it is possible that xik(1 − xik+1) =

xi`(1− xi`+1) = 1, but then at least one of the positive edges e j ∈ E+
C between ek and e` must be

such that (1− xi j)xi j+1 = 1. In all cases, the two negative edges and the positive edges between
them contribute for at most one unit to the left-hand side of (3.8), and therefore∑

ek∈E−C

[
xik(1 − xik+1)

]
−

∑
ek∈E+

C

[
(1 − xik)xik+1

]
≤
|E−C |

2 .

Moreover, since C has an odd number of negative edges, inequality (3.8) is satisfied, thus
completing the proof.

�

The basic idea of the previous proof is to reduce the construction of a fractional vertex of PH
S L

to the quadratic case. For this, all variables not corresponding to a node in VC are set to one,
letting them disappear from the monomial expressions corresponding to the edges inSC. This
construction only works for special cycles.

In order to conclude the proof of Theorem 1, it remains to show that (c) implies (b), that
is:

Proposition 4. Given σ ∈ {−1, 1}S, if H(σ) has no negative special cycle, then the ma-
trix MH(σ)

S L is balanced.
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Proof. Assume that MH(σ)
S L is not balanced and let B be a smallest submatrix of MH(σ)

S L with
two non-zero entries per row and two non-zero entries per column, such that the sum of its
entries is congruent with 2 modulo 4.

Let VB ⊆ V be the set of vertices with their associated column in B, let SB ⊆ S be the set
of edges associated with at least one row of B, let S+

B be the set of positive edges in SB, and
S−B be the set of negative edges in SB.

Since each column of B has exactly two non-zero entries, each vertex in VB is contained in
exactly two edges in SB. Moreover, by definition of MH(σ)

S L , every edge S ∈ SB must contain
exactly two vertices of VB (if S ∈ S−, then the entries corresponding to both vertices appear
in the same row of B; if S ∈ S+, then the entries corresponding to the two vertices appear in
two rows associated with yS ). Consequently, in view of the minimality of B, the vertices in
VB and the edges in SB define a special cycle.

Since rows corresponding to edges S ∈ S+
B are associated with constraints of type (3.2)

and contain two non-zero entries by definition, the sum of these entries must be zero. This
means that the sum of entries of rows corresponding to edges S ∈ S−B has a value congruent
with 2 modulo 4. Notice that each edge S ∈ S−B has exactly one row of type (3.3) associated
with it, and both entries of this row take value −1. This implies that there must be an odd
number of negative edges in the special cycle defined by B. �
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Chapter 4

A class of valid inequalities for
multilinear 0–1 optimization problems

In this chapter, we introduce a class of valid inequalities for the convex hull of points sat-
isfying the standard linearization constraints, which are called 2-links or 2-link inequalities,
because they model interactions between pairs of monomials intersecting in at least two vari-
ables. 1

We use the notations and defintions given in Chapter 2 (PS L denotes the polytope called
PH

S L in Chapter 3). The main contribution of this chapter is a theorem stating that, when
f contains exactly two nonlinear monomials, a complete formulation of P∗S L is obtained by
adding the 2-link inequalities to the standard linearization constraints of PS L. We also es-
tablish that the 2-links are facet-defining when f consists of nested monomials, that is, of a
chain of monomials contained in each other. Furthermore, we provide computational exper-
iments showing that for various classes of multilinear polynomials, adding the 2-links to the
standard linearization constraints of PS L provides significant improvements in the quality of
the bounds of the linear relaxations and on the performance of exact resolution methods.

The rest of the chapter is structured as follows. Section 4.1 formally introduces the 2-
links. Section 4.2 establishes their strength for the case of nested monomials, and derives
some related properties of the standard linearization inequalities. Section 4.3 presents our
main result for the case of two nonlinear monomials. Section 4.4 describes our computational
experiments. This set of experiments is extended in Part III of this thesis. Finally, Section 4.5
proposes some conclusions and sketches further research questions.

4.1 Definition and validity of 2-link inequalities

This section formally introduces the 2-links and establishes some of their properties. Let f
be the function on variables xi, i ∈ [n], represented by the multilinear polynomial (2.1) with

1The results presented in this chapter have been published in [41].
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aS , 0 for all S ∈ S.
f (x1, . . . , xn) =

∑
S∈S

aS

∏
i∈S

xi +
∑
i∈[n]

aixi. (2.1)

Let the set XS L, its convex hull P∗S L, and its standard linearization polytope PS L be defined as
in Chapter 2. Note that XS L, PS L and P∗S L actually depend on f , or more precisely on the set
of monomials S. However we do not indicate this dependence in the notation for simplicity.

As a reminder, the standard linearization inequalities associated with a monomial S ∈ S
are

yS ≤ xi, ∀i ∈ S (2.5)

yS ≥
∑
i∈S

xi − (|S | − 1), (2.6)

yS ≥ 0. (2.7)

Definition 7. Consider two monomials indexed by subsets S ,T ∈ S and consider variables
yS , yT such that yS =

∏
i∈S xi, yT =

∏
i∈T xi. The 2-link associated with (S ,T ) is the linear

inequality

yS ≤ yT −
∑

i∈T\S

xi + |T\S |. (4.1)

Proposition 5. Validity of the 2-links. For any S ,T ∈ S, the 2-link inequality (4.1) is valid
for P∗S L.

Proof. It suffices to show that (4.1) is satisfied by all points (x, y) in XS L. This is trivial when
yS ≤ yT . When (yS , yT ) = (1, 0), the monomial

∏
i∈S xi takes value one and the monomial∏

i∈T xi takes value zero, which implies that a variable in T\S must be zero. It follows again
that (4.1) is satisfied. �

Note that the 2-link inequalities are valid when |S ∩ T | < 2, but in that case they do not
strengthen the relaxation of PS L. Indeed, when S ∩ T = ∅, then (4.1) can be derived by
simply adding the standard linearization inequalities yS ≤ 1 and

∑
i∈T xi − (|T | − 1) ≤ yT .

Also, when |S ∩ T | = 1, say, S ∩ T = {k}, then (4.1) is obtained by adding up yS ≤ xk and∑
i∈T xi − (|T | − 1) ≤ yT .

4.2 Nested nonlinear monomials
In order to illustrate the strength of 2-link inequalities, we next establish a result (Proposi-
tion 6 hereunder) concerning multilinear functions with a particular structure, namely, those
for which the nonlinear monomials are nested. We already note that Proposition 6 has been
independently found by Fischer, Fischer and McCormick [51] in the more general framework
of polynomial functions optimized over a matroid polytope; we will return to this remark at
the end of the section.

Observe that the 2-link inequality associated with (S ,T ) takes the form yS ≤ yT when
T ⊆ S .
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Proposition 6. Nested monomials. Consider a function

f (x) =
∑
k∈[l]

aS (k)

∏
i∈S (k)

xi +
∑
i∈S (l)

aixi

defined on l monomials such that S (1) ⊂ S (2) ⊂ · · · ⊂ S (l), where |S (1)| ≥ 2 and S (l) = [n]
without loss of generality. Let P∗,nest

S L be the convex hull of the integer points of the standard
linearization polytope associated with f . Then, the 2-links

yS (k) ≤ yS (k+1) −
∑

i∈S (k+1)\S (k)

xi + |S (k+1)\S (k)|, (4.2)

yS (k+1) ≤ yS (k) , (4.3)

for k = 1, . . . , l − 1, are facet-defining for P∗,nest
S L .

Proof. Let x = (x1, . . . , xn), let ui be the n-dimensional unit vector with ith component equal to
one, let y = (yS (1) , . . . , yS (l)), and let v j be the l-dimensional unit vector with the jth component
equal to one.

Observe first that P∗,nest
S L is full-dimensional; indeed, the n points (x, y) = (ui, 0), ∀i ∈ [n],

the l points (x, y) = (
∑

i∈S (k) ui,
∑

j≤k v j), ∀k ∈ [l], and the point (0, 0) are in P∗,nest
S L and are

affinely independent (see also [46]).
Let F be the face of P∗,nest

S L represented by (4.2), F = {(x, y) ∈ P∗,nest
S L | yS (k) = yS (k+1) −∑

i∈S (k+1)\S (k) xi + |S (k+1)\S (k)|}, for a fixed k < l. To prove that F is a facet, we will show that
F is contained in a unique hyperplane and thus dim(F) = dim(P∗,nest

S L ) − 1, since P∗,nest
S L is full-

dimensional. Consider b(x, y) =
∑

i∈[n] bixi +
∑

k∈[l] bS (k)yS (k) and assume that F is contained in
the hyperplane b(x, y) = b0. We will see that this is only possible if b(x, y) = b0 is a multiple
of

yS (k) = yS (k+1) −
∑

i∈S (k+1)\S (k)

xi + |S (k+1)\S (k)|. (4.4)

1. The point (x, y) = (
∑

i∈S (k+1)\S (k) ui, 0) is in F. Assuming that (x, y) satisfies b(x, y) = b0,
we have that

∑
i∈S (k+1)\S (k) bi = b0.

2. Fix an index j ∈ S (k), and consider (x, y) = (u j +
∑

i∈S (k+1)\S (k) ui, 0) ∈ F. Assuming that
(x, y) satisfies b(x, y) = b0, we have b j +

∑
i∈S (k+1)\S (k) bi = b0, which implies, together

with the previous condition, that b j = 0, ∀ j ∈ S (k).

3. If k+1 < l, fix an index j ∈ S (l)\S (k+1), and consider (x, y) = (
∑

i∈S (k+1)\S (k) ui +u j, 0) ∈ F.
Assuming that (x, y) satisfies b(x, y) = b0, we have that b j +

∑
i∈S (k+1)\S (k) bi = b0, which

implies together with the first condition that b j = 0, ∀ j ∈ S (l)\S (k+1).

4. We next show that bS ( j) = 0 for j < k. Assume first that j = 1 < k and let (x, y) =

(
∑

i∈S (k+1)\S (k) ui +
∑

i∈S (1) ui, v1) ∈ F. Assuming that (x, y) satisfies b(x, y) = b0, we have
that

∑
i∈S (1) bi +

∑
i∈S (k+1)\S (k) bi + bS (1) = b0, which implies, together with the previous

conditions, that bS (1) = 0. Repeating this procedure for j = 2, . . . , k − 1 (in this order),
we obtain that bS ( j) = 0 for all j < k.
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5. Fix a j ∈ S (k+1)\S (k), and take (x, y) = (
∑

i∈S (k+1)\{ j} ui,
∑

i≤k vi) ∈ F. Assuming that (x, y)
satisfies b(x, y) = b0, we have

∑
i∈S (k+1),i, j bi +

∑
i≤k bS (i) = b0, which implies, together

with the previous conditions and repeating for j ∈ S (k+1)\S (k), that b j = bS (k) , for all
j ∈ S (k+1)\S (k).

6. Consider (x, y) = (
∑

i∈S (k+1) ui,
∑

i≤k+1 vi) ∈ F. Assuming that (x, y) satisfies b(x, y) = b0,
we obtain that

∑
i∈S (k+1) bi +

∑
i≤k+1 bS (i) = b0, which implies, together with the previous

conditions, that bS (k) + bS (k+1) = 0.

7. Consider subset S (k+2), and take (x, y) = (
∑

i∈S (k+2) ui,
∑

j≤k+2 v j) ∈ F. Assuming that
(x, y) satisfies b(x, y) = b0, and using the previous conditions we have that bS (k+2) = 0.
Repeating this reasoning for j = k + 3, . . . l (in this order), we obtain bS ( j) = 0, for all
j > k + 1.

Putting together the previous conditions, we have that b(x, y) = b0 takes the form bS (k)
∑

i∈S (k+1)\S (k) xi+

bS (k)yS (k) − bS (k)yS (k+1) = |S (k+1)\S (k)| bS (k) , which is a multiple of equation (4.4) as required.
In a similar way, it can be proved that the face represented by (4.3) is a facet, by using the

following set of points (in the given order): (0, 0); (ui, 0), for i = 1, . . . , n; (
∑

i∈S ( j) ui,
∑

r≤ j vr),
for j ∈ {1, . . . , n}\{k}. �

Remark 4. The 2-link inequalities are only facet-defining for consecutive monomials in the
nested sequence. In fact, the 2-links corresponding to non-consecutive monomials are implied
by the 2-links associated with consecutive monomials.

The following remarks can be proved using similar arguments as those presented in the
proof of Proposition 6. They imply, in particular, that the standard linearization inequalities
(2.5)–(2.7) are not always facet-defining for P∗,nest

S L .

Remark 5. The lower bounding inequality 0 ≤ yS (l) is facet-defining for P∗,nest
S L . However, the

inequalities 0 ≤ yS (k) , k = 1, . . . , l − 1 are redundant, since they are implied by 0 ≤ yS (k+1) and
by yS (k+1) ≤ yS (k) .

Remark 6. The standard linearization inequality yS (1) ≥
∑

i∈S (1) xi−(|S (1)|−1) is facet-defining
for P∗,nest

S L . However yS (k) ≥
∑

i∈S (k) xi − (|S (k)| − 1), k = 2, . . . , l are redundant, since they are
implied by yS (k−1) ≥

∑
i∈S (k−1) xi − (|S (k−1)| − 1) and yS (k−1) ≤ yS (k) −

∑
i∈S (k)\S (k−1) xi + |S (k)\S (k−1)|.

Remark 7. The standard linearization inequalities yS (k) ≤ xi, i ∈ S (k)\S (k−1) are facet-defining
for P∗,nest

S L for all k = 1, . . . , l, where S (0) = ∅. However yS (k) ≤ xi, i ∈ S (k−1) are redundant,
since they are implied by yS (k−1) ≤ xi, i ∈ S (k−1) and yS (k) ≤ yS (k−1) .

The results by Fischer et al. [51] actually imply that inequalities (4.2), (4.3), together
with the facet-defining inequalities of Remarks 5, 6 and 7, define the convex hull P∗,nest

S L for
the nested case.
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4.3 The case of two nonlinear monomials

In this section, we present some results for the special case of a multilinear function f (x) =

aS
∏

i∈S xi + aT
∏

i∈T xi +
∑

i∈[n] aixi containing exactly two nonlinear monomials indexed by
S and T . Our first result states that the 2-links associated with S and T are facet-defining
for P∗S L, whenever |S ∩T | ≥ 2. As observed in Section 4.1, the 2-links are valid but redundant
for |S ∩ T | < 2. Our second and main result is a theorem stating that the 2-links, together
with the standard linearization inequalities, provide a complete description of P∗S L. Since the
case of nested monomials has been covered above, we assume throughout this section that
S * T and T * S . Moreover, we also assume for simplicity that S ∪ T = [n]: indeed,
when S ∪ T ⊂ [n], the value of the variables in R = [n]\(S ∪ T ) is unrestricted, and hence
conv(XS L) = conv(X′S L) × [0, 1]|R|, where X′S L is the projection of XS L on the subspace defined
by the variables xi (i ∈ S ∪ T ), yS , and yT . So, it is sufficient to understand the case where
S ∪ T = [n].

Proposition 7. The standard linearization inequalities (2.5), (2.6) and (2.7) are facet-defining
for the case of a function f containing exactly two nonlinear monomials defined by subsets S
and T such that S * T and T * S .

Proof. Let x = (x1, . . . , xn), let ui denote the n-dimensional unit vector with ith component
equal to one, let y = (yS , yT ), and let vS = (1, 0), vT = (0, 1), respectively.

To prove that inequality (2.5) (for monomial S and variable i ∈ S ) is facet-defining, one
can use the same technique as in the proof of Proposition 6, using the following set of points
(in the given order): (0, 0); (u j, 0), for j = 1, . . . , n, j , i; (

∑
j∈S u j, vS ); (

∑
j∈S∪T u j, vS + vT ).

Similarly, for inequality (2.6) (for monomial S ), one can use the following points: (
∑

i∈S ui, vS );
for each k ∈ S , (

∑
i∈S ,i,k ui, 0); for each k ∈ T\S , (uk +

∑
i∈S ,i, j ui, 0) (where j ∈ S if S ∩T = ∅,

and j ∈ S ∩ T otherwise); (
∑

i∈S∪T ui, vS + vT ).
Finally, for inequality (2.7) (for monomial S ) one can use the following points: (0, 0);

(ui, 0), for i = 1, . . . , n; (
∑

i∈T ui, vT ).
For monomial T , the proofs are symmetric. �

Note that Proposition 7 is valid for any value of |S ∩ T |.

Proposition 8. The 2-links

yS ≤ yT −
∑

i∈T\S

xi + |T\S | (4.5)

yT ≤ yS −
∑

i∈S \T

xi + |S \T |, (4.6)

are facet-defining for P∗S L, the convex hull of the integer points of the standard linearization
polytope associated with a function f containing exactly two nonlinear monomials defined
by subsets S and T such that |S ∩ T | ≥ 2.
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Proof. As in the proof of Proposition 7, let x = (x1, . . . , xn), let ui denote the n-dimensional
unit vector with ith component equal to one, let y = (yS , yT ), and let vS = (1, 0), vT = (0, 1),
respectively. Since Proposition 6 covers the case of nested monomials, we assume that S * T
and T * S . We will prove that (4.5) is facet-defining (the proof for (4.6) is symmetric).

Observe that P∗S L is full-dimensional (i.e., of dimension n + 2), given that the n points
(ui, 0), ∀i ∈ [n], the two points (

∑
i∈S ui, vS ) and (

∑
i∈T ui, vT ), and the point (0, 0) are contained

in P∗S L and are affinely independent (see also [46]).
Now, let F be the face of P∗S L represented by (4.5), F = {(x, y) ∈ P∗S L | yS = yT−

∑
i∈T\S xi+

|T\S |}. Let b(x, y) =
∑

i∈[n] bixi+bS yS +bTyT and assume that F is contained in the hyperplane
b(x, y) = b0. We will use the same technique as for Proposition 6 to see that F is a facet.

1. Consider (x, y) = (
∑

i∈T\S ui, 0) ∈ F. Assuming that (x, y) satisfies b(x, y) = b0, we
obtain that

∑
i∈T\S bi = b0.

2. Fix an index j ∈ S and consider (x, y) = (
∑

i∈T\S ui + u j, 0) ∈ F. Assuming that (x, y)
satisfies b(x, y) = b0 and using the previous condition we deduce that b j = 0 for all
j ∈ S .

3. Fix an index j ∈ T\S . Consider (x, y) = (
∑

i∈(S∪T )\{ j} ui, vS ) ∈ F. Assuming that
(x, y) satisfies b(x, y) = b0 we obtain

∑
i∈(S∪T )\{ j} bi + bS = b0, which, together with the

previous conditions, implies b j = bS for all j ∈ T\S .

4. Consider (x, y) = (
∑

i∈S∪T ui, vS + vT ) ∈ F. Assuming that (x, y) satisfies b(x, y) = b0,
and together with the previous conditions, we obtain bS = −bT .

Putting together the previous conditions, we have that b(x, y) = b0 takes the form bS yS −

bS yT + bS
∑

i∈T\S xi = bS |T\S |. �

Proposition 8 establishes that the 2-links are strong valid inequalities for P∗S L. We will see
that, in addition, when we add the 2-links to PS L, we obtain a complete description of P∗S L.
For this, let

P2links
S L = PS L ∩ {(x, yS , yT ) ∈ Rn+2 | (4.5), (4.6) are satisfied}.

It is easy to see that the bound constraints yS ≤ 1, yT ≤ 1 and xi ≥ 0, ∀i ∈ [n] are implied by
the standard linearization inequalities (2.5) and by the remaining bound constraints. We keep
them in the description of P2links

S L for simplicity of exposition. Note that for |S ∩ T | < 2, we
have that P2links

S L = PS L, since the 2-links are redundant.

Theorem 3. P∗S L = P2links
S L when the function f contains two nonlinear monomials.

For disjoint monomials, this can be derived directly from Remark 1. For the general case,
the proof relies on a classical result by Balas ([6, 7], see also [36] for the bounded case)
aimed at modeling the convex hull of the union of q polytopes P1, . . . , Pq ⊆ Rm such that, for
k ∈ [q], Pk is described by the inequalities

Akx ≤ bk,

0 ≤ x ≤ dk.
(4.7)
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The union ∪k∈[q]Pk can be modeled by introducing q binary variables zk, indicating whether
a point x is in the kth polytope, and q vectors of variables xk ∈ Rm. Then, a point x ∈ Rm

belongs to ∪k∈[q]Pk if and only if there exist x1, . . . , xq and z1, . . . , zq such that∑
k∈[q]

xk = x (4.8)

Akxk ≤ bkzk, k ∈ [q] (4.9)

0 ≤ xk ≤ dkzk, k ∈ [q] (4.10)∑
k∈[q]

zk = 1 (4.11)

zk ∈ {0, 1}, k ∈ [q]. (4.12)

Let Q be the set of points (x, x1, . . . , xq, z1, . . . , zq) satisfying (4.8)–(4.12). Balas’ result
states that this disjunctive model is perfect:

Proposition 9. [6, 7, 36] The convex hull of solutions to (4.8)–(4.12), that is, conv(Q), is
described by inequalities (4.8)–(4.11) and zk ∈ [0, 1] for k ∈ [q].

For any set W ⊆ Rn+l (defined on variables (x, w) ∈ Rn+l), let Pro jx(W) be the projection
of W on the space of the x variables. With these notations we can write the union of the
polytopes as ∪k∈[q]Pk = Pro jx(Q) and, by commutativity of the operators conv and Pro jx, we
have that

conv(∪k∈[q]Pk) = Pro jx(conv(Q)). (4.13)

So, Proposition 9 provides a perfect extended formulation of conv(∪k∈[q]Pk).
We are now ready for a proof of Theorem 3.

Proof. We will show that all vertices of P2links
S L are integer and therefore the inequalities

defining P2links
S L provide a perfect formulation of P∗S L (i.e., P2links

S L = P∗S L). Consider the
following set of inequalities, where (4.14)–(4.15) result from the standard linearization of
yS∩T =

∏
i∈S∩T xi, (4.16)–(4.18) result from the standard linearization of yS = yS∩T

∏
i∈S \T xi,

and (4.19)–(4.21) result from the standard linearization of yT = yS∩T
∏

i∈T\S xi :

yS∩T ≤ xi, ∀i ∈ S ∩ T, (4.14)

yS∩T ≥
∑

i∈S∩T

xi − (|S ∩ T | − 1), (4.15)

yS ≤ yS∩T , (4.16)
yS ≤ xi, ∀i ∈ S \T, (4.17)

yS ≥
∑

i∈S \T

xi + yS∩T − |S \T |, (4.18)

yT ≤ yS∩T , (4.19)
yT ≤ xi, ∀i ∈ T\S , (4.20)
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yT ≥
∑

i∈T\S

xi + yS∩T − |T\S |, (4.21)

0 ≤ yS ≤ 1, (4.22)
0 ≤ yT ≤ 1, (4.23)
0 ≤ yS∩T ≤ 1, (4.24)
0 ≤ xi ≤ 1, ∀i ∈ S ∪ T. (4.25)

Let P denote the polytope

P = {(x, yS , yT , yS∩T ) ∈ Rn+3 | (4.14) − (4.25) are satisfied},

and let P0 (respectively, P1) denote the faces of P defined by fixing yS∩T = 0 (respectively,
yS∩T = 1) in (4.14)–(4.25). So, P0 is described by the constraints∑

i∈S∩T

xi − (|S ∩ T | − 1) ≤ 0

yS∩T = yS = yT = 0
0 ≤ xi ≤ 1, ∀i ∈ S ∪ T

and P1 is described by

∑
i∈S \T

xi − (|S \T | − 1) ≤ yS∑
i∈T\S

xi − (|T\S | − 1) ≤ yT

yS ≤ xi, ∀i ∈ S \T
yT ≤ xi, ∀i ∈ T\S
0 ≤ yS ≤ 1
0 ≤ yT ≤ 1
yS∩T = xi = 1, ∀i ∈ S ∩ T
0 ≤ xi ≤ 1, ∀i ∈ (S \T ) ∪ (T\S ).

Observe that P0 is an integer polytope because it is defined by a (totally unimodular) cardinal-
ity constraint. Polytope P1 is also integer, because it is defined by the standard linearization
constraints corresponding to two monomials on disjoint sets of variables, namely,

∏
i∈S \T xi

and
∏

i∈T\S xi; hence we can use the fact that the inequalities defining PS L are a perfect for-
mulation for a single nonlinear monomial.

As a consequence, conv(P0 ∪ P1) also is an integral polytope. Our objective is now to
describe this polytope and, namely, to show that conv(P0∪P1) = P. In view of Proposition 9,
a point (x, yS , yT , yS∩T ) belongs to conv(P0∪P1) if and only if there exist x0

i , x
1
i ∈ R

n (i ∈ S∪T )
and y0

S , y1
S , y0

T , y1
T , y0

S∩T , y1
S∩T , z0, z1 ∈ R such that
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x0
i + x1

i = xi, ∀i ∈ S ∪ T, (4.26)

y0
S + y1

S = yS , (4.27)

y0
T + y1

T = yT , (4.28)

y0
S∩T + y1

S∩T = yS∩T , (4.29)∑
i∈S∩T

x0
i ≤ (|S ∩ T | − 1) z0, (4.30)

y0
S∩T = 0, (4.31)

y0
S = 0, (4.32)

y0
T = 0, (4.33)

x0
i ≤ z0, ∀i ∈ S ∪ T, (4.34)

0 ≤ x0
i , ∀i ∈ S ∪ T, (4.35)∑

i∈S \T

x1
i − y

1
S ≤ (|S \T | − 1) z1, (4.36)∑

i∈T\S

x1
i − y

1
T ≤ (|T\S | − 1) z1, (4.37)

y1
S ≤ x1

i , ∀i ∈ S \T, (4.38)

y1
T ≤ x1

i , ∀i ∈ T\S , (4.39)

y1
S∩T = z1, (4.40)

y1
S ≤ z1, (4.41)

0 ≤ y1
S , (4.42)

y1
T ≤ z1, (4.43)

0 ≤ y1
T , (4.44)

x1
i = z1, ∀i ∈ S ∩ T, (4.45)

x1
i ≤ z1, ∀i ∈ (S \T ) ∪ (T\S ) (4.46)

0 ≤ x1
i , ∀i ∈ (S \T ) ∪ (T\S ) (4.47)

z0 + z1 = 1, (4.48)

z0 ≤ 1, (4.49)

0 ≤ z0, (4.50)

z1 ≤ 1, (4.51)

0 ≤ z1. (4.52)

Let W denote the polytope defined by constraints (4.26)-(4.52). We will explicitly calcu-
late the projection Pro j(x,yS ,yT ,yS∩T )(W) = conv(P0 ∪ P1).

First, we simplify constraints (4.26)-(4.52) using the following observations:
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• Substituting (4.32) in (4.27) we obtain y1
S = yS .

• Substituting (4.33) in (4.28) we obtain y1
T = yT .

• Substituting (4.31) in (4.29) we obtain y1
S∩T = yS∩T , which in turn gives z1 = yS∩T

using (4.40).

• Using z1 = yS∩T in (4.48) we have that z0 = 1 − yS∩T .

• Substituting (4.45) in (4.26) for i ∈ S ∩ T and using z1 = yS∩T , we have that x0
i =

xi − yS∩T , ∀i ∈ S ∩ T .

• Finally, (4.26) also gives that x1
i = xi − x0

i , ∀i ∈ (S \T ) ∪ (T\S ).

Applying these substitutions to (4.26)–(4.52), we obtain∑
i∈S∩T

xi − (|S ∩ T | − 1) ≤ yS∩T , (4.53)

yS∩T ≤ xi, ∀i ∈ S ∩ T, (4.54)
yS ≤ yS∩T , (4.55)
yT ≤ yS∩T , (4.56)
xi ≤ 1, ∀i ∈ S ∩ T, (4.57)
0 ≤ yS , (4.58)
0 ≤ yT , (4.59)
0 ≤ yS∩T ≤ 1, (4.60)∑
i∈S \T

xi −
∑

i∈S \T

x0
i ≤ yS + yS∩T (|S \T | − 1), (4.61)∑

i∈T\S

xi −
∑

i∈T\S

x0
i ≤ yT + yS∩T (|T\S | − 1), (4.62)

yS ≤ xi − x0
i , ∀i ∈ S \T, (4.63)

yT ≤ xi − x0
i , ∀i ∈ T\S , (4.64)

yS∩T ≤ 1 − x0
i , ∀i ∈ (S \T ) ∪ (T\S ), (4.65)

xi − x0
i ≤ yS∩T , ∀i ∈ (S \T ) ∪ (T\S ), (4.66)

x0
i ≤ xi, ∀i ∈ (S \T ) ∪ (T\S ), (4.67)

0 ≤ x0
i , ∀i ∈ (S \T ) ∪ (T\S ). (4.68)

We will now use the Fourier-Motzkin elimination method to project out all variables x0
i from

(4.53)–(4.68), for i ∈ (S \T ) ∪ (T\S ), so as to obtain a description of conv(P0 ∪ P1) in the
space of variables (xi, yS , yT , yS∩T ).

Notice that constraints (4.53)–(4.60) will not play any role in the projection, since they
do not involve the variables x0

i .
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4.3. The case of two nonlinear monomials

Proceeding by induction on the number of eliminated variables, let I ⊆ S \T and J ⊆ T\S
be the sets of indices such that variables x0

i have been projected out for all i ∈ I ∪ J, and
let |I| = p, |J| = q. As induction hypothesis, suppose that after eliminating the variables
in I ∪ J, the formulation is defined by constraints (4.53)–(4.60) together with the following
inequalities:

0 ≤ xi ≤ 1, ∀i ∈ I ∪ J, (4.69)
yS ≤ xi, ∀i ∈ I, (4.70)
yT ≤ xi, ∀i ∈ J, (4.71)∑
i∈S \T

xi −
∑

i∈(S \T )\I

x0
i ≤ yS + yS∩T (|S \T | − (p + 1)) + p, (4.72)∑

i∈T\S

xi −
∑

i∈(T\S )\J

x0
i ≤ yT + yS∩T (|T\S | − (q + 1)) + q, (4.73)

yS ≤ xi − x0
i , ∀i ∈ (S \T )\I, (4.74)

yT ≤ xi − x0
i , ∀i ∈ (T\S )\J, (4.75)

yS∩T ≤ 1 − x0
i , ∀i ∈ ((S \T )\I) ∪ ((T\S )\J), (4.76)

xi − x0
i ≤ yS∩T , ∀i ∈ ((S \T )\I) ∪ ((T\S )\J), (4.77)

x0
i ≤ xi, ∀i ∈ ((S \T )\I) ∪ ((T\S )\J), (4.78)

0 ≤ x0
i , ∀i ∈ ((S \T )\I) ∪ ((T\S )\J). (4.79)

Note that the induction hypothesis holds when I = J = ∅ and p = q = 0, since (4.69)–(4.79)
boils down to (4.61)–(4.68) in this case. Given I, J, p and q, let us now eliminate variable
x0

j , where j ∈ (S \T )\I, by the Fourier-Motzkin method (the analysis would be symmetric for
j ∈ (T\S )\J). This leads to inequality x j ≤ 1 by combining constraints (4.76) and (4.77) for
j, to inequality yS ≤ x j by combining (4.74) and (4.79) for j, and to inequality 0 ≤ x j by
combining (4.78) and (4.79) for j. Combining (4.72) and (4.76) yields∑

i∈S \T

xi −
∑

i∈(S \T )\(I∪{ j})

x0
i ≤ yS + yS∩T (|S \T | − (p + 2)) + p + 1.

All other combinations of inequalities containing x0
j in (4.69)–(4.79) lead to redundant con-

straints. So, clearly, the formulation obtained after projecting out x0
j is the same as (4.69)–

(4.79), with I replaced by I ∪ { j}. This shows that the induction hypothesis holds for all
I, J, p, q.

Assume now that we have eliminated all variables x0
i , i ∈ (S \T ) ∪ (T\S ). In this case, it

follows from the inductive reasoning that constraints (4.74)–(4.79) become vacuous. More-
over, the remaining constraints (4.53)–(4.60) and (4.69)–(4.73) are exactly (4.14)–(4.25),
the defining constraints of polytope P (except for the bounds yS ≤ 1, yT ≤ 1 and xi ≥ 0,
∀i ∈ S ∩T , which, as stated previously, are among the redundant constraints and can be easily
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Chapter 4. A class of valid inequalities for multilinear 0–1 optimization problems

derived from the remaining inequalities). Therefore, we have proved that P = conv(P0 ∪ P1),
which implies that P has integer vertices.

To conclude the proof, we are going to show next that P2links
S L is exactly the projection of

P on the space of (x, yS , yT ) variables. Indeed, if we use the Fourier-Motzkin elimination
method to project out variable yS∩T from (4.14)-(4.25), then we obtain the standard lineariza-
tion inequality (2.6) for S by combining constraints (4.15) and (4.18), and for T by combining
(4.15) and (4.21). Constraints (2.5) for yS , yT , and i ∈ S ∩T are obtained by combining (4.14)
and (4.16), and (4.14) and (4.19), respectively. Finally, the 2-links (4.5) and (4.6) are obtained
from inequalities (4.16), (4.21) and (4.18), (4.19), respectively.

So, we have established that P2links
S L = Pro j(x,yS ,yT )(P). Since P is bounded, every vertex

of P2links
S L is the projection of a vertex of P. This implies that all vertices of P2links

S L are integer,
since P is integral. Thus, the inequalities defining P2links

S L provide a perfect formulation for
XS L, that is, P2links

S L = P∗S L.
�

4.4 Computational experiments
We have seen in Section 4.3 that adding all possible 2-links to PS L provides a complete
description of P∗S L when the associated function contains two nonlinear monomials. This is
not true anymore for functions with three nonlinear monomials. A counterexample is given
by the function f3mon(x) = 5x1x2x4 − 3x1x3x4 − 3x1x2x3 + 2x3. If we define P2links

S L for f3mon

and optimize the corresponding linearized function L f over P2links
S L , we obtain the fractional

solution xi = 0.5 for i = 1, 2, 3, 4, y134 = 0.5, y124 = 0 and y123 = 0.5.
However, the 2-links might still be helpful for the general case of functions containing

more than two nonlinear monomials. In this section, we provide computational evidence
showing that the 2-links improve the LP-relaxation of the standard linearization, as well as the
computational performance of exact resolution methods. This may not be totally expected,
since the 2-links are in relatively small number (quadratic in the number of terms). It appears,
however, that capturing relations between pairs of terms improves the standard linearization
formulation to a certain extent. Buchheim and Klein [29] provide results of a related nature
for constrained binary quadratic problems, in the sense that they derive valid inequalities for
simplified problems involving a single quadratic term, and observe that these inequalities
result in significant improvements when applied to the general case.

In our experiments, we consider two classes of instances of the integer linear program

min L f (x, y) =
∑

S∈S aS yS +
∑

i∈[n] aixi (4.80)
subject to (x, y) ∈ PS L (4.81)

x ∈ {0, 1}n. (4.82)

The first class contains random instances that are randomly generated in the same way as in
[30]. The second class contains so-called Vision instances; they are inspired by an image
restoration problem which is widely studied in the field of computer vision. A description of
all instances is provided in the next subsections.
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4.4. Computational experiments

We have used CPLEX 12.6 [72] to run our experiments. We report two types of results.
First, we compare the bound obtained when solving the relaxed problem (4.80)-(4.81) with
the bound obtained when optimizing (4.80) over P2links

S L . Next, we focus on the computational
performance of the CPLEX IP-solver when solving the instances to optimality. We compare
four different versions of branch & cut to solve (4.80)-(4.82), namely:

1. no cuts: the automatic cut generation mechanism of CPLEX is disabled to solve the
plain standard linearization model (4.80)-(4.82).

2. user cuts: we solve the standard linearization model enhanced with the addition of
2-links (i.e., over the polytope P2links

S L ) but without additional automatic cut generation
by CPLEX.

3. cplex cuts: the automatic cut generation mechanism of CPLEX is enabled (with the
default setting of cut generation parameters) to solve the standard linearization model
(4.80)-(4.82).

4. cplex & user cuts (c & u): CPLEX is allowed to use two types of cuts, namely, the
2-links and any additional cuts that it can automatically generate to solve the standard
linearization model.

Note that when the 2-link inequalities are used in the branch & cut process, they are treated
as a pool of so-called “user cuts”. During the process, CPLEX first tries to cut off the current
solution by relying on these user cuts only, and next generates its own cuts as needed.

Except for the cut generation parameters, all other IP resolution parameters are set to
default. Several preliminary tests have been performed in order to determine the best settings
of CPLEX pre-processing parameters. As a result, we chose to set the Linear Reduction
Switch parameter to the non-default value “perform only linear reductions” since this is the
recommended setting by CPLEX whenever there are user cuts. A time limit of 1 hour was set
for each instance. All experiments were run on a PC with processor Intel(R) Core(TM) i7-
4510U CPU @ 2GHz-2.60GHz, RAM memory of 8 GB, and a Windows 7 64-bit Operating
System.

4.4.1 Random instances
Instance definition Random instances are generated as in [30]. All functions in this class
are to be maximized. They are of two different types.

• Random same degree. The number of variables n, the number of monomials m and
the degree d are given as input. For each triplet (d, n,m), five functions are generated
by randomly, uniformly and independently choosing the variables to include in each
of the m monomials. All monomials have the same degree d. Their coefficients are
drawn uniformly in the interval [−10, 10]. All instances in this class have small degree,
namely, d ∈ {3, 4}.
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• Random high degree. n and m are given as an input. Each of the m monomials is gen-
erated as follows: first, the degree d of the monomial is chosen from the set {2, . . . , n}
with probability 21−d. In this way, we capture the fact that a random polynomial is likely
to have more monomials of lower degree than monomials of higher degree. Then, the
variables and coefficient of the monomial are chosen as for the Random same degree

instances. Again, we generate five instances for each pair (n,m). These instances are of
much higer degree than the Random same degree instances. Their average degree will
be reported hereunder.

Results Table 4.1 presents the results of our experiments on instances Random same degree.
Each line displays averages over 5 instances. The first three columns specify parameters d,
n, m. The fourth and fifth columns display the relative gaps between the optimal value of the
integer programming problem on one hand, and the optimal value of the LP-relaxations of
the plain standard linearization (PS L), or of the standard linearization with 2-links (P2links

S L ) on
the other hand. Columns 6 to 9 present the execution times of each of the four tested methods
(>3600 is reported whenever no instance was solved to optimality), and columns 10 to 13
give the number of nodes of the branch & cut tree (“–” indicates that no instance was solved
to optimality). If the time limit was reached for one or more instances, the unsolved instances
are not taken into account in the averages. In addition, we write in parentheses () how many
instances were solved to optimality in this case.

Table 4.1 shows that as a general trend, the addition of 2-links to the standard lineariza-
tion is useful. Concerning the LP-relaxation bounds, we see that adding the 2-links always
improves the bound associated with PS L, by a gap percentage of 0.25% up to 8%. For ex-
ecution times, it is clear that cuts of any type are helpful, since method no cuts is, in most
cases, significantly worse than the other methods. In almost all cases, the fastest method is
either user cuts or cplex & user cuts (plain cplex cuts is fastest only three times). For large
instance sizes, cplex & user cuts is able to solve more instances than the competing meth-
ods. Looking at the number of nodes, it is interesting to notice that even when user cuts is
the fastest method, it usually generates more nodes than either cplex or cplex & user cuts.
This suggests that its performance is due to the smaller amount of time spent in generating
the cuts and in solving the corresponding LPs. In contrast, it seems that the performance of
cplex & user cuts is due to the fact that it produces smaller branch & cut trees. It may also
be interesting to observe that the difficulty of the problems clearly increases with the density
of the instances, that is, with the ratio m

n . This observation was also made by Buchheim and
Rinaldi [30] (for slightly smaller values of m). Dense instances feature more interactions
among monomials. This may increase the intrinsic difficulty of the instances and reduce the
effect of adding the 2-links (or other cuts).
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Table 4.1: Random same degree: computing times.
Instance LP bounds: gap % IP execution times (secs) IP number of nodes

d n m PS L P2links
S L no cuts user cplex c & u no cuts user cplex c & u

3 200 500 16.37 12.19 28.00 3.75 9.67 8.24 11557 1208 771 598
3 200 600 27.32 22.80 198.51 (3) 292.46 (4) 416.71 445.25 74409 (3) 93554 (4) 58004 60808
3 200 700 34.96 (2) 28.46 (2) > 3600 (0) 433.78 (1) 1541.8 (2) 1426.72 (2) – (0) 104504 (1) 128827 (2) 138958 (2)

3 400 800 4.51 3.49 3.65 2.57 7.46 6.68 423 251 210 135
3 400 900 9.31 7.93 502.41 243.58 104.52 87.75 65848 27489 6481 5405
3 400 1000 14.77 (3) 13.13 (3) 841.36 (1) 434.76 (1) 1334.96 (2) 1884.21 (3) 91939 (1) 37172 (1) 61899 (2) 84172 (3)

3 600 1100 2.78 2.32 14.09 9.88 16.07 14.52 1551 1121 891 626
3 600 1200 6.06 5.37 645.16 333.94 197.13 270.07 46502 25967 8616 12159
3 600 1300 10.17 (3) 9.15 (3) > 3600 (0) > 3600 (0) 2157.84 (2) 2234.61 (3) – (0) – (0) 84366 (2) 84655 (3)

4 200 350 16.50 11.23 6.50 3.20 9.98 5.89 2218 885 1468 722
4 200 400 22.25 15.84 663.89 207.28 341.68 108.36 262758 64383 70215 26307
4 200 450 28.72 20.81 999.44 324.28 664.39 382.55 285857 81764 98206 49588
4 200 500 35.09 (4) 24.84 (4) 2461.88 (1) 2268.63 (3) 1281.11 (1) 1340.34 (3) 586370 (1) 364125 (3) 143895 (1) 177784 (3)

4 400 550 4.37 3.26 36.97 17.10 14.76 11.6 6753 2743 1806 1318
4 400 600 8.15 5.91 58.79 13.86 63.1 20.19 7416 1458 5563 1184
4 400 650 10.22 7.72 177.74 (4) 681.06 348.79 514.13 22268 (4) 76797 25517 44714
4 400 700 12.25 (3) 8.92 (3) 1343.18 (2) 1179.95 (3) 602.68 (3) 329.05 (3) 130349 (2) 110322 (3) 36622 (3) 21418 (3)

4 600 750 1.54 1.28 3.42 3.05 6.15 5.89 278 234 222 142
4 600 800 2.59 2.14 16.54 12.08 18.37 15.5 1423 940 987 744
4 600 850 5.20 4.02 475.43 (4) 359.65 664.29 316.73 34555 (4) 28255 38502 21381
4 600 900 9.38 (4) 7.59 (4) 103.49 (1) 42.29 (1) 1526.84 (2) 1475.3 (4) 5865 (1) 2183 (1) 63850 (2) 61697 (4)
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Table 4.2 presents the results of our experiments on instances Random high degree. The
structure of the table is the same as for Table 4.1 except that d represents now the average
degree of the five instances considered in each line.

The interpretation of the results is very similar to the interpretation of Table 4.1. The
2-link inequalities, by themselves, already improve the LP bound, the execution time and the
size of the branch & cut tree, as compared to using no cuts. Method cplex cuts is usually more
effective than user cuts here. However, cplex & user cuts still provides an improvement over
cplex cuts, both in terms of execution time and size of the enumeration tree, and especially
for dense instances. Observe that for this class of instances, we can handle much higher den-
sities m

n than for the Random same degree instances. This is again similar to the observations
in Buchheim and Rinaldi [30], and might be due to the fact that many short monomials (of
size 2) tend to appear in this type of instances and may reduce their complexity.

44



4.4.
C

om
putationalexperim

ents

Table 4.2: Random high degree: computing times.
Instance LP bounds: gap % IP execution times (secs) IP number of nodes

d (avg) n m PS L P2links
S L no cuts user cplex c & u no cuts user cplex c & u

12.6 200 600 12.21 10.15 10.42 8.08 7.15 5.81 5838 3595 398 368
11.2 200 700 12.73 10.73 78.72 30.12 34.74 28.17 35521 12821 3979 2997
11 200 800 18.99 16.10 748.15 254.81 118.55 111.64 257212 76479 10584 9936
13.6 200 900 27.29 23.72 889.37 (2) 690.72 (2) 1029.25 863.39 242729 (2) 135884 (2) 93124 75445

11.2 400 900 3.03 2.43 3.09 1.72 4.15 3.88 859 330 82 61
11 400 1000 3.50 2.82 19.56 6.77 8.87 8.44 4404 1396 286 259
11.4 400 1100 7.27 6.64 55.64 (4) 347.27 59.86 53.66 11289 (4) 61545 2970 2459
11.8 400 1200 7.04 (4) 6.45 (4) 256.80 (3) 117.35 (3) 254.46 (4) 147.80 (4) 42754 (3) 18483 (3) 13987 (4) 9123 (4)

13.8 600 1300 1.38 1.21 2.97 2.53 5.42 5.42 252 207 58 51
11.4 600 1400 3.86 3.57 294.03 238.87 124.30 135.38 36485 27234 5650 5516
12.2 600 1500 4.63 4.10 593.70 228.02 100.28 86.36 67493 24272 3942 3444
12.6 600 1600 5.00 4.53 1374.74 (4) 561.85 (4) 345.37 280.95 110267 47097 11063 8844
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4.4.2 Vision instances
This class of instances is inspired from the image restoration problem, which is widely in-
vestigated in computer vision. The problem consists in taking a blurred image as an input
and in reconstructing an original sharp base image based on this input. The interest of the
vision instances, beside the practical importance of the underlying problem, is that they have
a special structure for which linearization and related pseudo-Boolean optimization methods
have proved to perform well (see, e.g., [79], [74], [52], [78]). It is out of the scope of the
present chapter to work with real-life images: we will rely on a simplified version of the
problem and on relatively small scale instances in order to generate structured instances and
to evaluate the impact of the 2-link inequalities in this setting. Accordingly, we do not focus
on the quality of image restoration (as engineers would typically do), but we devote more
attention to the generation of relatively hard instances.

Input image definition An image is a rectangle consisting of l × h pixels. We model it
as a matrix of dimension l × h, where each element represents a pixel which takes value 0
or 1. An input blurred image is constructed by considering a base image and by applying a
perturbation to it, that is, by changing the value of each pixel with a given probability. A base
image is denoted as Ibase and its pixels by pbase

i j . A blurred image is denoted by Iblur and its
pixels by pblur

i j .
We consider three base images, namely, top left rectangle, centre rectangle and cross

(see Figure 8.1), with three different sizes 10 × 10, 10 × 15 and 15 × 15.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0

(a) top left rectangle

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(b) centre rectangle

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(c) cross

Figure 4.1: Vision: base images of size 10 × 10.

We define three different types of perturbations that can be applied to a base image Ibase

in order to generate Iblur, namely:

• None: pblur
i j = pbase

i j with probability 1, ∀(i, j) ∈ [l] × [h].

• Low: pblur
i j = pbase

i j with probability 0.95, ∀(i, j) ∈ [l] × [h].

• High: pblur
i j = pbase

i j with probability 0.5, ∀(i, j) ∈ [l] × [h] with pbase
i j = 0.
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Regarding the class High, note that changing the value of every pixel with probability 0.5
would lead to blurred images that are totally unrelated to the original base image; that is why
we only apply the perturbation to the “white” pixels (originally taking value pbase

i j = 0) in this
case.

Image restoration model The image restoration model associated with a blurred image
Iblur is defined as an objective function f (x) = L(x) + P(x) that must be minimized. The
variables xi j, for all (i, j) ∈ [l] × [h], represent the value assigned to each pixel in the output
image. L(x) is the linear part and models similarity between the input blurred image Iblur

and the output. P(x) is the nonlinear polynomial part and emphasizes smoothness: it aims
at taking into account the fact that images typically consist of distinct objects, with pixels
inside each object having similar colors, while pixels outside the objects have a different
color. Much has been studied on the complex statistics of natural images, but we use here a
simplified model.

• Similarity: L(x) = aL
∑

i∈[l], j∈[h](pblur
i j − xi j)2 minimizes the difference between the value

of a pixel in the input image and the value that is assigned to the pixel in the output.
Since xi j ∈ {0, 1}, L(x) is indeed linear. The coefficient of L(x) is chosen as aL = 25.

• Smoothness: P(x) is a polynomial defined by considering 2 × 2 pixel windows Wi j =

{xi j, xi, j+1, xi+1, j, xi+1, j+1}, for i = 1, . . . , l − 1, j = 1, . . . , h − 1. Smoothness is imposed
by penalizing the objective function with a nonlinear monomial for each window Wi j.
The more the assignment of variables in the window Wi j looks like a checkerboard, the
higher the coefficient of the monomial, thus giving preference to smoother assignments.
Table 4.3 provides the penalties used for each of the 16 assignments of values to a 2×2
window. So for example, the assignment of values xi j = xi, j+1 = 1, xi+1, j = xi+1, j+1 = 0
(third row in Table 4.3) gives rise to the monomial 30xi jxi, j+1(1 − xi+1, j)(1 − xi+1, j+1) in
the objective function. We made the implementation choice of developing expressions
of the type 30xi jxi, j+1(1− xi+1, j)(1− xi+1, j+1) into a multilinear function. Notice that one
could also make the choice of not developing them and consider the function defined on
the set of variables xi and their complements x̄i = 1 − xi, which possibly represents the
structure of the underlying problem in a more accurate way and might have an impact
on the results. We describe this point in more detail in Chapter 10.

The choice of coefficients in Table 4.3 and of the linear coefficient aL was made by run-
ning a series of preliminary calibration tests aimed at finding a good balance between the
importance given to smoothness and to similarity, so that the resulting instances are not too
easy to solve.

Instance definition For each image size in {10 × 10, 10 × 15, 15 × 15} and for each base
image, we have generated five instances, namely: one sharp image (the base image with
perturbation type none), two blurred images with perturbation type low, and two blurred
images with perturbation type high.
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Table 4.3: Vision: variable assignments of 2 × 2 pixel windows and associated penalty coefficients.

Variable assignments Coefficient

0 0 1 1
10

0 0 1 1

0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1
20

0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1

1 1 0 0 1 0 0 1
30

0 0 1 1 1 0 0 1

1 0 0 1
40

0 1 1 0

Notice that the difference between the five instances associated with a given size and a
given base image is due to the input blurred image, which results from a random perturbation.
This only affects the similarity term L(x), while the smoothness model P(x) remains the same
for all instances of a given size.

Results Tables 4.4, 4.5 and 4.6 report the results obtained for images of size 10 × 10,
10 × 15 and 15 × 15, respectively. The structure of the tables is the same as for random
instances, except for the first two columns, which respectively specify the base image and the
perturbation applied. For the perturbation type none, we report the result obtained for a single
instance. For the perturbation type low or high, we report the averages for two instances.

We can see that, in all cases, the bounds derived from PS L are very bad (ranging from
400% to 2000% above the optimal value). The bounds are significantly improved (by about
50%) when we add 2-links to the formulation (see column P2links

S L ), but they still remain very
weak. Concerning execution times, methods no cuts and user cuts perform poorly and
reach the time limit for almost every instance. A drastic improvement in computing times is
achieved by cplex cuts, which solves the easiest instances in just a few seconds and the most
difficult ones in 110 seconds at most. Interestingly, however, a further significant improve-
ment is obtained by cplex & user cuts, which solves all instances in less than 13 seconds.
cplex & user cuts is in some cases up to ten times faster than cplex cuts and always solves
the problem at the root node, which suggests that its excellent performance is indeed due to
the addition of the 2-links.

It is interesting to notice the major effect played by the structure of the instances. Indeed,
vision instances have much worse LP gaps than random instances, and are much more dense
(reaching n = 225 variables and m = 1598 terms for the 15 × 15 images). For the vision
instances, we observe dramatic differences among the four solution methods that we have
tested. Nevertheless, these instances turn out to be much easier to solve to optimality than
random instances: it appears that the cuts generated by CPLEX and the 2-link inequalities
are very complementary and provide remarkable benefits for the class of vision instances. Of

48



4.4. Computational experiments

course, the larger the size of the image, the more difficult the problem becomes. Perturbation
types also have a big influence on complexity, since high perturbation type instances are
always harder to solve, as one might expect. Finally, the choice of base images does not seem
to have any impact on the difficulty of the instances.
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Table 4.4: Vision 10 × 10 (n = 100,m = 668): computing times.

Instance (10 × 10) LP bounds: gap % IP execution times (secs) IP number of nodes

Base image Perturbation PS L P2links
S L no cuts user cplex c & u no cuts user cplex c & u

top left rect none 584.07 296.70 > 3600 61.31 2.75 4.76 – 122037 0 0
top left rect low 679.57 352.33 > 3600 105.91 4.70 0.74 – 220003 4 0
top left rect high 482.95 253.18 > 3600 > 3600 16.22 2.52 – – 77.5 0

centre rect none 1074.53 581.13 > 3600 304.89 6.05 0.81 – 625644 0 0
centre rect low 1038.39 562.50 > 3600 494.95 7.41 0.94 – 1027936 0 0
centre rect high 525.25 277.48 > 3600 > 3600 11.44 1.48 – – 0 0

cross none 1989.29 1100 > 3600 206.25 3.25 0.95 – 418973 0 0
cross low 1679.44 931.69 > 3600 669.79 8.49 1.63 – 1407712 0 0
cross high 379.48 192 > 3600 3062.91 (1) 10.15 1.45 – 5727483 (1) 3.5 0

Table 4.5: Vision 10 × 15 (n = 150,m = 1033): computing times.

Instance (10 × 15) LP bound: gap % IP execution times (secs) IP number of nodes

Base image Perturbation PS L P2links
S L no cuts user cplex c & u no cuts user cplex c & u

top left rect none 621.80 318.05 > 3600 > 3600 6.22 1.98 – – 0 0
top left rect low 749.58 396.66 > 3600 > 3600 15.50 2.04 – – 3.5 0
top left rect high 480.87 251.87 > 3600 > 3600 38.49 3.35 – – 42.5 0

centre rect none 859.13 458.65 > 3600 > 3600 7.94 2.04 – – 0 0
centre rect low 1015.13 552.04 > 3600 > 3600 15.74 2.59 – – 3.5 0
centre rect high 464.31 242.59 > 3600 > 3600 49.42 3.11 – – 64.5 0

cross none 1608.33 883.33 > 3600 > 3600 32.37 2.26 – – 0 0
cross low 1790.63 999.23 > 3600 > 3600 20.78 2.54 – – 7.5 0
cross high 468.24 245.07 > 3600 > 3600 38.22 3.46 – – 38.5 0
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Table 4.6: Vision 15 × 15 (n = 225,m = 1598): computing times.

Instance (15 × 15) LP bounds (gap %) IP execution times (secs) IP number of nodes

Base image Perturbation PS L P2links
S L no cuts user cplex c & u no cuts user cplex c & u

top left rect none 660.90 340.26 > 3600 > 3600 19.5 3.49 – – 0 0
top left rect low 714.29 374.27 > 3600 > 3600 28.06 6.41 – – 0 0
top left rect high 565.72 302.48 > 3600 > 3600 111.3 12.86 – – 126.5 0

centre rect none 698.13 366.75 > 3600 > 3600 30.12 4.71 – – 0 0
centre rect low 851.09 457.40 > 3600 > 3600 38.33 8.44 – – 6.5 0
centre rect high 483.33 253.69 > 3600 > 3600 97.17 10.34 – – 222 0

cross none 1284.52 698.57 > 3600 > 3600 16.54 5.63 – – 0 0
cross low 1457.22 801.10 > 3600 > 3600 22.30 7.26 – – 0 0
cross high 530.46 282.23 > 3600 > 3600 103.75 11.02 – – 80 0
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4.5 Conclusions
In this chapter, we have provided new results on the standard linearization technique, a well-
known approach to the optimization of multilinear polynomials in binary variables. We have
introduced the 2-link inequalities, a set of valid inequalities that express a relation between
pairs of monomials, and that strengthen the LP-relaxation of the standard linearization. Our
main result is that, for a function containing at most two nonlinear terms, the 2-links, together
with the classical standard linearization inequalities, provide a perfect formulation of the
standard linearization polytope P∗S L.

For the general case of objective functions with more than two nonlinear terms, the 2-
links are not enough to obtain a complete description of the standard linearization polytope.
However, our computational experiments show that the 2-links are still helpful for various
classes of instances. On one hand, the 2-links always improve the LP-relaxation bounds
derived from the standard linearization. The improvement is much larger for the computer
vision instances, which have very bad standard linearization bounds to begin with, than for
unstructured random instances. On the other hand, our results show that 2-links can be very
effective within a branch & cut framework. This is especially true when solving Vision

instances, where the addition of 2-links to the pool of available cuts allows CPLEX to obtain
the optimal solution without any branching and, as a consequence, significantly reduces the
solution time. The magnitude of this effect is even more surprising given that the 2-links
are rather simple inequalities and that they are in relatively small number (quadratic in the
number of terms of the objective function).

There are many interesting open questions arising from our research. Of course, it is un-
likely to obtain a complete description of the standard linearization polytope in the general
case (unless P = NP). It remains however interesting to investigate whether there are other
special cases of functions for which the 2-links provide a complete description of P∗S L. A
related question is to identify specially structured instances for which the impact of the 2-
links is computationally significant, as is the case for our Vision instances. Finally, another
natural question is whether it is possible to generate similar inequalities by establishing a link
between three or more monomials, and whether these inequalities would further tighten the
lower bounds and improve computational performance. A partial answer to this question has
been provided by Del Pia and Khajavirad [47], where the authors define the flower inequali-
ties, generalizing the 2-links to the case of several monomials such that a particular monomial
has an intersection of at least two variables with the rest of monomials. The authors prove
that flower inequalities, together with the standard linearization define a complete descrip-
tion for a certain acyclic hypergraphs, a result of a similar nature than the results presented in
Chapter 3.
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Quadratic reformulations
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Chapter 5

Introduction to quadratizations

The second part of this thesis is concerned with quadratic reformulations of problem (1.1),
also called quadratizations. A systematic study of quadratizations and their properties has
been initiated by Anthony, Boros, Crama and Gruber [5], where a quadratization is formally
defined as follows,

Definition 8. Given a pseudo-Boolean function f (x) on {0, 1}n, we say that g(x, y) is a quadra-
tization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary variables
y1, . . . , ym, such that

f (x) = min
y∈{0,1}m

g(x, y), ∀x ∈ {0, 1}n. (5.1)

It is clear that given a pseudo-Boolean function f and a quadratization g, minimizing f
over x ∈ {0, 1}n is equivalent to minimizing g over (x, y) ∈ {0, 1}n+m. Therefore, when a
quadratization of f is available, the nonlinear minimization problem (1.1) can be reformu-
lated as a quadratic one, without introducing additional constraints. Of course, the quadratic
problem is still difficult to solve, but such reformulations attempt to draw benefit from the
extensive literature and software for the quadratic case. Moreover, it is a well-known fact
that every pseudo-Boolean function f admits a quadratization [96].

The starting point of the results presented in this part of the thesis is Definition 8. This is
a very general definition encompassing many different quadratization methods, as opposed to
the standard linearization considered in Part I, which is a precise linear reformulation proce-
dure. Furthermore, not all quadratizations have the same properties or perform equally well
when solving the resulting quadratic problems, and even the definition of which properties
lead to “good” quadratizations is an open question. In the next paragraphs we highlight some
interesting properties for quadratizations.

Small number of auxiliary variables A desirable property of a quadratization is to intro-
duce a small number of auxiliary variables m, so that the size of the reformulation does not
increase too much with respect to the size of the original problem. Anthony et al. [5] estab-
lished tight upper and lower bounds on the number of variables that a quadratization requires
for any pseudo-Boolean function. Concerning the lower bound, the authors prove that there
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exist pseudo-Boolean functions of n variables for which every quadratization must involve at
least Ω(2

n
2 ) auxiliary variables, independently of the procedure used to define the quadratiza-

tion. As for the upper bound, the authors define a polynomial-time quadratization procedure
which uses at most O(2

n
2 ) variables for any pseudo-Boolean function (in particular, for any

function involving 2n terms). Furthermore, when considering functions of fixed degree d,
similar results are established, with a lower bound of Ω(n

d
2 ) variables and an upper bound of

O(n
d
2 ) variables.

Chapter 6 is concerned with the question of defining quadratizations using a small number
of auxiliary variables for special classes of pseudo-Boolean functions. We establish upper and
lower bounds on the number of auxiliary variables representing improvements of orders of
magnitude, with respect to the best known bounds. The most remarkable result concerns the
positive monomial (see also Section 5.1.2), for which the best upper bound published so far
was linear in n, whereas our new upper bound is logarithmic. Additionally, a lower bound
exactly matching the upper bound is provided. Logarithmic bounds are also established for
parity, exact k-out-of-n and at least k-out-of-n functions, improving the best known bounds
for these functions provided by Anthony, Boros, Crama and Gruber [4].

Submodularity Another interesting property for quadratic reformulations is the fact of
having good optimization properties such as submodularity. Submodular functions are some-
times seen as the discrete analogous of convex functions [88]. They play a key role in opti-
mization because problem (1.1), which is in general NP-hard, can be solved in polynomial
time if f is submodular (see [62, 75, 100]).

A quadratic pseudo-Boolean function is submodular if, and only if, all quadratic terms
have non-positive coefficients. This simple characterization gives a vague measure of dis-
tance from submodularity of a quadratization, which is the number of positive quadratic
terms. Moreover, this property was used by Hammer [63] to give a simple polynomial time
optimization algorithm for quadratic pseudo-Boolean functions based on an equivalence with
the minimum cut problem in a graph, which has proven very useful in the computer vision
literature (see Section 1.1.2 in Chapter 1). Large positive quadratic coefficients also seem to
have a negative impact on computational performance [21, 52, 74].

It is clear that if a function f admits a submodular quadratization, then f itself must be
submodular. However, it is difficult to identify which submodular functions can be quadra-
tized keeping this property. In fact, Živný, Cohen and Jeavons [103] proved that there exist
submodular pseudo-Boolean functions of degree four that do not admit a submodular quadra-
tization.

The results in this thesis have not considered the fact of generating submodular quadra-
tizations as an explicit objective. However, in Chapter 8 we briefly analyze the influence of
the number of positive quadratic terms on the computational performance of the resolution of
the corresponding quadratizations. It would be an interesting question to analyze this aspect
in a more thorough way.
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Exploiting structural properties of multilinear polynomials Another interesting prop-
erty of quadratic reformulations is their ability of better exploiting structural properties of the
original multilinear polynomials and the underlying applications.

An example of what we call structural property of a multilinear polynomial is the interac-
tion between pairs of monomials having a non-empty intersection. Concerning linear refor-
mulations, experimental results in Chapter 4 showed that adding information on interactions
between monomials to the model, for example using the 2-link inequalities, can be very use-
ful to solve instances inspired from the image restoration problem. These inequalities related
the auxiliary variables corresponding to intersecting monomials using constraints. Concern-
ing quadratizations, we will see in the remainder of this chapter that there exist quadratization
procedures that associate separate sets of auxiliary variables to each monomial, while other
procedures use common sets of auxiliary variables for different terms, which again might
add information on intersecting monomials to the model. The computational experiments
presented in Part III of this thesis clearly indicate that quadratizations using common sets of
auxiliary variables for different monomials present a better computational performance for
instances inspired from the image restoration problem.

From now on, the term structure of the original nonlinear functions will mostly refer to
interactions between monomials. Nevertheless, there exist other structural properties that
should be considered and that might have been already implicitly exploited by some refor-
mulations in the experiments of Part III.

For example, many functions arising in problems from the fields of computer vision,
signal processing or machine learning can be decomposed or separated as a sum of terms,
each of which only depends on a subset of variables XC ⊆ {x1, . . . , xn}

E(X) =
∑
C∈C

fC(XC), (1.8)

for C ⊆ 2[n] [57, 74, 92]. In fact, every pseudo-Boolean optimization problem can be written
in the form (1.8), but this decomposition becomes interesting for example when the inter-
sections between pairs of sets C ∈ C are small, when the subsets C have themselves small
cardinality, when the functions fC are the same for all C ∈ C, or when the functions fC have
interesting properties such as submodularity.

Some structural aspects of multilinear functions might be more easily viewed in terms of
the configuration of the edges of the hypergraph associated with the multilinear polynomial.
One can for example consider multilinear functions associated with acyclic hypergraphs or
with hypergraphs containing only cycles of short length, such as the functions considered in
Chapters 3 and 4, or by Del Pia and Khajavirad [47].

Similar properties have been studied by Del Pia and Khajavirad [48], who considered
cases in which the configuration of the monomials of the hypergraph allows the computation
of the convex hull P∗S L by decomposing the set of monomials into simpler subsets.

The submodularity property mentioned in the previous subsection is also an aspect of the
structure of pseudo-Boolean functions, but as proved by Živný, Cohen and Jeavons [103] it
cannot always be carried over to quadratic reformulations, even for functions of degree four.
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To this point it is not clear how exactly the previous properties are taken into account by
our reformulation methods, but experiments in Part III show that reformulations better mod-
eling interactions between monomials result in very good computing times for non-random
polynomials. Therefore, an interesting open question is to understand which of the previous
structural properties are better exploited by our reformulations.

5.1 Literature review and contributions
The remainder of this chapter reviews the literature concerning the most relevant quadratiza-
tion methods and positions the contributions of this thesis. Interestingly, much progress in the
understanding of quadratizations from both a methodological and a computational point of
view has been made in the field of computer vision, where these type of techniques perform
especially well for problems such as image restoration [52, 56, 74, 80, 97].

All the procedures reviewed in this section heavily rely on the assumption made in pre-
vious chapters that a pseudo-Boolean function f is represented by its unique multilinear
polynomial expression,

f (x1, . . . , xn) =
∑
S∈S

aS

∏
i∈S

xi +
∑
i∈[n]

aixi, (2.1)

where [n] = {1, . . . , n}, S is the set of subsets S ∈ 2[n] such that aS , 0 and |S | ≥ 2, and
deg( f ) denotes the degree of the polynomial representation of f .

5.1.1 Rosenberg’s quadratization

Rosenberg [96] defined a general quadratization method applicable to every pseudo-Boolean
function. Assuming that a pseudo-Boolean function f is given by its multilinear expression,
the quadratic reformulation is achieved via an iterative procedure, where at each iteration a
product xix j is chosen from a highest-degree monomial f , and substituted by a new variable
yi j. A penalty term M(xix j − 2xiyi j − 2x jyi j + 3yi j) (where M is a large positive number) is
added to the objective function, enforcing that yi j = xix j at all optimal solutions. If there are
other highest-degree terms not involving product xix j, a different product can be substituted
by a different variable in the same iteration, thus decreasing the degree of f by one unit at
each iteration. This procedure is then repeated until obtaining a quadratic function. There
are many ways of choosing the order of substituting products xix j, and this choice can make
a difference in the number of auxiliary variables and the properties of the resulting quadratic
function. Rosenberg’s quadratization can be applied to any f , proving that every pseudo-
Boolean function admits a quadratization. Moreover, this transformation can be computed in
an efficient way. An important drawback of this approach is that the penalty terms introduce
many large positive coefficients, resulting in a highly non-submodular quadratization, even if
the input function f was submodular, meaning that the resulting quadratic problem becomes
difficult to minimize.
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5.1.2 Termwise quadratizations
Termwise quadratizations are a family of quadratization techniques that have attracted much
interest in the literature, relying on the intuitive idea that one can define a quadratization for
f by providing a quadratization for each term in its multilinear representation (2.1) indepen-
dently, using separate sets of auxiliary variables. More precisely, if gS (x, yS ) is a quadratiza-
tion of the monomial aS

∏
i∈S xi, where the vectors of auxiliary variables yS are distinct for all

monomials, then g(x, y) =
∑

S∈2[n] gS (x, yS ) is a quadratization of f . Notice that, when relying
on termwise quadratizations, we will always require at least t variables, where t is the number
of terms. When t is large (say Ω(2n)), then the quadratization defined by Anthony et al. [5]
provides a much better bound of O(2

n
2 ) auxiliary variables. In order to construct termwise

quadratizations, it is necessary to understand quadratizations of positive monomials (aS > 0)
and of negative monomials (aS < 0).

Negative monomials

The case of negative monomials, or monomials with a negative coefficient, is well understood.
A simple expression to quadratize cubic negative monomials has been introduced by Kol-
mogorov and Zabih [80]. This expression was later extended to higher degrees by Freedman
and Drineas [56], where a quadratization for a degree n negative monomial Nn(x) = −

∏n
i=1 xi

is given by

Nn(x) = min
y∈{0,1}

(n − 1)y −
n∑

i=1

xiy. (5.2)

This quadratization uses a single auxiliary variable, which is the best that one can expect for
n ≥ 3. Moreover, this quadratization is submodular because all quadratic terms have negative
coefficients.

Anthony et. al proved in [5] that when attempting to quadratize a negative monomial
using a single auxiliary variable and in such a way that there exists no other quadratization
which is strictly smaller point by point, one only has two options, either using Freedman and
Drineas’ quadratization (5.2) or the following expression

s+
n (x, y) = (n − 2)xny −

n−1∑
i=1

xi(y − x̄n). (5.3)

Other more complex quadratizations for negative monomials are the type-I and type-I
transformations introduded by Rother, Kohli, Feng and Jia [97]. These quadratizations are
defined on the set of variables xi and their complements x̄i = 1 − xi. The type-I transforma-
tion transformation requires two auxiliary variables and the type-II transformation only one.
However, these quadratizations are not submodular.

Positive monomials

Surprisingly, the case of monomials with a positive coefficient is much less understood than
the case of negative monomials.
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Defining a quadratization for the degree n positive monomial Pn(x) =
∏n

i=1 xi using
Rosenberg’s procedure requires the introduction of n−2 auxiliary variables. Another quadra-
tization requiring n − 2 auxiliary variables was given by Boros and Gruber [21], by noticing
that a positive monomial of degree n can be substituted by a positive quadratic term plus a
sum of negative monomials on the xi variables and their complements x̄i = 1− xi. Using (5.2)
for negative monomials, the authors obtain the following quadratization

x1 . . . xn − xn−1xn = −

n−2∑
i=1

x̄i

n∏
j=i+1

x j = min
y∈{0,1}n−2

n−2∑
i=1

yi

n − i − x̄i −

n∑
j=i+1

x j

 . (5.4)

Moreover, it is also observed in [21] that transformations type-I and type-II [97] for negative
monomials can also be used to quadratize positive monomials with at least n − 2 auxiliary
variables, by using the first equality in (5.4).

More recently, Ishikawa [73, 74] defined the following quadratization for Pn(x):

Pn(x) = min
y∈{0,1}m

m∑
i=1

yi(ci,n(−|x| + 2i) − 1) +
|x| (|x| − 1)

2
, (5.5)

where |x| =
∑n

i=1 xi, m = b n−1
2 c and

ci,n =

1, if n is odd and i = m,
2, otherwise.

Quadratization (5.5) uses b n−1
2 c auxiliary variables, and this is currently the best published

upper bound on the number of variables required to define a quadratization for the positive
monomial. Anthony et al. [4] gave an independent proof of the upper bound b n−1

2 c, based on
a representation result for arbitrary discrete functions. Interestingly, the quadratization of the
positive monomial defined in [4] is identical to Ishikawa’s for even values n but it is different
for odd values of n.

In Chapter 6 we provide a quadratization for the positive monomial using dlog(n)e − 1
auxiliary variables. This upper bound improves Ishikawa’s linear bound by orders of magni-
tude. We also prove that dlog(n)e − 1 is a lower bound on the number of variables required
to quadratize the positive monomial, exactly matching the upper bound. The bounds for the
positive monomial are derived from logarithmic bounds for more general classes of functions,
such as symmetric, exact k-out-of-n, at least k-out-of-n or parity functions.

Several other quadratizations are defined in [74], by considering different versions of
quadratization (5.5) where a subset of the xi variables are substituted by their complements
x̄i. Interestingly, type-I and type-II transformations can be obtained as a special case of
Ishikawa’s quadratization by considering the complements of a certain subset of the xi vari-
ables.

As a last remark, Ishikawa’s quadratization (5.5) introduces
(

n
2

)
positive quadratic terms

(the ones corresponding to S 2). Despite being a highly non-submodular quadratization, it
provides very good computational results for computer vision instances [73].

60



5.1. Literature review and contributions

5.1.3 Substituting common sets of variables
The previous section focused on quadratization methods based on the idea of defining a
quadratic reformulation for each monomial separately. Several approaches of a different
nature have also been considered in the literature. Let S be the set of monomials of the mul-
tilinear representation of a pseudo-Boolean function f . We have regrouped in this section
several contributions that are fundamentally different but that at some level share the idea of
identifying sets of variables that occur as subterms (subsets of variables) of several mono-
mials in S, and associating these subterms to the same auxiliary variable in all monomials
containing them.

Rosenberg’s quadratization could be perhaps considered the first method proposed within
this class, depending on its implementation. More specifically, on could implement Rosen-
berg’s procedure by substituting a product xix j in a monomial by an auxiliary variable y1

i j,
and then substitute the same product xix j in another monomial by an auxiliary variable y2

i j,
and so on (which would lead to a termwise quadratization). However one could also use the
same auxiliary variable yi j to substitute product xix j in each of its occurrences in the original
monomial set. In this case, Rosenberg’s procedure would fall into the category of substi-
tuting common sets of variables. However, we have presented this procedure separately in
Section 5.1.1 for historical reasons, because it was the first quadratization method proposed
and because no explicit implementation is proposed in the original article [96].

Generating all possible covers of a monomial by two subsets

Buchheim and Rinaldi present in [30, 31] a quadratic reformulation of a multilinear opti-
mization problem in binary variables that is based on the idea of, for every monomial S in
the original monomial set S, introducing an artificial binary variable y{I,J} for every possible
decomposition of S into two subsets, that is, for every pair of subsets I, J ∈ S such that
S = I ∪ J. The introduction of these variables results in a quadratic reformulation on vari-
ables y{I,J}. The method proposed in [30] is not aimed at solving this reformulation directly,
but at using efficient separation techniques. The authors prove that the standard linearization
polytope P∗S L defined in Chapter 2 is isomorphic to a face of the polytope of the quadratic
problem defined on variables y{I,J}. This implies that a complete polyhedral description of
P∗S L can be derived from a complete polyhedral description of the polytope associated to the
quadratic problem on y{I,J}, which is isomorphic to the boolean quadric polytope for the un-
constrained case. As a result, all the information and separation techniques of the boolean
quadric polytope can be used in the context of polynomial binary optimization.

These results in [30] are applicable when the monomial set S is reducible, meaning that
every monomial S ∈ S is the union of two other monomials in S. The authors show that
every monomial set can be made reducible and provide a heuristic algorithm to achieve this
property. This heuristic algorithm relates to the idea of finding common subsets of variables
in the original monomial set S, and works as follows: as long as S is not reducible, determine
two distinct variables i, j ∈ {1, . . . , n} such that the cardinality of the set

P(i, j) = {S ∈ S | i, j ∈ S and S , S 1 ∪ S 2 for any pair S 1, S 2 ∈ S\{S }}
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is maximized. Add the sets {i, j} and S \{i, j} to S for all S ∈ P(i, j), then iterate.
This algorithm attempts to minimize the number of sets {i, j} to be added to the original

monomial set. Finding the smallest set of monomials to add is an NP-hard problem even for
degree three (see for example Observation 3 in [24]). In approaches based on substituting
common sets of variables by the same auxiliary variable, heuristics relying on similar ideas
might be useful. In fact, Chapter 7 presents two heuristic algorithms based on the same idea
as Buchheim and Rinaldi’s heuristic to make an instance reducible, with the objective of
generating pairwise covers of small size.

Pairwise covers

A similar idea to the one of making instances reducible has been explored by Anthony et
al. [5], where the authors introduce the notion of pairwise covers, which consists in, given a
monomial set S, defining a hypergraph H such that S ∈ S with |S | ≥ 3, there are two sets
A(S ), B(S ) ∈ H such that |A(S )| < |S |, |B(S )| < |S |, and A(S ) ∪ B(S ) = S .

A key difference with Buchheim and Rinaldi’s approach [30] is that, once a pairwise
cover is defined, Anthony et al. define a quadratization of a pseudo-Boolean function f ,
by introducing auxiliary variables associated to elements in the pairwise cover H , which is
subsequently minimized. Therefore, it is interesting to define a pairwise cover of small cardi-
nality, in order to introduce only a small number of many auxiliary variables. As mentioned
previously, the problem of defining a pairwise cover of smallest size is NP-hard, even for
polynomials of degree three [24], but a small pairwise cover can be defined heuristically.

Chapter 7 is concerned with defining quadratizations that heuristically minimize the num-
ber of auxiliary variables introduced quadratizations based on pairwise covers. Correspond-
ing computational experiments are presented in Part III, where several termwise and pair-
wise covers based quadratizations and linearizations are compared. Among quadratization
methods, it seems that quadratizations based on pairwise covers perform much better com-
putationally, at least for non-random instances. Two possible explanations for this behavior
are that quadratizations based on pairwise covers seem to be better at modeling interactions
between monomials of the original nonlinear functions, and that they introduce less positive
quadratic terms.

A hypergraph-based reduction

Fix, Boros, Gruber and Zabih [52] define a quadratization method based on the idea of sub-
stituting by an auxiliary variable a subset of variables that is common to several monomials
in the monomial set of the original multilinear polynomial. In this case, a different quadratic
expression is given depending on whether the monomials with a common subset have a pos-
itive or a negative coefficient. Theorems 4 and 5 state the results for positive and negative
monomials, respectively.

Theorem 4 (Theorem 3.1 in [52]). Let

f (x) =
∑
S∈S

αS

∏
j∈S

x j
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be a multilinear polynomial with monomial set S ⊆ 2[n], such that αS > 0 for all S ∈ S, and
that there exists a common set C ⊆ S , for all S ∈ S. Then,

f (x) = min
y∈{0,1}

∑
S∈S

αS

 y∏
j∈C

x j +
∑
S∈S

αS

∏
j∈S \C

x j − αS y
∏
j∈S \C

x j

 (5.6)

Theorem 5 (Theorem 3.3 in [52]). Let

f (x) =
∑
S∈S

αS

∏
j∈S

x j

be a multilinear polynomial with monomial set S ⊆ 2[n], such that αS < 0 for all S ∈ S, and
that there exists a common set C ⊆ S , for all S ∈ S. Then,

f (x) = min
y∈{0,1}

∑
S∈S

−αS

1 −∏
j∈C

x j −
∏
j∈S \C

x j

 y (5.7)

For positive monomials, the authors consider the case where C consists of a single vari-
able. In this case, expression (5.6) substitutes each positive monomial S of degree dS by a
positive quadratic term, a positive term of degree dS − 1 and a negative term of degree dS ,
meaning that the degree of the positive terms is reduced by one. Expression (5.6) can then be
applied repeatedly until obtaining positive terms of degree not larger than two. Notice how-
ever that for the case of negative monomials it is necessary that |C| ≥ 2, because otherwise
negative terms S of degree dS would be replaced by other negative terms of the same degree,
and the procedure might not terminate.

The choice of the common subset C might have a great impact on the performance of the
method, in a similar way as one would like to add a smallest possible number of subsets to
an instance for it to be reducible in Buchheim and Rinaldi’s approach [30], or to introduce
a small number of variables in Rosenberg’s procedure [96] and in quadratizations based on
pairwise covers [5].

In the implementation of this hypergraph-based reduction, the authors first reduce all posi-
tive terms to degree two by using Theorem 4, and negative terms are reformulated afterwards
using Freedman and Drineas’ quadratization (5.2). Fix et al. present the results of sev-
eral computational experiments comparing their hypergraph-based reduction to the termwise
quadratization using Ishikawa’s expression for positive monomials (5.5) and to a different
type of procedure, called generalized roof duality, which is not based on quadratic refor-
mulations but on finding a “most submodular” approximation of a pseudo-Boolean function
[76, 77]. The hypergraph-based reduction in [52] performs very well for several computer
vision problems, in particular for those problems where the monomial set is locally complete,
meaning that if a subset S is part of the initial monomial set, then all subsets S ′ ⊂ S are also
part of the initial monomial set.
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Chapter 6

Compact quadratizations for
pseudo-Boolean functions

This chapter presents upper and lower bounds on the number of auxiliary variables required to
define a quadratization for several classes of specially structured functions, such as functions
with many zeros, Symmetric functions, Exact k-out-of-n, At least k-out-of-n and Parity

functions and Positive monomials. 1

For Positive monomials, we provide a quadratization using only m = dlog(n)e−1 auxiliary
variables, which is a significant improvement with respect to Ishikawa’s linear bound [73,
74], reducing the upper bound on the number of auxiliary variables by orders of magnitude.
Moreover, we prove that one cannot quadratize the positive monomial using less than m =

dlog(n)e − 1 variables, thus providing a lower bound that exactly matches the upper bound.
This result is especially interesting in the context of termwise quadratizations.

Our quadratization of the Positive monomial is presented as a direct consequence of two
more general results that define quadratizations for Exact k-out-of-n and At least k-out-of-n
functions. Moreover, lower bounds on the number of variables required to quadratize Exact

k-out-of-n and At least k-out-of-n functions and hence the Positive monomial are derived
from a lower bound for an even more general class of functions, that we call Zero until k
functions, and are characterized by taking value zero for all x ∈ {0, 1}n with |x| =

∑n
i=1 xi < k.

In this chapter, we also define a quadratization for Symmetric functions using O(
√

n) =

2d
√

n + 1e variables, which matches the lower bound of Ω(
√

n) variables that was given by
Anthony et al. [4]. We also establish lower and upper bounds for the Parity function.

This chapter is structured as follows. Section 6.1 formally defines the considered func-
tions, illustrates their relations and provides a summary of the bounds. The precise statements
for lower and upper bounds are presented in Section 6.2 and in Section 6.3, respectively. Fi-
nally, Section 6.4 establishes some complementary lower bounds which are derived from a
generalization of some of functions considered in the first sections. These last bounds are
weaker than the bounds presented in Sections 6.2 and 6.3, but might nevertheless be useful

1The results presented in this chapter have been obtained together with Endre Boros and Yves Crama, and
have been submitted for publication [19].
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in other situations.

6.1 Definitions, notations and summary of contributions
Let us first define some notations. We assume throughout the chapter that n ≥ 1. Let x =

(x1, . . . , xn) ∈ {0, 1}n and let [n] = {1, . . . , n}. The Hamming weight of x is |x| =
∑n

i=1 xi,
that is, the number of ones in x. We denote the complement of x by x̄ = (x̄1, . . . , x̄n) =

(1 − x1, . . . , 1 − xn). Notice that |x̄| =
∑n

i=1 x̄i = n − |x|.
The original variables of the considered functions will be denoted by x, while auxiliary

variables of quadratizations will be denoted by y and in some cases z.

Definition 9. Zero until k functions. Let 0 ≤ k ≤ n be an integer. A Zero until k function
f : {0, 1}n → R is a pseudo-Boolean function such that f (x) = 0 if |x| < k, and such that
there exists a point x∗ ∈ {0, 1}n with |x∗| = k and f (x∗) > 0.

It is easy to check that f is a Zero until k function if and only if, in its unique multilinear
representation (1.2), all terms of degree smaller than k have coefficient zero, and there is one
term of degree k with a positive coefficient. In fact, when this is the case, the coefficients of
the multilinear representation are such that aS = f (xS ) for all |S | ≤ k, where xS ∈ {0, 1}n is
the characteristic vector of S , with components xS

i = 1 for i ∈ S and xS
i = 0 for i < S .

Definition 10. Symmetric functions. A pseudo-Boolean function f : {0, 1}n → R is
symmetric if its value only depends on |x|, that is, if there exists a function r : {0, . . . , n} → R
such that f (x) = r(|x|).

Definition 11. The Exact k-out-of-n function. Let 0 ≤ k ≤ n be an integer. The exact

k-out-of-n function is defined as

f=k(x) =

1, if |x| = k
0, otherwise.

(6.1)

Definition 12. The At least k-out-of-n function. Let 0 ≤ k ≤ n be an integer. The At least

k-out-of-n function is defined as

f≥k(x) =

1, if |x| ≥ k
0, otherwise.

(6.2)

Definition 13. The Positive monomial. When k = n, the exact n-out-of-n function is equal to
the At least n-out-of-n function. We call this function Positive monomial and denote it Pn(x).
Its polynomial expression is

Pn(x) =

n∏
i=1

xi (6.3)
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Figure 6.1: Compact quadratizations: relation between the considered classes of functions.

Zero until k Symmetric

Exact k-out-of-n At least k-out-of-n Parity

Positive monomial

Table 6.1: Compact quadratizations: summary of lower and upper bounds.
Function Lower Bound Upper Bound

Zero until k Ω(2
n
2 ) for some function (see [5]) O(2

n
2 ) (see [5])

dlog(k)e − 1 for all functions

Symmetric Ω(
√

n) for some function (see [4]) O(
√

n) = 2d
√

n + 1e

Exact k-out-of-n max(dlog(k)e, dlog(n − k)e) − 1 max(dlog(k)e, dlog(n − k)e)

At least k-out-of-n dlog(k)e − 1 max(dlog(k)e, dlog(n − k)e)

Positive monomial dlog(n)e − 1 dlog(n)e − 1

Parity dlog(n)e − 1 dlog(n)e − 1

Definition 14. The Parity function. The parity function πn(x) is defined as follows:

πn(x) =

1, if |x| is even,
0, otherwise.

(6.4)

Observe that Zero until k and Symmetric functions refer to classes of functions satisfy-
ing certain properties, while Exact k-out-of-n, At least k-out-of-n, Positive monomial and
Parity refer to uniquely defined functions, for a given n and a given k.

Figure 6.1 schematizes the relations between the previously defined classes of functions.
Classes on top of the figure are more general, and an arrow indicates whether a function is a
particular case of another one.

Table 6.1 presents a summary of the values of the lower and upper bounds described in
Section 6.2 and Section 6.3. (Here, and everywhere in the chapter we use the convention that
log(0) = −∞.)

It should be noted that the meaning of the lower and upper bounds presented in Table 6.1
for the class of Symmetric functions, and the Ω(2

n
2 ) bound for Zero until k functions are dif-

ferent from the rest. For example, for the Exact k-out-of-n function, the lower bound means
that we cannot quadratize the Exact k-out-of-n function with fewer than max{dlog(k)e, dlog(n−
k)e} − 1 variables and the upper bound means that we have defined a precise quadratization
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Chapter 6. Compact quadratizations for pseudo-Boolean functions

for the Exact k-out-of-n function using max{dlog(k)e, dlog(n− k)e} variables. For Symmetric

functions, the lower bound means that there exists at least one symmetric function requiring
Ω(
√

n) variables, while the upper bound means that all symmetric functions can be quadra-
tized using O(

√
n) variables. See Section 6.2.1 and Section 6.3.1 for precise statements.

Anthony et al. established in [4] an upper bound of d n
2e variables for the At least k-out-

of-n function, and an upper bound of b n
2c variables for the Exact k-out-of-n function. These

bounds are significantly improved in this chapter, where we define tight upper and lower
bounds that are logarithmic in n.

The lower bound for Symmetric functions presented in Table 6.1 is given in [4]. In the
same paper, a lower bound of Ω(

√
n) variables is also proved for quadratizations of the Parity

function that are linear in the y variables (so called y-linear quadratizations), and an upper
bound of b n

2c variables is provided for the Parity function. These earlier results for Parity are
also improved here, firstly because we do not restrict ourselves to y-linear quadratizations,
and secondly because the number of necessary auxiliary variables is reduced from linear to
logarithmic in the upper bound; the resulting lower and upper bounds are exactly equal.

For Zero until k functions, we present two different lower bounds. The lower bound
dlog(k)e − 1 is valid for all Zero until k functions, while the lower bound Ω(2

n
2 ) is valid for

almost all Zero until k functions. The corresponding result states that there exist Zero until

k functions requiring Ω(2
n
2 ) auxiliary variables in any quadratization. The upper bound for

Zero until k functions is the same as for general pseudo-Boolean functions (see [5]). Indeed,
the lower bound Ω(2

n
2 ) implies that the order of magnitude of the upper bound cannot be less

than this value; this is actually a rather natural observation, since for small values of k, most
pseudo-Boolean functions are Zero until k functions.

6.2 Lower bounds
This section formally states and proves the lower bounds on the number of auxiliary variables
summarized in Table 6.1.

6.2.1 Symmetric functions
A lower bound for the number of variables required to quadratize symmetric functions was
established by Anthony et al. [4]. We state their theorem for completeness.

Theorem 6 (Theorem 5.3 in [4]). There exist Symmetric functions of n variables for which
any quadratization must involve at least Ω(

√
n) auxiliary variables.

6.2.2 Zero until k, Exact k-out-of-n, At least k-out-of-n functions, and
the Positive monomial

We start this section with a lower bound for Zero until k functions which is a direct extension
of a result due to Anthony et al. [5].
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6.2. Lower bounds

Theorem 7. For every fixed integer k, there exist Zero until k functions of n variables for
which every quadratization must involve at least Ω(2

n
2 ) auxiliary variables.

Proof. The proof is analogous to the proof of Theorem 1 in [5], and we only briefly sketch it
here. For any m, let Vm be the set of pseudo-Boolean functions of n variables which can be
quadratized using at most m auxiliary variables. It was observed in [5] that Vm, viewed as a
subset of the vector space of all pseudo-Boolean functions, is contained in a finite union of
subspaces, each of dimension `(n,m) = O(nm + n2 + m2). On the other hand, for any fixed
k, the set of Zero until k pseudo-Boolean functions of n variables contains a subspace of
dimension 2n −O(nk) = Ω(2n), namely, the subspace spanned by the monomials

∏
i∈S xi with

|S | > k. It follows that, if m auxiliary variables are sufficient to quadratize every Zero until k
function, then `(n,m) = Ω(2n), and m = Ω(2

n
2 ). �

Observe that, as was the case for general pseudo-Boolean functions in [5], the bound in
Theorem 7 actually holds for almost all Zero until k functions, in the sense that the set of
Zero until k functions that require less than Ω(2

n
2 ) auxiliary variables has Lebesgue measure

zero, when compared to the whole space of Zero until k functions.
Furthermore, Theorem 7 implies that it is not possible to find an upper bound on the

number of auxiliary variables to define a quadratization for Zero until k that is smaller than
exponential in n – see Table 6.1. This also makes sense intuitively, since for a fixed k, the
proportion of Zero until k functions among all pseudo-Boolean functions tends to 1 as n goes
to infinity, and therefore, the same lower and upper bounds apply to Zero until k functions
as to general pseudo-Boolean functions.

We next present another lower bound for Zero until k functions.

Theorem 8. Assume that f is a Zero until k function with k ≥ 1 and that g(x, y) is a quadra-
tization of f with m auxiliary variables. Then,

m ≥ dlog(k)e − 1.

Proof. Let us define
r(x) =

∏
y∈{0,1}m

g(x, y). (6.5)

For every point x ∈ {0, 1}n with |x| < k, f (x) = 0 by definition of Zero until k functions.
Also, since g(x, y) is a quadratization of f (x), there exists y ∈ {0, 1}m such that g(x, y) = 0,
which implies that r(x) = 0 for all points x with |x| < k.

Moreover, since f is a Zero until k function we know that there exists a point x∗ ∈ {0, 1}n

such that |x∗| = k and f (x∗) > 0, which implies that g(x∗, y) > 0 for all y ∈ {0, 1}m, and hence
r(x∗) > 0. Let S ∗ = {i ∈ [n] | x∗i = 1} with |S ∗| = k.

In view of the observations following Definition 9, the unique multilinear expression of r
can be written as

r(x) =
∑
S⊆[n]
|S |≥k

aS

∏
i∈S

xi (6.6)

69



Chapter 6. Compact quadratizations for pseudo-Boolean functions

where aS ∗ = r(x∗) > 0. Thus,
deg(r) ≥ k. (6.7)

Now, the right-hand-side of (6.5) is a product of 2m functions of degree two, meaning that

deg(r) ≤ 2m+1, (6.8)

which together with (6.7) implies that m + 1 ≥ dlog(k)e. �

Notice the difference, of orders of magnitude, between the bounds given in Theorem 7,
which is valid for almost all functions, and in Theorem 8, which is valid for all functions. The
lower bound dlog(k)e − 1 given in Theorem 8 is rather weak for low values of k. However,
for the particular case of the Positive monomial it leads to a lower bound that exactly matches
the upper bound that we provide in Section 6.3.

Corollary 2. The Positive monomial Pn(x) is a Zero until n function, and therefore it cannot
be quadratized using less than dlog(n)e − 1 auxiliary variables.

For At least k-out-of-n and Exact k-out-of-n functions, the lower bound of Theorem 8
remains weak for small values of k.

Corollary 3. For every fixed k ≥ 1, the At least k-out-of-n function is a Zero until k func-
tion, and therefore it cannot be quadratized using less than dlog(k)e − 1 auxiliary variables.

Corollary 4. For every fixed k ≥ 1, the Exact k-out-of-n function is a Zero until k function,
and therefore it cannot be quadratized using less than dlog(k)e − 1 auxiliary variables.

However, for Exact k-out-of-n functions we can derive a tighter lower bound on the
number of auxiliary variables, with a difference of only one unit with respect to the upper
bound that will be defined in Section 6.3.2, by relying on the following property:

Observation 1. The Exact k-out-of-n function is such that

f=k(x1, . . . , xn) = f=n−k(x̄1, . . . , x̄n).

Theorem 9. Let k ≥ 1 and assume that g(x, y) is a quadratization of the Exact k-out-of-n
function f=k with m auxiliary variables. Then,

m ≥ max(dlog(k)e, dlog(n − k)e) − 1.

Proof. By Corollary 4, m ≥ dlog(k)e−1. By Observation 1, f=k(x1, . . . , xn) = f=n−k(x̄1, . . . , x̄n),
thus, by changing the names of the x variables we see that h(x, y) = g(x̄, y), viewed as a func-
tion of (x, y), is a quadratization of f=n−k(x1, . . . , xn) using m auxiliary variables. Corollary 4
implies that any quadratization of f=n−k(x1, . . . , xn) uses at least dlog(n − k)e − 1 auxiliary
variables, thus m ≥ dlog(n − k)e − 1, which completes the proof. �

Remark 8. Observe that max(dlog(k)e, dlog(n−k)e)−1 is not a valid lower bound for all Zero

until k functions. Indeed, consider for example a Positive monomial of degree k, seen as a
function f of n variables: f (x1, . . . , xn) =

∏k
i=1 x j, where n is such that dlog(n−k)e > dlog(k)e.

This is a Zero until k function. In Theorem 14 hereunder, we define a quadratization for this
Positive monomial that uses dlog(k)e − 1 auxiliary variables. This shows that dlog(n− k)e − 1
cannot be a lower bound on the number of auxiliary variables for all Zero until k functions.
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6.2.3 The Parity function

In this section we prove that dlog(n)e−1 is a lower bound on the number of variables required
to define a quadratization for the Parity function.

Theorem 10. Assume that g(x, y) is a quadratization of the Parity function πn(x) with m
auxiliary variables. Then,

m ≥ dlog(n)e − 1.

Proof. Let us define
r(x) =

∏
y∈{0,1}m

g(x, y). (6.9)

Note that deg(r) ≤ 2m+1, since g(x, y) is quadratic.
Note also that r(x) ≥ 1 whenever |x| is even and r(x) = 0 whenever |x| is odd. Therefore

we can write
r(x) =

∑
z∈{0,1}n
|z| even

r(z)
∏
i:zi=1

xi

∏
i:zi=0

(1 − xi).

The sign of the coefficient of
∏n

i=1 xi in each of the above terms is (−1)n. Thus, in the unique
multilinear representation of r(x),

∏n
i=1 xi has coefficient

(−1)n
∑

z∈{0,1}n
|z| is even

r(z) , 0,

and consequently, deg(r) = n. The inequality

n = deg(r) ≤ 2m+1

follows, implying the claim. �

6.3 Upper bounds

This section defines the quadratizations for Symmetric pseudo-Boolean functions, for the
Exact k-out-of-n and At least k-out-of-n functions, and for the Positive monomial and the
Parity function that lead to the upper bounds displayed in Table 6.1.

6.3.1 Symmetric functions

Let N be the set of nonnegative integers and Z = {0, 1, . . . , n}. Theorem 11 defines a quadra-
tization of Symmetric functions using 2d

√
n + 1e auxiliary variables.
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Theorem 11. Let f (x1, . . . , xn) be a Symmetric pseudo-Boolean function such that f (x) =

r(|x|), with r : N → R and r(k) = 0 for k > n, by convention. Let l = d
√

n + 1e, and choose
M ∈ R such that M > |r(k)| for all k ∈ Z. Then,

g(x, y, z) =

l−1∑
i=0

l−1∑
j=0

r(il + j)yiz j (6.10)

+ 2M

1 − l−1∑
i=0

yi

2

+ 2M

1 − l−1∑
j=0

z j


2

+ 2M

|x| −
l l−1∑

i=0

iyi +

l−1∑
j=0

jz j




2

is a quadratization of f using 2d
√

n + 1e = O(
√

n) auxiliary variables yi, zi, i = 0, . . . , l − 1.

Proof. Observe first that every integer k ∈ Z has a unique representation k = il + j with
0 ≤ i, j ≤ l − 1. So, for every x ∈ {0, 1}n, let us define integers i(x) and j(x) such that
|x| = i(x) l + j(x), 0 ≤ i(x) ≤ l − 1 and 0 ≤ j(x) ≤ l − 1 hold.

Let us then define auxiliary vectors y∗, z∗ ∈ {0, 1}l (with components indexed from 0 to
l − 1), such that

y∗i =

1 if i = i(x),
0 otherwise,

z∗j =

1 if j = j(x),
0 otherwise.

Let us observe next that due to the three terms involving M in (6.10), g(x, y, z) < M
if and only if y = y∗ and z = z∗. Due to the definition of the first term of g, in this case
g(x, y∗, z∗) = r(|x|) = f (x). �

The upper bound in Theorem 11 matches the order of magnitude of the lower bound given
in Theorem 6. Interestingly, in combination with Lemma 5.1 of [4], it also implies that every
pseudo-Boolean function can be quadratized using O(2n/2) auxiliary variables, a result proved
by another approach in [5].

Finally, observe that Theorem 11 can be generalized to a more general class of pseudo-
Boolean functions, for which the value of a given x ∈ {0, 1}n is determined by a weighted
sum of the values of the components xi instead of the the Hamming weight |x| =

∑n
i=1 xi of x.

More precisely, given a linear function L : {0, 1}n → {0, 1, . . . ,R} and a function r : N → R
with r(k) = 0 for k > R, consider the pseudo-Boolean function f (x) = r(L(x)). Theorem 11
holds for f by considering l = d

√
R + 1e and substituting |x| by L(x) in equation (6.10).
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6.3.2 Exact k-out-of-n and At least k-out-of-n functions
Theorem 12 and Theorem 13 are the main results of this section. They define, respectively, a
quadratization for the Exact k-out-of-n function and a quadratization for the At least k-out-
of-n function using at most dlog(n)e variables. The following observations will be useful in
the proofs of Theorems 12 and 13.

Let us define the following sets

Il
even = {0, 2, . . . , 2l − 2}, (6.11)

and
Il
odd = {1, 3, . . . , 2l − 1}. (6.12)

Observation 2. Observe that for all l ≥ 2,

Il
even =

 l−1∑
i=1

2iyi | (y1, . . . , yl−1) ∈ {0, 1}l−1

 , (6.13)

and

Il
odd =

1 +

l−1∑
i=1

2iyi | (y1, . . . , yl−1) ∈ {0, 1}l−1

 . (6.14)

Observation 3. Given integers 0 ≤ |x| ≤ n, 0 ≤ k ≤ n and l = max(dlog(k)e, dlog(n − k)e),
observe that

0 ≤ |x| − k + 2l ≤ 2l − 1, for |x| < k, (6.15)

and
0 ≤ |x| − k − 1 ≤ 2l − 1, for |x| > k. (6.16)

Proof. Note first that, by definition of l, 2l ≥ k and 2l ≥ n − k are satisfied for all k. The
first inequality of (6.15) holds because |x| ≥ 0 and 2l ≥ k, and the second one holds because
|x| < k. The first inequality of (6.16) holds because k < |x|, and the second one holds because
|x| − k ≤ n − k ≤ 2l. �

Let us define

Ak(x, y, z) = |x| − (k − 2l)z − (k + 1)(1 − z) −
l−1∑
i=1

2iyi,

where l = max(dlog(k)e, dlog(n − k)e), z ∈ {0, 1} and y = (y1, ..., yl−1) ∈ {0, 1}l−1.

Theorem 12. For each integer 0 ≤ k ≤ n, the function

Gk(x, y, z) =
1
2

Ak(x, y, z)(Ak(x, y, z) − 1) (6.17)

is a quadratization of the Exact k-out-of-n function f=k using

l = max(dlog(k)e, dlog(n − k)e) ≤ dlog(n)e

auxiliary variables y ∈ {0, 1}l−1 and z ∈ {0, 1}.
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Proof. Note first that Gk(x, y, z) ≥ 0 for all (x, y, z) and for all k, since it is the half-product
of two consecutive integers. Therefore, when |x| , k we only have to show that there exists
(y, z) such that Gk(x, y, z) = f=k(x) = 0.

We consider three cases:

1. If 0 ≤ |x| < k, set z = 1 so that Ak(x, y, 1) = |x| − k + 2l −
∑l−1

i=1 2iyi. By Observation 3,
0 ≤ |x| − k + 2l ≤ 2l − 1. Hence, using Observation 2 if |x| − k + 2l ∈ Il

odd, one can
choose y such that Ak(x, y, 1) − 1 = 0, and if |x| − k + 2l ∈ Il

even, one can choose y such
that Ak(x, y, 1) = 0.

2. If k < |x| ≤ n, set z = 0 so that Ak(x, y, 0) = |x| − k − 1 −
∑l−1

i=1 2iyi. By Observation 3,
0 ≤ |x| − k− 1 ≤ 2l − 1. Hence, using Observation 2 if |x| − k− 1 ∈ Il

odd, one can choose
y such that Ak(x, y, 0) − 1 = 0, and if |x| − k − 1 ∈ Il

even, one can choose y such that
Ak(x, y, 0) = 0.

3. Consider finally the case where |x| = k. When z = 1, we obtain Ak(x, y, 1) = 2l −∑l−1
i=1 2iyi ≥ 2, and hence Gk(x, y, 1) ≥ 1. When z = 0, Ak(x, y, 0) = −1−

∑l−1
i=1 2iyi ≤ −1,

and hence again Gk(x, y, 0) ≥ 1. The minimum value Gk(x, y, z) = 1 is obtained by
setting either z = yi = 1, or z = yi = 0, for i = 1, . . . , l − 1.

�

As announced earlier, the upper bound established in Theorem 12 almost perfectly matches
the lower bound given in Theorem 9. Moreover, Theorem 12 provides as a corollary an upper
bound on the number of variables required to obtain a quadratization of Symmetric functions.

Corollary 5. If f : {0, 1}n → R is a Symmetric function, the value of which is strictly above
its minimum value for at most d different Hamming weights |x|, then f can be quadratized
with at most d (dlog(n)e) variables.

Proof. Let r : {0, 1, . . . , n} → R be such that f (x) = r(|x|). Let α be the minimum value of
f (and of r), and let k1, . . . , kd be the values of |x| such that f (x) (and r(|x|)) is larger than α.
The result follows from Theorem 12 by observing that f can be expressed as

f (x) = α +

d∑
i=1

(r(ki) − α) f=ki(x).

�

Let us now turn to the case of At least k-out-of-n functions.

Theorem 13. For each integer 0 ≤ k ≤ n, the function

Gk(x, y, z) =
1
2

(Ak(x, y, z)) (Ak(x, y, z) − 1) + (1 − z) (6.18)
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is a quadratization of the At least k-out-of-n function f≥k using

l = max(dlog(k)e, dlog(n − k)e) ≤ dlog(n)e

auxiliary variables y ∈ {0, 1}l−1 and z ∈ {0, 1}.

Proof. Note again that Gk(x, y, z) ≥ 0 for all (x, y, z), because its first term is the half-product
of two consecutive integers and 1− z ≥ 0. Therefore, when |x| < k we only have to show that
there exists (y, z) such that Gk(x, y, z) = f≥k(x) = 0.

1. If 0 ≤ |x| < k, set z = 1. We obtain exactly the same expression as in the proof of
Theorem 12 and the same argument holds.

2. If |x| = k and z = 1, we obtain Ak(x, y, 1) = 2l−
∑l−1

i=1 2iyi ≥ 2, and hence Gk(x, y, 1) ≥ 1.
If z = 0, we have that Gk(x, y, 0) ≥ 2. As in the proof of Theorem 12, we attain the
minimum value Gk(x, y, z) = 1 by setting z = yi = 1, for i = 1, . . . , l − 1 .

3. Finally, let |x| > k. For z = 1,

Gk(x, y, 1) =
1
2

|x| − k + 2l −

l−1∑
i=1

2iyi

 |x| − k + 2l −

l−1∑
i=1

2iyi − 1

 .
Now,

(
|x| − k + 2l −

∑l−1
i=1 2iyi

)
≥ 2 because 2l −

∑l−1
i=1 2iyi ≥ 2 and |x| − k is strictly

positive. Hence, Gk(x, y, 1) ≥ 1.

For z = 0,

Gk(x, y, 0) =
1
2

|x| − k − 1 −
l−1∑
i=1

2iyi

 |x| − k − 1 −
l−1∑
i=1

2iyi − 1

 + 1.

By Observation 3, 0 ≤ |x|−k−1 ≤ 2l−1. Hence, using Observation 2 if |x|−k−1 ∈ Il
odd,

one can choose y such that Ak(x, y, 0) − 1 = 0, and if |x| − k − 1 ∈ Il
even, one can choose

y such that Ak(x, y, 0) = 0, thus achieving Gk(x, y, 0) = f≥k(x) = 1 in both cases.

�

The upper bound in Theorem 13 is larger than the lower bound given in Corollary 3 when
k < n

2 , but the bounds are equal (up to one unit) for larger values of k.

6.3.3 The Positive monomial
In this section we define a quadratization using dlog(n)e−1 auxiliary variables for the Positive

monomial. Since the Positive monomial is a particular case of the Exact k-out-of-n function
and of the At least k-out-of-n function (with k = n), Theorem 12 and Theorem 13 imply a
slighlty weaker upper bound. Nevertheless, the stronger upper bound in Theorem 14 can be
easily derived from the proofs of these theorems when k = n.

75



Chapter 6. Compact quadratizations for pseudo-Boolean functions

Theorem 14. Let l = dlog(n)e. Then,

g(x, y) =
1
2

(|x| + 2l − n −
l−1∑
i=1

2iyi) (|x| + 2l − n −
l−1∑
i=1

2iyi − 1) (6.19)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using dlog ne − 1 auxiliary
variables.

Proof. This is a direct consequence of the proofs of Theorem 12 and Theorem 13: indeed,
when setting k = n it is easy to verify that we can always fix z = 1 in the quadratizations
(6.17) and (6.18). �

As mentioned in the introduction of this chapter, Theorem 14 provides a significant im-
provement over the best previously known quadratizations for the Positive monomial, and
the upper bound on the number of auxiliary variables precisely matches the lower bound
presented in Section 6.2.

Remark 9. Although the quadratization (6.19), and the related expressions (6.17) or (6.18),
may seem somewhat mysterious, it is instructive to realize that they derive from rather simple
modifications of a more natural result: indeed, the readers may easily convince themselves
that, when n = 2l, then

g′(x, y) = (|x| −
l−1∑
i=0

2iyi)2

is a quadratization of Pn using log(n) auxiliary variables. This result clearly highlights the
underlying intuition, which is that |x| can always be expressed as |x| =

∑l−1
i=0 2iyi, except when

|x| = n.
When n < 2l, the quadratization g′ can be adjusted by fixing 2l − n variables xi to 1 in

P2l and in g′. Moreover, the number of auxiliary variables can be marginally reduced by
distinguishing between even and odd values of |x|. Altogether, this leads to Theorem 14.

Let us finally present the following family of quadratizations of the positive monomial,
the best of which uses d n

4e auxiliary variables (see [20] for a proof).

Theorem 15. For all integers n ≥ 2, if n
4 ≤ m ≤ n

2 , and N = n − 2m, then

g(x, y) =
1
2

(|x| − 2|y| − (N − 2)y1) (|x| − 2|y| − (N − 2)y1 − 1) (6.20)

is a quadratization of the positive monomial Pn =
∏n

i=1 xi using m auxiliary variables.

These quadratizations require a linear number of auxiliary variables but still improve the
b n−1

2 c bound of (5.5). Notice that Ishikawa’s quadratization (5.5) uses coefficients of absolute
values varying approximately between 1 and n, while the absolute values of the coefficients in
(6.19) and (6.20) vary roughly between 1 and n2, which might result in functions containing
coefficients of very different orders of magnitude, potentially inducing numerical problems
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when n is large. Moreover, note that dlog ne − 1 is equal to d n
4e when 3 ≤ n ≤ 12, so that the

difference in the number of auxiliary variables only becomes relevant for very high degrees.
Finally, the number of positive quadratic terms is also different in quadratizations (5.5), (6.20)
and (6.19), especially for large degrees, which might also impact computational performance.
All in all, the behavior of these different quadratizations in an optimization setting is unclear
and should be computationally tested. Some preliminary results can be found in Chapter 8.

6.3.4 The Parity function
Theorem 16. Let l = dlog(n)e. When n is even, the function

ge(x, y) =

|x| − n + 2l −

l−1∑
i=1

2iyi − 1

2

(6.21)

is a quadratization of the Parity function πn(x).
When n is odd, the function

go(x, y) =

|x| − n + 2l −

l−1∑
i=1

2iyi

2

(6.22)

is a quadratization of the Parity function πn(x).
Both ge(x, y) and go(x, y) use dlog(n)e − 1 auxiliary variables.

Proof. Assume that n is even. Then, 2l − n is even and the parity of |x| and |x| − n + 2l is the
same.

If |x| is odd, we only have to show that for each x, there exists a y such that ge(x, y) = 0,
because ge(x, y) ≥ 0 holds for all (x, y). Since |x| −n+2l is odd, we have that 0 ≤ |x| −n+2l ≤

2l − 1. Now, Observation 2 implies that for the right choice of y, ge(x, y) = 0 is satisfied.
If |x| is even, ge(x, y) ≥ 1 holds for all (x, y), because |x| − n + 2l −

∑l−1
i=1 2iyi − 1 is odd.

Moreover, since 0 ≤ |x| − n + 2l ≤ 2l we obtain miny∈{0,1}l−1 ge(x, y) = 1 with an appropriate
choice of y.

When n is odd, the proof is analogous by considering Il
even instead of Il

odd and by noticing
that |x| and |x| − n + 2l have different parities. �

6.4 Further lower bounds
This last section presents lower bounds on the number of variables required to define a
quadratization for a class of pseudo-Boolean functions generalizing At least k-out-of-n,
Exact k-out-of-n, Parity functions and a particular type of Symmetric functions. These
functions are called d-sublinear, and are characterized by the fact that they take value zero
everywhere, except on d hyperplanes. The main result of this section is Theorem 17, which
gives a logarithmic lower bound on the number of auxiliary variables required to define a
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quadratization for d-sublinear functions. We choose to present these results in a separate
section because the bounds derived from Theorem 17 are in general weaker than those pre-
sented in Section 6.2. Nevertheless, Theorem 17 may prove useful in other situations, and
establishes an interesting link with results obtained by Linial and Radhakrishnan [87] in a
different context (see also Alon and Füredi [2]).

Definition 15. A pseudo-Boolean function f : {0, 1}n → R is d-sublinear, if there exist
linear functions q1, . . . , qd such that

∏d
j=1 q j(x) = 0 whenever f (x) , 0. We say that the linear

functions q1, . . . , qd dominate f .
We say that a pseudo-Boolean function is sublinear if it is 1-sublinear.

In other words, f is d-sublinear if every point x∗ such that f (x∗) , 0 belongs to at least
one of the hyperplanes q1(x) = 0, . . . , qd(x) = 0.

For a linear function q = a0 +
∑n

i=1 aixi, let β(q) denote the number of variables with a
non-zero coefficient in q, that is,

β(q) = |{i ∈ {1, . . . , n} such that ai , 0}|.

We are going to use the following lemma.

Lemma 2 (Lemma 2 in [87]). Assume that r : {0, 1}n → R is a sublinear function dominated
by a linear function q, and assume that there exists a point x∗ such that r(x∗) , 0. Then,

deg(r) ≥
β(q)

2
.

Theorem 17. Assume that f is a d-sublinear function dominated by linear functions q1, . . . , qd,
and that there exists x∗ ∈ {0, 1}n such that f (x∗) > 0, q1(x∗) = 0 and

∏d
j=2 q j(x∗) , 0. Then,

the number m of auxiliary variables in any quadratization of f is such that

2m+1 ≥
β(q1)

2
− d + 1.

Proof. Let us define

r(x) =

d∏
j=2

q j(x)
∏

y∈{0,1}m
g(x, y),

and note that
deg(r) ≤ d − 1 + 2m+1,

because r is a product of d − 1 linear functions and 2m quadratic functions.
Since g is a quadratization of f and f (x∗) > 0, we have g(x∗, y) > 0 for all y ∈ {0, 1}m. By

assumption,
∏d

j=2 q j(x∗) , 0, and hence r(x∗) , 0.
Moreover, r is sublinear dominated by the function q1. Indeed, for points x with r(x) , 0,

the definition of r implies that q j(x) , 0 for all j = 2, . . . , n and g(x, y) , 0 for all y ∈ {0, 1}m,
thus f (x) , 0. But f is d-sublinear, thus q1(x) = 0, which implies that r(x) is sublinear.
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The conditions of Lemma 2 are satisfied, therefore

deg(r) ≥
β(q1)

2
,

which together with deg(r) ≤ d − 1 + 2m+1 proves the claim. �

The bound of Theorem 17 is of interest when d is small. In particular, for the special case
of Exact k-out-of-n functions (including the Positive monomial), we can take d = 1 and
q1(x) =

∑n
i=1 xi − k. This yields a lower bound log(n) − 2 that is only slightly weaker than the

bound established in Theorem 9. More generally, for arbitrary symmetric functions, we have
the following corollary.

Corollary 6. If f is a Symmetric function, the value of which is strictly above its minimum
value for at most d different Hamming weights |x|, where d ≤ µn + 1 and 0 ≤ µ < 1

2 , then the
number m of auxiliary variables in any quadratization of f is such that

m ≥ log(
1
2
− µ) + log(n) − 1.

Proof. As in the proof of Corollary 5, let α be the minimum value of f . Then, h = f − α is
strictly positive for d values of |x|, and Theorem 17 applies directly to h with d dominating
linear functions of the form qi(x) =

∑n
i=1 xi − ki, for i = 1, . . . , d. �

Again, this bound is relatively weak when compared, for instance, to the upper bound in
Corollary 5, but it could prove useful in some cases.

6.5 Conclusions
In this chapter we have established new upper and lower bounds on the number of auxil-
iary variables required to define a quadratization for several classes of specially structured
pseudo-Boolean functions defined on n binary variables. These bounds greatly improve the
best bounds previously proposed in the literature. Most remarkably, the best upper bound
published so far for the Positive monomial was linear in n, whereas our new upper bound is
logarithmic. Moreover, for the Positive monomial and for the Parity function, we have also
established lower bounds that exactly match the upper bounds.

Furthermore, we have provided logarithmic upper and lower bounds for Exact k-out-of-n
and At least k-out-of-n functions. For Symmetric functions we have proved an upper bound
of the order of O(

√
n), matching the order of magnitude of the best lower bound proposed in

the literature.
For the more general class of Zero until k functions, we have established two different

types of lower bounds, namely, a logarithmic bound in k which is valid for all functions in
this class, and an exponential bound in n, which is valid for almost all Zero until k functions
and which implies that the upper bounds available for general pseudo-Boolean functions are
also applicable for this class.
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Many additional questions arise from these results. From a theoretical point of view, it
would be interesting to explore further generalizations and classes of pseudo-Boolean func-
tions. For Exact k-out-of-n and At least k-out-of-n functions, the lower and upper bounds
are of the same order of magnitude, but it would be nice to close the remaining unit gap.
From an experimental perspective, it would be worth to examine the computational behavior
of the different proposed quadratizations when applied to generic pseudo-Boolean optimiza-
tion problems.
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Chapter 7

Heuristic algorithms for small pairwise
covers

The previous chapter provided, among other results, a quadratization using the smallest pos-
sible number of variables for positive monomials, allowing the definition of compact quadra-
tizations for any multilinear polynomial using termwise procedures. A potential disadvan-
tage of termwise procedures is that they might be worse at modeling structural properties of
the original polynomial problem, such as the interaction between monomials, because each
monomial is reformulated independently, using a different set of auxiliary variables. As re-
viewed in Chapter 5, quadratic reformulations relying on the idea of substituting subsets of
variables that appear in more than one monomial by the same auxiliary variable have also
been considered in the literature. This chapter focuses on an approach of this type, using the
concept of pairwise covers introduced by Anthony et al. [5].

Definition 16 ([5]). Given two hypergraphs S,H ⊆ 2[n], we say that H is a pairwise cover
of S if, for every set S ∈ S with |S | ≥ 3, there are two sets A(S ), B(S ) ∈ H such that
|A(S )| < |S |, |B(S )| < |S |, and A(S ) ∪ B(S ) = S .

Pairwise covers split every higher-degree monomial into two subterms, and each of this
subterms can be associated to an auxiliary variable to define a quadratization. Anthony et
al. [5] defined a quadratization in this way. We state here a slightly weaker version of the
corresponding theorem.

Theorem 18 (Theorem 4 in [5]). If S,H ⊆ 2[n] are two hypergraphs such that H ⊆ S

and H is a pairwise cover of S, then every pseudo-Boolean function of the form f (x) =∑
S∈S aS

∏
j∈S x j is such that

f (x) = min
y∈{0,1}m

∑
S∈S

aS

∏
j∈S

x j +
∑
H∈H

bH

yH

|H| − 1
2
−

∑
j∈H

x j

 +
1
2

∏
j∈H

x j

 , (7.1)

where bH = 0 for H ∈ S\H and

1
2

bH =
∑
S∈S:

H∈{A(S ),B(S )}

(
|aS | +

1
2

bS

)
,
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for H ∈ H . Moreover, if for each monomial S ∈ S we set yA(S ) =
∏

j∈A(S ) x j and yB(S ) =∏
j∈B(S ) x j and replace

∏
j∈S x j by yA(S )yB(S ), then (7.1) defines a quadratization of f , using at

most |H| auxiliary variables.

Intuitively, when substituting subproducts
∏

j∈A(S ) x j and
∏

j∈B(S ) x j by auxiliary variables,
the first summation of equation (7.1) is transformed into a quadratic function, and the second
summation is a penalty imposing that auxiliary variables are equal to subproducts. Note that
the hypothesis H ⊆ S is necessary because otherwise we could have higher-degree terms
in the second summation. The proof of Theorem 18 is based on the idea that y∗H =

∏
j∈H x j

minimizes the right-hand side of (7.1) for all x ∈ {0, 1}n, and for this value, the second
summation in the right-hand side vanishes.

Theorem 18 implies that every pseudo-Boolean function f admits a quadratization using
at most as many auxiliary variables as the size of a pairwise cover of its monomial set S,
raising the question of finding the smallest size of a pairwise cover H . This problem is NP-
hard even for functions of degree three (see Observation 3 in [24]). Moreover, Theorem 18
provides a constructive procedure to define a quadratization for f , when a pairwise cover
satisfying H ⊆ S is given. However, no precise method to construct such a pairwise cover
H has been defined in [5]. The remainder of this chapter describes three heuristic algorithms
to generate pairwise covers of small size.

Notice that, given a monomial set S, defining a pairwise cover H such that H ⊆ S is
very similar to the idea of making an instance reducible in [30], or to choosing an order of
substituting products of variables xix j by a new variable yi j in Rosenberg’s procedure [96].
The main difference with [30] is that if the monomial set S is already reducible, our heuristic
methods still aim at finding a pairwise cover of a small size and reformulate the problem using
Theorem 18, while the approach in [30] applies a separation algorithm. Heuristics 2 and 3 are
based on very similar ideas to the heuristic used in [30] to make an instance reducible. More
precisely, Remark 1 in [5] states that a monomial set S ⊆ 2[n] is reducible if it is a pairwise
cover of itself, which implies hypothesis H ⊆ S. The hypergraph-based reduction by Fix
et al. [52] is different in that sets of positive monomials and sets of negative monomials are
reformulated with different expressions, while the sign of the coefficient of the monomials
does not play any role here. Moreover, after reformulating sets of positive monomials, Fix et
al. use termwise quadratizations for negative monomials.

7.1 Building bricks of the heuristic algorithms
The purpose of this chapter is to describe three heuristic algorithms to generate pairwise
covers of small size. These algorithms have been implemented and tested in an experimental
setting comparing them with termwise quadratizations and linearizations. The results of these
experiments are presented in Chapter 8.

Given a pseudo-Boolean function f represented by its unique multilinear expression, let
S denote its monomial set. The three heuristic methods described in this chapter rely on a
set of ideas that we call building bricks and describe hereunder. A detailed pseudocode is
described later in this chapter.
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Building brick 1. The idea behind the three heuristics is to identify sets of variables that
appear as subsets of one or more monomials in the input monomial set S. From now on,
we call such sets of variables subterms. The heuristics differ in the order in which subterms
are considered to generate the pairwise cover. Therefore, the first step of each heuristic is
to construct priority list of subterms, that will be called PrioritySubterms, and it is the
criterion used to construct this list that differentiates the three heuristics.

Assume for a moment that we are given a priority list PrioritySubterms and that R is
an element of this list. Consider a monomial S ∈ S such that R ⊂ S . Then R and S \R are
subterms of S , and will correspond to A(S ) and B(S ) in the pairwise cover. We also say that
S is covered by R and S \R.

Building brick 2. A second list of monomials called TermsToSplit is maintained during
the execution of the algorithm. This list initially contains all terms of S having degree at least
three. As the algorithm progresses, whenever an element A(S ) or B(S ) consists of more than
three variables and is not part of the original monomial set S, it is added to the end of the
list TermsToSplit.

Remember that Theorem 18 requires H ⊆ S. If A(S ) or B(S ) are not initially in S, we
can add them to the objective function with a zero coefficient, but this also means that we
have to cover A(S ) or B(S ) if they contain more than three variables.

Building brick 3. The algorithm is executed while PrioritySubterms and TermsToSplit
are not empty. If the algorithm finished because PrioritySubterms is empty, this means
that there might remain some elements in TermsToSplit with degree larger than three. A
post-processing phase is then applied.

Building brick 4. Consider a general iteration of the algorithm where R denotes the current
element of PrioritySubterms. In this general iteration, we examine all monomials in
S ∈ S, and whenever R ⊂ S , monomial S will be covered by A(S ) = R and B(S ) = S \R.

1. If |A(S )| ≥ 3, then A(S ) is added to TermsToSplit (idem for B(S )).

2. If |B(S )| ≥ 2, then B(S ) is added at the end of PrioritySubterms.

The second point in building brick 4 means that we try to give some priority to substitute
B(S ) in other monomials S ′ such that B(S ) ⊂ S ′. Indeed, we are trying to minimize the size
of the pairwise cover, and since B(S ) is already in the pairwise cover, we would like to use it
to cover other monomials.

Building brick 5. During the execution of the algorithm, whenever we cover a monomial
S by A(S ) and B(S ), we check whether one of the subsets A(S ) and B(S ) has been already
considered in the pairwise cover. Assume for example that A(S ) already appeared in the pair-
wise cover of another monomial S ′ as A(S ′), meaning that A(S ) = A(S ′). When associating
auxiliary variables to the sets in the pairwise cover, we will impose yA(S ) = yA(S ′), because
both auxiliary variables actually represent the same subterm.
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The choice of setting yA(S ) = yA(S ′) might seem obvious, but we specify it here because
one could also introduce two different variables yA(S ) , yA(S ′) to represent the same subterm,
which would induce a termwise procedure if applied to all monomials.

Building brick 6. Finally, once a pairwise cover is constructed, the corresponding quadra-
tization is implemented using equation (7.1).

The remainder of this section presents the particular details of each heuristic. First, a
general description of the algorithm and of the procedure used to create the priority list
PrioritySubterms is described. Then a high-level pseudocode is provided for each heuris-
tic, together with an illustrative example for Heuristics 2 and 3. Some parts of the pseudocode
might be repetitive and can be skipped; they are described here for the sake of reproducibility,
in order to offer a detailed implementation of the algorithms tested in Chapter 8.

7.2 Heuristic 1: “Split the first two variables from the rest”

Priority list creation and general description

Heuristic 1 is relies on a very straightforward idea, which consists in splitting the first two
variables of each monomial S of size at least three from the rest of variables in S .

The list PrioritySubterms is not created explicitly in this algorithm, but there is an
implicit priority, which is the order in which monomials are given in S. More precisely, the
first element in PrioritySubterms consists of the first two variables of the first monomial
in S, the second element in the list consists of the first two variables of the second monomial,
and so on. As an implementation choice, and to obtain a simplest possible algorithm, point 2
in building brick 4 has not been applied in this case.

Pseudocode of Heuristic 1

Step 1: Create list TermsToSplit containing monomials with degree at least three

Step 2: Process list TermsToSplit

1. Retrieve the first element S of TermsToSplit

(a) Let S 0 be the set consisting of the first two variables of monomial S . Set A(S ) =

S 0, B(S ) = S \S 0.

(b) If |B(S )| ≥ 2, then add B(S ) to TermsToSplit.

2. If TermsToSplit is empty, then STOP. Else, iterate 1 and 2.
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7.3 Heuristic 2: “Most popular intersections first”
Priority list creation and general description

Heuristic 2 is based on the intuition that a small pairwise cover can be defined by giving
priority to substituting “popular” subterms first, where popular subterms are those appearing
frequently as subterms of monomials in the input S.

In Heuristic 2, PrioritySubterms is created by first computing all intersections be-
tween pairs of monomials and then counting the number of times where a certain subterm
appears as an intersection. Therefore, the first element of PrioritySubterms is the sub-
term that occurs most often as an intersection, the second element is the subterm that occurs
second most often as an intersection, and so on. Building bricks 1 to 6 are used in the imple-
mentation of this algorithm.

Illustrative example

We present a small example illustrating the main idea of Heuristic 2.

Example 1. If S = {{1234}, {1256}, {1278}}, the pairwise cover defined by

• A({1234}) = {12}, B({1234}) = {34}

• A({1256}) = {12}, B({1256}) = {56}

• A({1278}) = {12}, B({1278}) = {78}

consists of four elements, namely {{12}, {34}, {56}, {78}}, while another pairwise cover such
as

• A({1234}) = {13}, B({1234}) = {24}

• A({1256}) = {15}, B({1256}) = {26}

• A({1278}) = {17}, B({1278}) = {28}

consists of six elements, namely {{13}, {24}, {15}, {26}, {17}, {28}}. In the first pairwise cover,
we took into account that {12} appears as an intersection of pairs of monomials three times,
hence it is at the top of the priority list.

Pseudocode of Heuristic 2

Step 1: Create the priority list PrioritySubterms

1. Compute all two-by-two intersections of monomials in S and count the number of
times that a set of variables appears as a full intersection of two monomials in S.

2. Create PrioritySubterms as follows: the first subterm is the set with most occur-
rences as a full intersection of two monomials in S, the second subterm is the set with
second most occurrences as a full intersection of two monomials in S, and so on.
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Step 2: Create list TermsToSplit containing monomials with degree at least three

Step 3: Process list TermsToSplit following the order of PrioritySubterms

1. Retrieve the first set R of PrioritySubterms

2. Create an empty list SupersetsR

3. For every S in list TermsToSplit such that S ⊃ R, add S to SupersetsR

4. For every S in list SupersetsR

(a) Set A(S ) = R and B(S ) = S \R

(b) Remove S from TermsToSplit

(c) If |A(S )| ≥ 3, then add A(S ) to TermsToSplit

(d) If |B(S )| ≥ 2, then add B(S ) at the end of PrioritySubterms

(e) If |B(S )| ≥ 3, then add B(S ) to TermsToSplit

5. If PrioritySubterms is empty or TermsToSplit is empty, then STOP. Else, iterate
1, 2, 3, 4.

Step 4: Post-processing If TermsToSplit is not empty, then Step 2 of Heuristic 1 is
applied as a post-processing.

7.4 Heuristic 3: “Most popular pairs first”
Priority list creation and general description

Heuristic 3 is based on the same intuitive idea as Heuristic 2, where we tried to substitute
“popular” subsets of variables first. Heuristic 2 gave priority to substituting popular inter-
sections of pairs of monomials. However, it might well be possible that subsets of variables
that are not full intersections but only strict subsets of intersections appear more frequently
among the input set of monomials S.

Heuristic 3 creates PrioritySubterms by counting the number of times that a pair of
variables appears as a subterm of a monomial in the input. Shortly, we first generate all
subsets of size two of {x1, . . . , xn} and then we count, for each pair, the number of times
where it appears as a subterm of a monomial in the input S.

This idea is essentially the same as the one used by Buchheim and Rinaldi to make an
instance reducible [30]. The main difference is that Buchheim and Rinaldi use a separation
algorithm afterwards, while we implement the quadratization described in Theorem 18 and
solve the corresponding quadratic problem.

Steps 2, 3 and 4 in the pseudocode of Heuristic 3 are exactly the same as in Heuristic 2
and building bricks 1 to 6 are used in the implementation of this algorithm.
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Illustrative example

The following example illustrates the difference between Heuristic 2 and Heuristic 3, and
describes the motivation of Heuristic 3.

Example 2. If S = {{12348}, {12359}, {126789}}, all two-by-two intersections are given by
I = {{123}, {128}, {129}}, and each one occurs exactly one time. No matter which of the
three sets in I we substitute first, we will cover the monomials in S using five elements. For
example, if we start by substituting {123} in every monomial of set S we would cover its
elements as follows

• A({12348}) = {123}, B({12348}) = {48}

• A({12359}) = {123}, B({12359}) = {59}

• A({126789}) = {128}, B({126789}) = {679}

However, the subset of variables {12} is common to every monomial in S, but it is not a full
intersection of any pair of monomials. If we substitute {12} in every monomial of set S we
would cover its elements using four subsets

• A({12348}) = {12}, B({12348}) = {348}

• A({12359}) = {12}, B({12359}) = {359}

• A({126789}) = {12}, B({126789}) = {6789}.

Pseudocode of Heuristic 3

Step 1: Create the priority list PrioritySubterms

1. Generate all pairs (subsets of size two) of variables in {x1, . . . , xn} and count the number
of times that pair appears as a subset of a monomial in S.

2. Create list PrioritySubterms consisting of pairs of variables as follows: the first pair
in the list is the pair with most occurrences as a subterm of a monomial in S, the second
pair is the pair with second most occurrences as a subterm of a monomial in S, and so
on.

Step 2: Create list TermsToSplit containing monomials with degree at least three

Step 3: Process list TermsToSplit following the order of PrioritySubterms

1. Retrieve the first set R of PrioritySubterms

2. Create an empty list SupersetsR
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3. For every S in list TermsToSplit such that S ⊃ R, add S to SupersetsR

4. For every S in list SupersetsR

(a) Set A(S ) = R and B(S ) = S \R

(b) Remove S from TermsToSplit

(c) If |A(S )| ≥ 3, then add A(S ) to TermsToSplit

(d) If |B(S )| ≥ 2, then add B(S ) at the end of PrioritySubterms

(e) If |B(S )| ≥ 3, then add B(S ) to TermsToSplit

5. If PrioritySubterms is empty or TermsToSplit is empty, then STOP. Else, iterate
1, 2, 3, 4.

Step 4: Post-processing If TermsToSplit is not empty, then Step 2 of Heuristic 1 is
applied as a post-processing.
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Computational experiments
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Chapter 8

Comparing linear and quadratic
reformulations

This chapter presents the results of an extensive set of experiments evaluating computational
aspects of some linearization and quadratization methods presented in Part I and Part II of this
thesis. The structure of this chapter is as follows: Section 8.1 states the objectives and scope
and provides some technical specifications, Section 8.2 describes the considered methods
and instances, Section 8.3 provides some preliminary results using persistencies, Section 8.4
presents and analyzes the results of the experiments, and Section 8.5 presents some conclud-
ing remarks.

8.1 General considerations
Objectives The purpose of the experiments presented in this chapter is twofold.

A first objective is to compare the resolution times of several linear and quadratic re-
formulations of a nonlinear binary problem when relying on a commercial solver to solve
the reformulated problems. The objective of these experiments is not to compete with the
existing literature in terms of resolution times, but only to provide an indication of which
reformulation method is most suitable when using generic commercial software.

A second objective is to check whether the behavior of the considered methods is con-
sistent over different classes of instances or if, on the contrary, the structure of the instances
influences the relative performance of the tested methods.

Dependence on the underlying solver We chose to solve all linear and quadratic refor-
mulations using CPLEX 12.7, therefore the computational results of this chapter are strongly
influenced by this choice. This dependence on the underlying solver complicates the task of
providing a fair comparison of the reformulation methods themselves, and should be kept in
mind at all times when interpreting the results. Hence, the results presented in this chapter
are only considered preliminary; in order to obtain definitive results, one should run further
tests with other linear and quadratic solvers and check whether our results are still valid. For
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example, it is very likely that customized convexification solvers, such as the one proposed
by Billionnet, Elloumi and Lambert [13, 14] have a better performance when solving our
quadratic reformulations than CPLEX 12.7. We consider this as a future research direction
and collaboration possibility. We highlight here some drawbacks and advantages of using
CPLEX 12.7 for linear and quadratic programs.

An important drawback is the fact that the linear solver of CPLEX 12.7 has been devel-
oped for many years, while its quadratic solver is more recent and probably less powerful than
its linear solver. This could lead to a false impression that quadratizations perform worse than
linearizations, while the actual reason could be the quadratic resolution method and not the
reformulation itself. We tried to account for this drawback by carefully testing several param-
eter configurations related to the choice of method to solve quadratic problems. CPLEX 12.7
offers two possible resolution techniques: the first one consists in convexifying the quadratic
problem by making the matrix of the quadratic terms positive-semidefinite, and the second
one consists in applying the standard linearization to the quadratic problem. Bliek, Bonami
and Lodi [15] describe the resolution algorithms for quadratic optimization problems in bi-
nary variables in CPLEX 12.6. To the best of our knowledge, the same approaches are used
in CPLEX 12.7. We tried several parametrizations to control these two options, but using
non-default parameter settings did not seem to improve the results. Therefore we let the de-
fault setting let CPLEX choose for all relevant parameters in the final set of experiments.
The specific parameter settings that were tested are described in the paragraph “Technical
specifications and parameter settings” hereunder.

A second disadvantage is the fact that we can only use CPLEX 12.7 as a “blackbox”
solver, meaning that we do not have complete control over the algorithms but only over some
parameters. Moreover, new versions of the software possibly contain additional parameters
the fine-tuning of which could potentially result in a different computational behavior. Several
remarks concerning this “blackbox” framework are made in Chapter 10.

A third important disadvantage is that the use of CPLEX 12.7 together with our current
implementation does not allow us to exploit some interesting properties of the reformulations
themselves. For quadratic reformulations, let us highlight pre-processing algorithms based
on persistencies, a property allowing to fix a subset of variables in the quadratic problem to its
optimal integer value by solving its continuous linear relaxation [65, 93, 95]. This approach
has proven very useful in the computer vision literature [25, 52, 74, 79, 98]. We made a
straightforward implementation of this idea which did not result in clear improvements in
terms of computing times. A detailed analysis of these preliminary experiments is presented
in Section 8.3.

Let us also mention some advantages. First, CPLEX 12.7 is a commercial and widely used
solver, meaning that the public that could benefit from our analyses is potentially very large.
In the second place, as explained by Bliek et al. [15], quadratic problems are in most cases
solved by CPLEX 12.7 using the standard linearization, meaning that we end up comparing
linearizations with linearized quadratizations. Finally, the fact of using the same solver allows
us to fix the underlying software, meaning that we do not compare a commercial solver
against for example a home-made implementation, which would produce hardly comparable
results.
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Technical specifications and parameter settings All experiments in this chapter were run
on a PC with processor Intel(R) Core(TM) i7-4510U CPU @ 2GHz-2.60GHz, RAM memory
of 8 GB, and a Windows 10 64-bit operating system, using CPLEX 12.7.

Monomials, polynomials and models were created in a self-made Java implementation
and translated to CPLEX using the Java Concert Technology.

All problems have been solved using default pre-processing settings. Several parameter
configurations were tested for the resolution of quadratic 0–1 problems. A short description
of the parameters considered is presented here; a more detailed explanation can be found in
the ILOG CPLEX Optimization Studio 12.7.0 website [72].

• indefinite MIQP switch. This switch has two values: 0 (off) and 1 (on, default).
When this switch is on, CPLEX tries to make adjustments to the elements of the matrix
of quadratic coefficients of the objective function to make it positive semi-definite or to
improve numerical behavior, when the matrix is already positive semi-definite.

• MIQCP strategy switch. This switch selects how MIQCPs are solved and has three
values: 0 (let CPLEX choose, default), 1 (solve a QCP node relaxation at each node)
and 2 (solve an LP node relaxation at each node).

• linearization switch for QP, MIQP. This parameter controls whether quadratic
terms of the objective function are linearized or not and can be set to three different val-
ues: -1 (let CPLEX choose, default), 0 (do not linearize quadratic terms) and 1 (force
the linearization of quadratic terms).

An extensive set of preliminary experiments showed that the value of parameters indefinite
MIQP switch and MIQCP strategy switch had little or no influence on computing times.
Concerning parameter linearization switch for QP, MIQP, the default setting (-1)
and the forced linearization (1) had similar computing times, while not allowing lineariza-
tions of quadratic terms (0) resulted in a large increase of computing times. As a conclusion
all of the previous parameters were set to default values.

8.2 Description of the methods and the instances
This section describes the methods that have been implemented and compared in the compu-
tational experiments, and the classes of instances considered.

8.2.1 Methods
Linearizations

SL: standard linearization - branch & cut. The standard linearization of the original
multilinear optimization problem is solved in binary variables using the branch & cut im-
plementation of CPLEX 12.7, where the automatic cut generation mechanism is used, with
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default settings. The precise equations of the standard linearization that have been imple-
mented are (2.5) and (2.6) in Chapter 2. This method will be referred to in the tables and
figures as SL. (This method was called cplex cuts in Chapter 4.)

SL-2L: standard linearization - branch & cut with 2-link inequalities. The standard
linearization of the original multilinear optimization problem is solved in binary variables
using the branch & cut implementation of CPLEX 12.7, with automatic cuts generation. In
addition, the 2-link inequalities defined in Chapter 4 are added as a pool of user cuts. All non-
redundant 2-link inequalities are included in the pool, where an inequality is not redundant
when it is not implied by the standard linearization constraints. (See Section 4.1 of Chapter 4
for a precise description of the cases for which these inequalities are not redundant.) This
method will be referred to in the tables and figures as SL-2L. (This method was called cplex

& user (c & u) cuts in Chapter 4.)

SL-NoCuts: standard linearization - branch & bound. The standard linearization of the
original multilinear optimization problem is solved in binary variables using plain branch &
bound. This method is implemented by using the branch & cut algorithm of CPLEX 12.7
where all cut generation parameters are turned off. This method will be referred to in the
tables and figures as SL-NoCuts. (This method was called no cuts in Chapter 4.)

SL-Only-2L: standard linearization - branch & cut with only 2-link inequalities. The
standard linearization of the original multilinear optimization problem is solved in binary
variables using branch & cut. However, the only inequalities considered in the branch &
cut algorithm are the 2-link inequalities, which are added as a pool of user cuts. All non-
redundant 2-link inequalities are included in the pool. The automatic cut generation mech-
anism of CPLEX 12.7 is turned off using the corresponding parameters. This method will
be referred to in the tables and figures as SL-Only-2L. (This method was called user cuts in
Chapter 4.)

Quadratizations: termwise

As explained in Chapter 6, in termwise quadratization procedures each monomial is refor-
mulated as a quadratic expression independently, with a separate set of auxiliary variables for
each monomial.

Our implementations of termwise quadratization methods differ only in the quadratic re-
formulation used for positive monomials of degree at least three. Monomials with degree one
or two are not reformulated, and negative monomials Nn(x) = −

∏n
i=1 xi are always reformu-

lated using Freedman and Drineas’ quadratization.

Nn(x) = min
y∈{0,1}

(n − 1)y −
n∑

i=1

xiy. (5.2)
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The following quadratizations have been implemented for positive monomials Pn(x) =∏n
i=1 xi of degree n ≥ 3. (See also Chapters 5 and 6.)

Ishikawa’s quadratization This method will be referred to in the tables and figures as
Ishikawa. Positive monomials are reformulated using

Pn(x) = min
y∈{0,1}m

m∑
i=1

yi(ci,n(−|x| + 2i) − 1) +
|x| (|x| − 1)

2
, (5.5)

where |x| =
∑n

i=1 xi, m = b n−1
2 c and

ci,n =

1, if n is odd and i = m,
2, otherwise.

n/4 quadratization This method will be referred to in the tables and figures as n/4.
Positive monomials are reformulated using Theorem 15

Pn(x) = min
y∈{0,1}m

1
2

(|x| − Ny1 − 2Y) (|x| − Ny1 − 2Y − 1), (6.20)

where we have fixed m = d n
4e (in Theorem 15 m could take many values), y ∈ {0, 1}m,

Y =
∑m

j=2 y j ≤ m − 1, and N = n − 2m.

logn-1 quadratization This method will be referred to in the tables and figures as logn-1.
Positive monomials are reformulated using Theorem 14

Pn(x) = min
y∈{0,1}m

1
2

(|x| + 2l − n −
l−1∑
i=1

2iyi)(|x| + 2l − n −
l−1∑
i=1

2iyi − 1) (6.19)

where l = dlog(n)e and m = l− 1, which is the smallest possible number of variables required
to quadratize the positive monomial.

Quadratizations: pairwise covers

All quadratizations based on pairwise covers follow the general ideas and pseudocode de-
scribed in Chapter 7.

PC1: Pairwise Covers Heuristic 1: “Split the first two variables from the rest” The
pseudocode of this method is described in Section 7.2. This method will be referred to in the
tables and figures as PC1.
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PC2: Pairwise covers Heuristic 2: “Most popular intersections first” The pseudocode
of this method is described in Section 7.3. This method will be referred to in the tables and
figures as PC2.

PC3: Pairwise covers Heuristic 3: “Most popular pairs first” The pseudocode of this
method is described in Section 7.4. This method will be referred to in the tables and figures
as PC3.

8.2.2 Instances

The experiments presented this chapter were tested on four sets of instances, called Random

same degree, Random high degree, Vision and Autocorrelated sequences. The instance
generation method of Random same degree, Random high degree and Vision instances is the
same as described in Chapter 4, with the difference that random instances were maximized in
Chapter 4 whereas in this chapter they are minimized. Concerning the size of the instances,
the results for Vision instances are given here for instances with image sizes 10 × 10, 15 ×
15, 20 × 20, 25 × 25, and 30 × 30 while in Chapter 4 image sizes were 10 × 10, 10 × 15,
and 15 × 15. For Random same degree and Random high degree only the easiest instances
could be considered, because the quadratic solver of CPLEX 12.7 was too slow for the most
difficult (denser) instances. We describe the instance generation methods of Chapter 4 again
hereunder for completeness.

Random same degree and Random high degree instances

Random instances are generated as in [30]. In the experiments presented in Chapter 4, ran-
dom instances were maximized, whereas in this chapter all instances are minimized. This is
because Chapter 4 only considered the standard linearization, which can be applied to min-
imization and maximization problems, while in this chapter we consider also quadratization
methods, the definition of which has been given specifically for minimization problems and
should be adapted for the maximization case.

For Random same degree instances, the number of variables n, the number of monomials
m and the degree d are given as input. Given a triplet (d, n,m), a polynomial is generated by
randomly, uniformly and independently choosing the variables to include in each of the m
monomials. All monomials have the same degree d. Their coefficients are drawn uniformly
in the interval [−10, 10]. All instances in this class have small degree, namely, d ∈ {3, 4}.

For Random high degree instances, only n and m are given as an input. Each of the m
monomials is generated as follows: first, the degree d of the monomial is chosen from the set
{2, . . . , n} with probability 21−d. In this way, we capture the fact that a random polynomial is
likely to have more monomials of lower degree than monomials of higher degree. Then, the
variables and coefficient of the monomial are chosen as for Random same degree instances.
These instances are of much higher degree than Random same degree instances. The degree
of each instance will be specified in the result tables and figures.
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0

(a) top left rectangle

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(b) centre rectangle

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(c) cross

Figure 8.1: Vision: base images of size 10 × 10.

Vision instances

This class of instances is inspired from the image restoration problem, which is widely inves-
tigated in computer vision. The problem consists in taking a blurred image as an input and in
reconstructing an original sharp base image based on this input. It is out of the scope of this
thesis to work with real-life images: we will rely on a simplified version of the problem and
on relatively small scale instances in order to generate structured instances and to compare
the performance of our linear and quadratic reformulation methods. Accordingly, we do not
focus on the quality of image restoration (as engineers would typically do), but we devote
more attention to the generation of relatively hard instances.

Input image definition An image is a rectangle consisting of l × h pixels. We model it
as a matrix of dimension l × h, where each element represents a pixel which takes value 0
or 1. An input blurred image is constructed by considering a base image and by applying a
perturbation to it, that is, by changing the value of each pixel with a given probability. A base
image is denoted as Ibase and its pixels by pbase

i j . A blurred image is denoted by Iblur and its
pixels by pblur

i j .
We consider three squared base images, namely, top left rectangle (tlr), centre rect-

angle (cr), and cross (cx) (see Figure 8.1), with sizes 10 × 10, 15 × 15, 20 × 20, 25 × 25 and
30 × 30.

We define three different types of perturbations that can be applied to a base image Ibase

in order to generate Iblur, namely:

• None: pblur
i j = pbase

i j with probability 1, ∀(i, j) ∈ [l] × [h].

• Low: pblur
i j = pbase

i j with probability 0.95, ∀(i, j) ∈ [l] × [h].

• High: pblur
i j = pbase

i j with probability 0.5, ∀(i, j) ∈ [l] × [h] with pbase
i j = 0.

Regarding the class High, note that changing the value of every pixel with probability 0.5
would lead to blurred images that are totally unrelated to the original base image; that is why
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we only apply the perturbation to the “white” pixels (originally taking value pbase
i j = 0) in this

case.

Image restoration model The image restoration model associated with a blurred image
Iblur is defined as an objective function f (x) = L(x) + P(x) that must be minimized. The
variables xi j, for all (i, j) ∈ [l] × [h], represent the value assigned to each pixel in the output
image. L(x) is the linear part and models similarity between the input blurred image Iblur

and the output. P(x) is the nonlinear polynomial part and emphasizes smoothness: it aims
at taking into account the fact that images typically consist of distinct objects, with pixels
inside each object having similar colors, while pixels outside the objects have a different
color. Much has been studied on the complex statistics of natural images, but we use here a
simplified model.

• Similarity: L(x) = aL
∑

i∈[l], j∈[h](pblur
i j − xi j)2 minimizes the difference between the value

of a pixel in the input image and the value that is assigned to the pixel in the output.
Since xi j ∈ {0, 1}, L(x) is indeed linear. The coefficient of L(x) is chosen as aL = 25.

• Smoothness: P(x) is a polynomial defined by considering 2 × 2 pixel windows Wi j =

{xi j, xi, j+1, xi+1, j, xi+1, j+1}, for i = 1, . . . , l − 1, j = 1, . . . , h − 1. Smoothness is imposed
by penalizing the objective function with a nonlinear monomial for each window Wi j.
The more the assignment of variables in the window Wi j looks like a checkerboard, the
higher the coefficient of the monomial, thus giving preference to smoother assignments.
Table 8.1 provides the penalties used for each of the 16 assignments of values to a 2×2
window. So for example, the assignment of values xi j = xi, j+1 = 1, xi+1, j = xi+1, j+1 = 0
(third row in Table 8.1) gives rise to the monomial 30xi jxi, j+1(1 − xi+1, j)(1 − xi+1, j+1) in
the objective function. We made the implementation choice of developing expressions
of the type 30xi jxi, j+1(1− xi+1, j)(1− xi+1, j+1) into a multilinear function. Notice that one
could also make the choice of not developing them and consider the function defined on
the set of variables xi and their complements x̄i = 1 − xi, which possibly represents the
structure of the underlying problem in a more accurate way and might have an impact
on the results. We describe this point in more detail in the conclusions of this chapter.

The choice of coefficients in Table 8.1 and of the linear coefficient aL was made by run-
ning a series of preliminary calibration tests aimed at finding a good balance between the
importance given to smoothness and to similarity, so that the resulting instances are not too
easy to solve.

Instance definition For each image size in {10× 10, 15× 15, 20× 20, 25× 25, 30× 30} and
for each base image, we have generated five instances, namely: one sharp image (the base
image with perturbation type none), two blurred images with perturbation type low, and two
blurred images with perturbation type high.

Notice that the difference between the five instances associated with a given size and a
given base image is due to the input blurred image, which results from a random perturbation.
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Table 8.1: Vision: variable assignments of 2 × 2 pixel windows and associated penalty coefficients.

Variable assignments Coefficient

0 0 1 1
10

0 0 1 1

0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1
20

0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1

1 1 0 0 1 0 0 1
30

0 0 1 1 1 0 0 1

1 0 0 1
40

0 1 1 0

This only affects the similarity term L(x), while the smoothness model P(x) remains the same
for all instances of a given size.

Autocorrelated sequences instances

This class of instances is inspired from a problem in statistical mechanics, modeling the
phenomenon of “dynamical glass transition”, which is the abrupt increase of orders of mag-
nitude of the viscosity of a supercooled liquid in such a way that it becomes solid almost
instantly. The set of instances has been directly downloaded from http://polip.zib.
de/autocorrelated_sequences/. These are instances from the model given by Liers et
al. [86], which is based on the Ising model and on the principle of spin-spin energy mini-
mization. The authors rely on branch and bound and simulated annealing algorithms for the
minimization of the energy function.

It is out of the scope of this thesis to give a detailed rigorous description of the model,
we only give here an intuitive explanation as to why this problem can be modeled as a mini-
mization in binary variables. The objective function of the model is to minimize the energies
between pairs of interacting spins in a material. Spins can have two positions, up or down,
which are modeled using binary variables. The energy corresponding to a pair of spins is
minimized whenever two spins take the same value.

Bernasconi [12] showed that finding spin configurations with low energy states is equiva-
lent to the problem of finding low autocorrelation binary sequences. Thus, the Hamiltonian,
or energy function, as given in [86] is

HD = NN,R

∑
~x∈Λ


maxd∈R(~x)∑

d=1


∑

couples in R(~x)
at distance d

σ jσk


2 , (8.1)

where D is the dimension, Λ ⊂ ZD is a finite volume of cardinality N, R(~x) is a hypercube of
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Table 8.2: Computational experiments: summary of methods and instances.

Methods / Instances Random same Random high Vision Autocorr. seq.
L

in
ea

r SL 3 3 3 3

SL-2L 7 7 3 3

SL-NoCuts 7 7 7 3

SL-Only-2L 7 7 7 3

Q
ua

dr
at

ic

Ishikawa 3† 3 3∗,† 3†

n/4 3† 3 3∗,† 3†

logn-1 3† 3 3∗,† 3†

PC1 3 3 3 3

PC2 3 3 3 3

PC3 3 3 3 3

size RD centered around site ~x andNN,R is a normalization constant. Factors
(∑

couples in R(~x)
at distance d

σ jσk

)2

represent autocorrelations between localized pairs of spins σ j and σk.
All instances are of degree four, have small number of variables, ranging between 20 to

60, and very large number of terms, ranging between 207 and 52 575 (see Table 8.19 for a
detailed description of the instances). As it will be shown in Section 8.4.4, the instances in
this class are particularly difficult to solve for all of our methods. In fact, we are only able to
provide some preliminary results for a very small subset of these instances. However, we find
it worth mentioning them here, because of the very reason that they represent a challenge for
our methods. Moreover, in the original paper their inherent difficulty is explained by stating
that the models present deep minima separated by extensive energy barriers, making the
search for global minima (low autocorrelation binary sequences) a very difficult task [86].

8.2.3 Short summary
As a summary of this section, four classes of instances and ten reformulation methods have
been described. The four linearization methods use the standard linearization as a model, and
they differ by the sets of valid inequalities added in a branch & cut framework. From the six
quadratizations, three consider different reformulations for positive monomials in a termwise
context, and the other three are based on pairwise covers.

Not all ten methods have been compared compared for every class of instances; Table 8.2
summarizes the experiments that have been carried out.

For Random same degree and Random high degree instances, among all linearization
methods only the default resolution SL has been tested, because previous results in Chapter 4
and [41] comparing the remaining three linearizations were not concluding. Linearizations
SL-NoCuts and SL-Only-2L were not tested for Vision instances, because Chapter 4 and [41]
clearly show that these methods are prohibitively slow for these instances.
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Remark 10. Termwise methods have been marked with † for instances of degree at most
four. This is because for positive monomials of degree four, the equations corresponding
to Ishikawa’s quadratization (5.5), to our quadratization with d n

4e variables (6.20) and to
our quadratization with dlog(n)e − 1 variables (6.19), are exactly the same. For positive
monomials of degree three, our quadratization with dlog(n)e − 1 variables (6.19) is different
from the other two.

This means that for instances in the set Random same degree of degree four, the three
methods Ishikawa, n/4 and logn-1 are described by the exact same equations. For instances
in the set Random same degree of degree three, Ishikawa and n/4 are described by the same
equations, but logn-1 is not. Finally, for Vision and Autocorrelated sequences, all mono-
mials of degree three are negative, and thus quadratized using Freedman and Drineas (5.2),
which results in Ishikawa, n/4 and logn-1 being exactly the same methods again.

However, we report the results for the three methods separately because, even though the
methods are theoretically identical, in some cases the computation times strongly differ. This
is a surprising and inconvenient result, given that for the same method, one would expect
similar computing times on repeated resolutions. We blame these differences in computing
times on small coding differences. Indeed, either the order of the terms or the order of
the variables within the terms is implemented in a slighty different way for every termwise
method, possibly altering the structure of the branch & bound tree. One should take this
remark into account when interpreting the results of the experiments. As we mention more in
detail in Chapter 10, this is one of the main issues that we would like to investigate further.

Moreover, a proper comparison of termwise quadratization methods between each other
can only be done in view of the results of the set of instances Random high degree, which
contain terms of degree higher than four.

Finally, methods marked with ∗ have not been tested for the largest instances in the Vision

set, due to their poor performance for smaller instances.

8.3 Persistencies: preliminary experiments
As mentioned in Section 8.1, comparing the computational performance of linear and quadratic
reformulations using CPLEX 12.7 can be detrimental for quadratizations, because of the
many years of development of linear solvers with respect to quadratic solvers. Moreover,
previous computational experience in quadratic binary optimization has shown that an im-
portant advantage of quadratizations is the possibility of using interesting bounds, such as
the ones given by roof duality, and the persistency property, which allows fixing a subset of
variables to their provable optimal values [25]. Such approaches have proved to be especially
useful in the field of computer vision [52, 74, 79, 98], where persistencies allow to greatly
reduce the size of problems that originally contain millions of variables.

This section presents the results of a set of preliminary experiments carried out with the
objective of comparing computing times of the resolution of binary quadratic problems with
and without persistencies, by relying on a rather naive self-made implementation. These
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experiments do not aim to compete with efficient existing implementations such as the one
by Boros, Hammer, Sun and Tavares [25], but only try to provide an understanding of whether
the use of persistencies could be usfeul when using a commercial solver like CPLEX 12.7
with our set of instances.

Let us formally describe our implementation and the underlying theoretical results. Given
a quadratic problem in binary variables, the Weak Persistency Theorem allows us to determine
the values of a subset of the variables in the optimal solution of the quadratic integer problem,
by solving the continuous relaxation of its standard linearization. The Weak Persistency The-
orem was first stated in [65, 93, 95]; we present it here as stated by Boros and Hammer [24].

Theorem 19 (Weak Persistency, Theorem 9 in [24]). Let f (x) = c0+
∑n

j=1 c jx j+
∑n

i=1
∑n

j=i+1 ci jxix j,
be a quadratic pseudo-Boolean function on n variables, and let x̃ be an optimal solution of
the continuous relaxation of the standard linearization of f

min c0 +

n∑
j=1

c jx j +

n∑
i=1

n∑
j=i+1

ci jyi j

s. t. yi j ≥ xi + x j − 1 1 ≤ i < j ≤ n, ci j > 0,
yi j ≥ 0 1 ≤ i < j ≤ n, ci j > 0,
yi j ≤ xi 1 ≤ i < j ≤ n, ci j < 0,
yi j ≤ x j 1 ≤ i < j ≤ n, ci j < 0,
x j ∈ {0, 1}n 1 ≤ j ≤ n

for which x̃ j = 1 for j ∈ O, and x̃ j = 0 for j ∈ Z (where O and Z are disjoint subsets of the
indices). Then, for any minimizing vector x∗ ∈ argmin( f ) switching the components to x∗j = 1
for j ∈ O and x∗j = 0 for j ∈ Z will also yield a minimum of f .

Our implementation of the resolution of a quadratic problem using persistencies is schema-
tized as a flowchart in Figure 8.2. In the first box, we assume that we have defined a quadra-
tization of the initial polynomial problem, which is either PC1, PC2, PC3, Ishikawa, n/4 or
logn-1. The corresponding unconstrained quadratic problem in binary variables is denoted
by (QP). In the second box, the standard linearization of (QP) is solved in continuous vari-
ables using CPLEX. The third box represents the retrieval, implemented in Java, of the subset
of variables VF taking integer values in the optimal solution of the standard linearization of
(QP). VF is the union of subsets Z and O in the notations of Theorem 19. In the fourth box, a
new quadratic problem (QP)pers is defined. (QP)pers is the original problem (QP) with some
additional constraints, imposing that the variables in VF should take values either zero or one,
depending on their values in the second box. Finally, the fifth box is the resolution of problem
(QP)pers using CPLEX.

The remainder of this section presents the results of the corresponding computational
experiments. For the selected instance sets, we present the percentages of variables that are
fixed using persistencies, that is, the relative size of subset VF with respect to the total number
of variables in the quadratization. We also compare the computing times of the resolution of
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Figure 8.2: Code flow of our persistencies implementation.

Java: Definition of (QP): quadratization

CPLEX: Resolution of SL of (QP) in xi ∈ [0, 1]

Java: Retrieval of VF variables with value {0, 1} in SL of (QP)

Java: Definition of (QP)pers: (QP) with variables in VF fixed

CPLEX: Resolution of (QP)pers

problems (QP) and (QP)pers. It is important to notice that we only present the computing times
of the resolution of (QP)pers, without including the overhead required for the pre-processing
steps represented in Figure 8.2 by the first four boxes.

8.3.1 Vision instances

We start by presenting the results for Vision instances with images of size 15×15; the results
for images of other sizes are very similar and are described in Appendix A.

Table 8.3 shows the total number of variables of the quadratic problems corresponding to
each quadratization method and Table 8.4 shows the percentage of variables of the quadrati-
zation that are fixed to an integer value using Theorem 19. The percentages of fixed variables
are almost the same for each instance of size 15 × 15, because the difference in the instances
comes only from the base image and the perturbation, which only has an impact on the lin-
ear part of the functions. A second important observation was made in Remark 10, pointing
out that all termwise quadratization methods lead to the same model for Vision instances.
Thus, the last three columns of Table 8.4 and Table 8.3 actually correspond to the same refor-
mulation method. For termwise quadratizations, the linearized quadratic problems have an
optimum where all variables have fractional values, therefore no variable can be fixed to its
provable optimal value in (QP). On the other hand, pairwise covers fix between 20 − 40% of
the variables. It is not explicitly written in Table 8.4, but all variables are fixed to the value
zero.

Table 8.5 shows the execution times required to solve the quadratic programs (QP)pers

where variables in VF have been fixed. (Only results for quadratizations based on pairwise
covers are shown because for termwise quadratizations (QP)pers and (QP) are equal.) A bold
font highlights the cases for which the quadratic program (QP)pers has a faster resolution time
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than (QP). This is the case for slightly more than half of the cases. However the improvement
is of less than one second in almost all cases. Moreover, in the rest of the cases, the resolution
time of (QP)pers is even slower than the resolution time of (QP).

The tables in Appendix A show similar results for images of sizes 10 × 10, 20 × 20,
25 × 25 and 30 × 30. The number of cases for which using persistencies is helpful is roughly
half of the cases overall. However, for larger image sizes, the number of cases for which
the improvement is noticeable seems to increase. We have considered that a significant im-
provement was at least five seconds faster, and corresponding figures are underlined in the
tables.

All in all, even when improvements are observed, they remain small in relative value and
may be due to random causes only. This, together with the fact that the reported computing
times do not account for pre-processing times leads us to the conclusion that the effort to cal-
culate persistencies is not worth with our implementation for Vision instances using CPLEX
12.7.
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Table 8.3: Vision 15 × 15 (n = 225,m = 1598): total number of variables in problem (QP).

Pairwise covers Termwise quadratizations

PC1 PC2 PC3 Ishik n/4 logn-1

# variables QP 1024 1001 1001 1205 1205 1205

Table 8.4: Vision 15 × 15 (n = 225,m = 1598): percentage of variables fixed using persistencies.

Instance (15 × 15) Fixed variables (%)

Pairwise covers Termwise quadratizations

Base Quality PC1 PC2 PC3 Ishik n/4 logn-1

top left rect sharp 19.24 39.16 39.16 0.00 0.00 0.00
top left rect low 19.24 37.86 37.86 0.00 0.00 0.00
top left rect low 19.24 39.16 39.16 0.00 0.00 0.00
top left rect high 19.24 39.16 39.16 0.00 0.00 0.00
top left rect high 19.24 39.16 39.16 0.00 0.00 0.00
centre rect sharp 19.24 38.26 38.26 0.00 0.00 0.00
centre rect low 19.24 39.16 39.16 0.00 0.00 0.00
centre rect low 19.24 39.16 39.16 0.00 0.00 0.00
centre rect high 19.24 39.16 39.16 0.00 0.00 0.00
centre rect high 19.24 39.16 39.16 0.00 0.00 0.00
cross sharp 19.24 39.16 39.16 0.00 0.00 0.00
cross low 19.24 39.16 39.16 0.00 0.00 0.00
cross low 19.24 39.16 39.16 0.00 0.00 0.00
cross high 19.24 39.16 39.16 0.00 0.00 0.00
cross high 19.24 39.16 39.16 0.00 0.00 0.00
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Table 8.5: Vision 15 × 15 (n = 225,m = 1598): resolution times using persistencies.

Instance (15 × 15) Exec. times (secs)

Pairwise covers

Base Quality PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

top left rect sharp 16.86 16.75 12.30 12.17 12.39 12.48
top left rect low 16.88 16.78 13.36 13.25 13.14 13.20
top left rect low 18.22 17.70 15.63 15.42 15.52 15.69
top left rect high 50.53 50.41 22.33 22.64 22.70 22.39
top left rect high 78.00 77.13 35.75 34.55 34.08 34.58
centre rect sharp 20.63 21.16 12.59 12.45 12.59 12.67
centre rect low 18.17 18.03 14.72 14.80 14.81 15.08
centre rect low 25.55 24.66 14.98 15.31 15.13 15.33
centre rect high 48.94 48.86 25.03 25.28 24.78 25.00
centre rect high 40.59 40.39 36.31 35.41 35.55 36.11
cross sharp 20.95 20.25 12.81 12.75 12.91 12.69
cross low 22.49 24.11 12.19 12.59 12.77 12.92
cross low 20.08 19.28 12.69 12.89 13.13 13.81
cross high 52.16 51.03 32.41 35.44 32.59 32.45
cross high 50.72 48.14 25.13 23.95 24.30 25.83
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8.3.2 Random high degree instances
Vision instances are all of degree four and have a very special structure. Therefore, we
consider here a different set of instances, in order to obtain more representative results for
the preliminary experiments on persistencies. We choose to use the set of instances Random

high degree, because they are are highly unstructured and because they contain polynomials
of large degrees, ranging between 7 and 16.

Table 8.6 reports the total number of variables of the quadratic problems, and the percent-
ages of variables taking integer values in the optimal solution of the corresponding linearized
quadratic problems. The original polynomials always contain n = 200 variables, and a num-
ber of terms varying from m = 250 to 400. Previous experimental results show that denser
instances, that is, instances with a higher ratio m/n are more difficult to solve (see [30, 41]
and Chapter 4). Interestingly, Table 8.6 shows that pairwise cover methods tend to fix larger
percentages of the variables for denser instances, while termwise quadratizations behave in
the opposite way. For example, for the least dense instances with m = 250 terms pairwise
cover methods show percentages between 10.58 − 13.11% of fixed variables while termwise
methods 8.85−14.24%. However for the most dense instances with m = 400, pairwise covers
fix 12.24 − 15.35% while termwise quadratizations only 0.91 − 2.36%.

Table 8.7 shows the percentages of variables fixed to the values zero or one. It is interest-
ing to notice that, as for Vision instances, pairwise cover methods fix almost all variables to
zero. On the other hand, termwise quadratizations tend to fix more variables to one.

Table 8.8 shows the computing times of the resolutions of (QP) and (QP)pers for pairwise
cover quadratizations. A bold font highlights the cases for which (QP)pers is solved faster than
(QP). The results are similar as for Vision instances: there is an improvement for roughly
half of the cases, but this improvement is very small. Moreover, as before, the pre-processing
time used to compute the set of variables to fix is not accounted for.

Table 8.9 shows the computing times of the resolutions of (QP) and (QP)pers for termwise
quadratizations. As before, a bold font highlights the cases for which (QP)pers is solved faster
than (QP). Moreover, cases for which the improvement is important (more than five sec-
onds) are also underlined. Interestingly, for some combinations of instance and quadratiza-
tion method, there are remarkable improvements of hundreds or even a thousand of seconds.
These improvements would be certainly useful even when accounting for the pre-processing
time and are worth further investigation. However, such remarkable improvements only oc-
cur 12 times out of 60, and are not consistent among the methods or the instances. Moreover,
there are also examples for which (QP)pers requires more than one hundred extra seconds of
resolution time than (QP), and several other cases where (QP)pers is slower even if not by
such a high computing time. All in all, we were not able to identify a consistent improvement
in resolution times of quadratic problems when using persistencies together with CPLEX
12.7.
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Table 8.6: Random high degree (n = 200): percentage of variables fixed using persistencies.

Instance # variables QP Fixed variables (%)

Pairwise covers Termwise Pairwise covers Termwise

n m id deg PC1 PC2 PC3 Ishik n/4 logn-1 PC1 PC2 PC3 Ishik n/4 logn-1

200 250 1 9 572 561 561 344 341 341 11.71 11.41 11.59 9.88 9.97 9.97
200 250 2 9 562 548 549 342 339 339 12.81 12.96 13.11 11.99 11.80 12.09
200 250 3 9 582 567 567 339 334 334 11.34 11.46 11.29 8.85 8.68 8.98
200 250 4 9 567 558 558 340 337 337 12.70 12.90 11.29 13.53 14.24 13.65
200 250 5 7 555 548 548 340 338 338 11.17 11.13 10.58 10.59 10.65 10.65
200 300 1 8 663 644 644 369 367 367 11.31 11.34 11.34 8.13 7.63 8.17
200 300 2 9 645 623 626 390 385 385 9.92 10.75 10.54 6.67 6.49 6.49
200 300 3 15 660 638 638 372 363 362 12.12 12.38 13.17 6.72 6.61 6.91
200 300 4 13 705 681 682 378 370 369 10.92 11.31 11.29 5.82 5.68 4.88
200 300 5 12 636 625 625 373 369 369 12.58 12.80 12.64 4.83 6.50 6.50
200 350 1 10 731 699 700 399 395 395 12.04 12.45 12.43 4.51 4.56 4.56
200 350 2 10 724 700 700 408 398 398 9.53 9.29 10.00 3.19 3.02 3.02
200 350 3 13 727 701 703 423 416 416 11.42 11.84 11.81 2.84 2.88 2.88
200 350 4 9 706 682 683 409 406 406 11.19 11.58 11.42 3.67 3.69 3.69
200 350 5 11 710 682 684 407 402 402 10.99 11.14 11.55 5.65 5.97 6.22
200 400 1 14 791 766 766 435 425 424 13.02 13.45 12.92 2.30 2.35 2.36
200 400 2 11 778 752 749 409 405 405 14.65 15.29 15.35 1.47 1.48 1.48
200 400 3 11 817 791 792 432 422 422 12.24 12.77 13.01 1.39 1.42 1.42
200 400 4 16 815 779 781 441 429 428 13.50 14.12 13.96 0.91 0.93 0.93
200 400 5 12 817 794 798 438 431 431 13.83 14.36 14.54 1.60 1.62 1.62
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Table 8.7: Random high degree (n = 200): percentage of variables fixed to 0 and to 1 using persistencies.

Instance Fixed variables (%)

PC1 PC2 PC3 Ishikawa n/4 logn-1

n m id deg %0 %1 %0 %1 %0 %1 %0 %1 %0 %1 %0 %1

200 250 1 9 11.71 0.00 11.41 0.00 11.59 0.00 2.62 7.27 2.64 7.33 2.64 7.33
200 250 2 9 12.81 0.00 12.96 0.00 13.11 0.00 3.22 8.77 3.24 8.55 3.24 8.85
200 250 3 9 11.34 0.00 11.46 0.00 11.29 0.00 2.65 6.19 2.69 5.99 2.69 6.29
200 250 4 9 12.70 0.00 12.90 0.00 11.29 0.00 3.53 10.00 3.56 10.68 3.26 10.39
200 250 5 7 11.17 0.00 11.13 0.00 10.58 0.00 2.06 8.53 2.07 8.58 2.07 8.58
200 300 1 8 11.31 0.00 11.34 0.00 11.34 0.00 1.08 7.05 1.09 6.54 1.09 7.08
200 300 2 9 9.92 0.00 10.75 0.00 10.54 0.00 1.03 5.64 1.04 5.45 1.04 5.45
200 300 3 15 12.12 0.00 12.23 0.16 13.17 0.00 1.88 4.84 1.93 4.68 1.93 4.97
200 300 4 13 10.92 0.00 11.31 0.00 11.29 0.00 0.26 5.56 0.27 5.41 0.27 4.61
200 300 5 12 12.58 0.00 12.80 0.00 12.64 0.00 1.61 3.22 1.63 4.88 1.63 4.88
200 350 1 10 12.04 0.00 12.45 0.00 12.43 0.00 0.50 4.01 0.51 4.05 0.51 4.05
200 350 2 10 9.53 0.00 9.29 0.00 10.00 0.00 0.25 2.94 0.25 2.76 0.25 2.76
200 350 3 13 11.42 0.00 11.84 0.00 11.81 0.00 0.47 2.36 0.48 2.40 0.48 2.40
200 350 4 9 11.19 0.00 11.58 0.00 11.42 0.15 0.73 2.93 0.74 2.96 0.74 2.96
200 350 5 11 10.99 0.00 11.14 0.00 11.55 0.00 0.74 4.91 1.00 4.98 1.00 5.22
200 400 1 14 13.02 0.00 13.45 0.00 12.92 0.00 0.46 1.84 0.47 1.88 0.47 1.89
200 400 2 11 14.65 0.00 15.29 0.00 15.35 0.00 0.49 0.98 0.49 0.99 0.49 0.99
200 400 3 11 12.24 0.00 12.77 0.00 13.01 0.00 0.00 1.39 0.00 1.42 0.00 1.42
200 400 4 16 13.50 0.00 14.12 0.00 13.96 0.00 0.23 0.68 0.23 0.70 0.23 0.70
200 400 5 12 13.83 0.00 14.36 0.00 14.54 0.00 0.23 1.37 0.23 1.39 0.23 1.39
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Table 8.8: Random high degree (n = 200): resolution times of pairwise covers using persistencies.

Instance Exec. times (secs)

Pairwise covers

n m id deg PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

200 250 1 9 1.19 1.81 1.39 2.7 1.36 3.31
200 250 2 9 2.14 1.94 1.95 2.25 1.98 1.49
200 250 3 9 2.28 2.02 2.01 1.95 1.97 2.17
200 250 4 9 1.81 1.56 1.16 1.16 1.28 1.36
200 250 5 7 1.41 1.33 1.53 1.55 1.81 1.84
200 300 1 8 5.67 5.17 5.69 8.23 7.2 9.27
200 300 2 9 11.91 10.97 10.56 9.97 10.3 10.36
200 300 3 15 4.08 3.66 4.56 4.63 3.55 3.56
200 300 4 13 11.97 14.03 10.69 13.77 8.56 8.75
200 300 5 12 6.14 5.42 3.78 3.59 3.69 3.44
200 350 1 10 12.44 11.47 6.31 5.58 6.41 5.73
200 350 2 10 14.66 15.88 10.66 13.51 11.97 10.97
200 350 3 13 16.88 14.84 8.41 7.92 9.95 10.05
200 350 4 9 6.92 6.61 4.97 4.69 4.83 4.81
200 350 5 11 4.11 4.47 3.83 3.89 3.00 3.06
200 400 1 14 11.25 10.5 9.92 9.61 9.91 9.91
200 400 2 11 16.36 16.86 12.41 12.58 16.2 17.95
200 400 3 11 22.88 23.83 21.31 21.08 25.13 25.41
200 400 4 16 29 28.89 20.76 22.31 20.94 21.19
200 400 5 12 12.41 15.88 16.33 22.99 16.56 15.34
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Table 8.9: Random high degree (n = 200): resolution times of termwise quadratizations using persistencies.

Instance Exec. times (secs) - tl means >3600 secs (gap %)

Termwise quadratizations

n m id deg Ishikawa Ishikawa-pers n/4 n/4-pers logn-1 logn-1-pers

200 250 1 9 5.17 7.03 8.7 14.19 7 11.89
200 250 2 9 13.81 14.67 21.98 29.56 19.5 19.19
200 250 3 9 18.13 16.86 50.61 46.7 24.23 23.28
200 250 4 9 13.75 10.44 25.06 19.05 14.73 15.19
200 250 5 7 13.33 13.39 26.34 26.03 12.94 13.66
200 300 1 8 19.31 18.72 74.59 73.66 22.34 22.81
200 300 2 9 48.72 49.94 221.53 230.86 101.69 107.03
200 300 3 15 53.92 51.64 463.01 411.83 101.19 106.34
200 300 4 13 275.28 233.23 2354.78 1350.06 481.75 500.13
200 300 5 12 36.41 36.91 81.92 82.08 53.45 59.77
200 350 1 10 67.86 74.13 241.45 305.88 73.13 76.08
200 350 2 10 358.70 474.72 2270.76 2025.63 669.49 655.73
200 350 3 13 136.97 134.02 865.66 878.20 370.31 287.61
200 350 4 9 32.31 32.50 63.94 63.72 45.36 45.72
200 350 5 11 37.13 28.31 66.26 55.47 48.11 41.98
200 400 1 14 693.34 564.42 tl (2.41 %) tl (1.52 %) tl (1.47 %) tl (1.40 %)
200 400 2 11 33.55 33.63 61.77 60.91 42.86 44.03
200 400 3 11 tl (4.95 %) tl (4.97 %) tl (19.57 %) tl (19.57 %) tl (13.65 %) tl (13.71 %)
200 400 4 16 tl (2.94 %) tl (2.91 %) tl (16.95 %) tl (17.04 %) tl (9.00 %) tl (9.30 %)
200 400 5 12 350.09 348.53 850.36 795.61 665.42 605.39
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8.3.3 Conclusions on the use of persistencies

In view of the previous results we decide not to use our implementation of persistencies
to solve quadratic reformulations with CPLEX 12.7. While the use of persistencies results
in faster computing times for roughly half of the instance-method combinations, these im-
provements are in general not very significant, even without taking pre-processing times into
account. In the other half of the cases the use of persistencies is even detrimental.

All relevant improvements come from termwise quadratizations when applied to Random

high degree instances. Interestingly, termwise methods tend to fix more variables to the value
one than to the value zero. For pairwise covers, all variables are fixed to zero in most cases
and the speed-up is not very significant. A possible explanation for this lack of significant
improvements could be that CPLEX 12.7 fixes a similar set of variables in a pre-processing
step, meaning that the fixed variables using persistencies are “easy” guesses for CPLEX.
Moreover, even if termwise quadratization procedures show important speed-ups with the
use of persistencies in some cases, the improved computing times are still much slower than
those of pairwise covers quadratizations.

As a future improvement, our current implementation of persistencies should be revised
and pre-processing times should be accounted for. In particular, Boros et al. [25] provided
a network-flow based implementation resulting in the largest possible set of variables fixed
using persistencies, which is additionally very efficient to calculate and gives very good re-
sults in terms of tighter bounds and faster resolution times. Moreover, their results apply to
a large and diverse set of instances. A question of future research would be to use a similar
pre-processing algorithm in our context.

Another interesting idea is to consider different bounding procedures for branch & bound
algorithms. In [25] the authors mention bounding procedures based on the roof dual and the
iterated roof dual bounds. Such an approach has not been considered in our experiments and
is a question for future research.

8.4 Comparing linearizations and quadratizations: results

This section analyzes results of the computational experiments comparing the methods pre-
sented in Section 8.2.1. We present the results for each class of instances in a separate section.
In all figures, missing data points represent resolution times larger than one hour, which is
the time limit of all experiments.

As a general remark, whenever the automatic cut generation of CPLEX 12.7 was used
in the branch & cut to solve linear reformulations, zero-half cuts were clearly the most fre-
quently used type of cuts. Moreover, when user cuts were included, they were added before
CPLEX automatic cuts, meaning that zero-half cuts might have also been generated from the
pool of 2-link inequalities. For Vision and Autocorrelated sequences instances, many clique
cuts were also generated, whereas they were not used for Random instances. Other classes
of cuts that appeared are lift-and-project cuts and Gomory fractional cuts, although in much
smaller number in general. We do not have further details on when exactly each type of cut
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was used nor on the interaction of CPLEX cuts and user cuts. However, we chose to include
the previous remarks for potential future reference.

8.4.1 Random same degree instances
This section presents the results for the set of instances Random same degree, consisting of
polynomials having either all terms of degree three or all terms of degree four (see Sec-
tion 8.2.2 for a detailed description of the instances).

The experiments have been carried out for instances with n = 200, 400 and 600 variables.
We present in detail the case n = 200; instances with n = 400 and 600 have a similar behavior
and corresponding figures can be found in Appendix E. All computing times are reported in
Tables B.1 and B.2 in Appendix B.

For this class of instances, method SL-2L has not been tested because it is not clear
whether the 2-link inequalities are useful for this class of instances (see Chapter 4 and [41]).

Figures 8.3, 8.4, 8.5 and 8.6 present the instance identifier on the x-axis and the y-axis
displays the execution times (in seconds) of the methods listed in the corresponding legend.
Instance identifiers are of the form n-m-d-id, where n is the number of variables of the poly-
nomial, m is the number of monomials, d is the degree and id is simply an identifier for the
polynomial. For example, instance 200-400-3-1 has 200 variables, 400 terms all of which
have degree 3 and it is the first polynomial with these parameters.

As a first general remark, Figures 8.3 and 8.4 show that the standard linearization SL per-
forms much better than all quadratizations. Moreover, it should be noted that in comparison
to the instance set considered in Chapter 4 and [41], we were here only able to test the easiest
instances, given that for all quadratization methods, many of the hardest instances were not
solved within an hour. (Remember that previous results show that the easiest instances are
those with smaller ratios m

n – see [30, 41]).
Let us now focus on Figure 8.3 and Figure 8.4, which present execution times for in-

stances of degree three and degree four, respectively. Note that when comparing pairwise
covers and termwise quadratizations it is not clear which of the two classes is more efficient
for degree three instances, while for degree four instances pairwise covers are clearly faster.

In Figure 8.5 we only consider pairwise covers; the first ten data points correspond to
instances of degree three and the last ten correspond to instances of degree four. We can
see that instances of degree three are at least as difficult as instances of degree four for these
methods. Figure 8.6 makes the same comparison for termwise quadratizations, and it is clear
that instances of degree four are harder than instances of degree three, which seems more
natural intuitively.

By Remark 10, for instances with all monomials of degree three, Ishikawa and n/4 are
exactly the same quadratizations, while logn-1 is different. This is however not reflected
in the figures, where the plots of termwise methods are almost undistinguishable. For de-
gree four instances, all termwise quadratization methods have the same equations, and their
computational behavior is also similar, as expected.

Let us now analyze the number of variables and positive quadratic terms required for each
quadratization method. Table 8.10 reports the number of auxiliary variables and Table 8.11
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Figure 8.3: Random same degree (n = 200, deg = 3): linearizations and quadratizations computing times.
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Figure 8.4: Random same degree (n = 200, deg = 4): linearizations and quadratizations computing times.

114



8.4. Comparing linearizations and quadratizations: results

20
0-4

00
-3-

1

20
0-4

00
-3-

2

20
0-4

00
-3-

3

20
0-4

00
-3-

4

20
0-4

00
-3-

5

20
0-5

00
-3-

1

20
0-5

00
-3-

2

20
0-5

00
-3-

3

20
0-5

00
-3-

4

20
0-5

00
-3-

5

20
0-2

50
-4-

1

20
0-2

50
-4-

2

20
0-2

50
-4-

3

20
0-2

50
-4-

4

20
0-2

50
-4-

5

20
0-3

00
-4-

1

20
0-3

00
-4-

2

20
0-3

00
-4-

3

20
0-3

00
-4-

4

20
0-3

00
-4-

5
0

20

40

60

80

100

120

Instances

Ti
m

e
(s

)

PC1
PC2
PC3

Figure 8.5: Random same degree (n = 200): pairwise covers computing times by degree.

115



Chapter 8. Comparing linear and quadratic reformulations

20
0-4

00
-3-

1

20
0-4

00
-3-

2

20
0-4

00
-3-

3

20
0-4

00
-3-

4

20
0-4

00
-3-

5

20
0-5

00
-3-

1

20
0-5

00
-3-

2

20
0-5

00
-3-

3

20
0-5

00
-3-

4

20
0-5

00
-3-

5

20
0-2

50
-4-

1

20
0-2

50
-4-

2

20
0-2

50
-4-

3

20
0-2

50
-4-

4

20
0-2

50
-4-

5

20
0-3

00
-4-

1

20
0-3

00
-4-

2

20
0-3

00
-4-

3

20
0-3

00
-4-

4

20
0-3

00
-4-

5
0

50

100

150

200

250

300

350

Instances

Ti
m

e
(s

)

Ishikawa

n/4
logn-1

Figure 8.6: Random same degree (n = 200): termwise quadratizations computing times by degree.
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Table 8.10: Random same degree (n = 200, deg = 3 and 4): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

200 400 3 1 390 361 361 400 400 400
200 400 3 2 398 375 375 400 400 500
200 400 3 3 398 371 371 400 400 400
200 400 3 4 394 364 364 400 400 400
200 400 3 5 398 365 365 400 400 400
200 500 3 1 491 449 449 500 500 500
200 500 3 2 493 458 458 500 500 500
200 500 3 3 494 455 455 500 500 500
200 500 3 4 494 446 446 500 500 500
200 500 3 5 494 445 445 500 500 500

200 250 4 1 490 455 455 250 250 250
200 250 4 2 493 459 459 250 250 250
200 250 4 3 486 462 462 250 250 250
200 250 4 4 491 463 463 250 250 250
200 250 4 5 493 453 453 250 250 250
200 300 4 1 590 545 546 300 300 300
200 300 4 2 584 548 548 300 300 300
200 300 4 3 588 545 545 300 300 300
200 300 4 4 593 552 552 300 300 300
200 300 4 5 591 545 547 300 300 300

reports the number of positive quadratic terms introduced by each quadratization for instances
with n = 200. (See Appendix B for instances with n = 400 and 600, which present the same
behavior.)

For instances of degree three, termwise quadratizations and pairwise covers based quadra-
tizations introduce approximately the same number of variables and of positive quadratic
terms. Figure 8.3 shows that both types of quadratizations have very similar computing times
in this case, which is coherent with this observation.

However, for degree four instances, termwise quadratizations require about half of the
auxiliary variables of pairwise covers quadratizations, while they introduce hundreds of posi-
tive quadratic terms more than pairwise covers. Moreover, Figure 8.4 shows that for instances
of degree four, pairwise covers are always faster than termwise quadratizations, which sug-
gests that the fact of introducing a small number of positive quadratic terms plays a more
important role than the fact of having a small number of auxiliary variables.

Finally, in order to compare the relative performance of quadratization methods with

117



Chapter 8. Comparing linear and quadratic reformulations

Table 8.11: Random same degree (n = 200, deg = 3 and 4): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

200 400 3 1 584 555 555 582 582 582
200 400 3 2 588 565 565 570 570 570
200 400 3 3 588 561 561 570 570 570
200 400 3 4 588 558 558 582 582 582
200 400 3 5 619 586 586 663 663 663
200 500 3 1 738 696 696 741 741 741
200 500 3 2 744 709 709 753 753 753
200 500 3 3 729 690 690 705 705 705
200 500 3 4 742 694 694 744 744 744
200 500 3 5 731 682 682 711 711 711

200 250 4 1 627 592 592 822 822 822
200 250 4 2 615 581 581 732 732 732
200 250 4 3 611 587 587 750 750 750
200 250 4 4 610 582 582 714 714 714
200 250 4 5 613 573 573 720 720 720
200 300 4 1 743 698 699 918 918 918
200 300 4 2 730 694 694 876 876 876
200 300 4 3 737 694 694 894 894 894
200 300 4 4 755 714 714 972 972 972
200 300 4 5 745 699 701 924 924 924
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Table 8.12: Random same degree all instances: quadratizations are on average × times slower than SL.

Method × slower than SL (average)
PC1 17.15
PC2 14.58
PC3 15.16
Ishikawa 58.62
n/4 62.13
logn-1 64.57

SL, Table 8.12 shows a calculation of the overall factor by which quadratization methods
are slower than SL. These factors have been computed by dividing, for each instance, the
resolution time of the quadratization by the resolution time of SL, and by taking the average
of all these ratios afterwards.

8.4.2 Random high degree instances

This section presents the results for the set of instances Random high degree, consisting of
polynomials of degrees varying between 7 and 16, where the degree of each monomial is
generated using an exponential distribution (see Section 8.2.2 for a detailed description of
the instances).

The are instances with n = 200, 400 and 600 variables. As in the previous section, we
present here only figures for n = 200; instances with n = 400 and 600 have a similar behavior
and the corresponding figures are given in Appendix F. All computing times are detailed in
Tables C.1, C.2 and C.3 in Appendix C.

As in the previous section, method SL-2L has not been tested because it is not clear
whether the 2-link inequalities are useful for Random high degree instances (see Chapter 4
and [41]).

Figures 8.7 and 8.8 present the instance identifier on the x-axis and the y-axis reports
the execution times (in seconds) of the methods listed in the corresponding legend. Instance
identifiers are of the form n-m-d-id, where n is the number of variables of the polynomial, m
is the number of monomials, d is the degree of the polynomial and id is simply an id for the
polynomial. For example, instance 200-250-9-2 has 200 variables, 250 terms, the degree of
the polynomial is 9 and it is the second polynomial with these parameters. Only parameters
n and m are fixed for this class of instances; the degree of the polynomial is determined
randomly.

As for Random same degree instances, we were only able to test the easiest instances in
comparison to the experiments presented in Chapter 4 and [41] because all quadratizations
were too slow for the hardest examples.

Figure 8.7 presents computing times of all methods, while Figure 8.8 focuses on the
fastest ones. A first general conclusion is that we can clearly divide all reformulations in three
classes according to their computational performance. The fastest method is SL, solving ev-
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Figure 8.7: Random high degree (n = 200): linearizations and quadratizations computing times.

ery instance immediately. The second fastest methods are pairwise covers while termwise are
the slowest, with high percentages of unsolved instances in one hour, as shown in Table 8.13.
This table also reports the average factor by which quadratization methods are slower than
SL. If we compare pairwise covers against each other, PC2 and PC3 have a similar behavior
and are faster than PC1. If we compare termwise quadratizations against each other, Ishikawa

is the fastest method, having a low percentage of unsolved instances in one hour, while n/4 is
clearly the worst.

Table 8.14 and 8.15 report the number of auxiliary variables and the number of positive
quadratic terms introduced by each quadratization, respectively, for polynomials with n =

200 (see Appendix C for n = 400 and 600). Independently of n, termwise quadratizations

Table 8.13: Random high degree all instances: quadratizations are on average × times slower than SL.

Method × slower than SL (average) % unsolved in 1h
PC1 80.71 0
PC2 70.87 0
PC3 70.37 0
Ishikawa 4726.26 8
n/4 8913.73 38
logn-1 4258.53 26
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Figure 8.8: Random high degree (n = 200): linearizations and quadratizations fastest computing times.

introduce on average less than half of the number of variables required by pairwise covers.
Concerning positive quadratic terms, termwise quadratizations have, in most cases, a few
hundreds of terms more than pairwise covers, especially for denser instances and instances
with higher degree. Among termwise methods, Ishikawa has in general less positive quadratic
terms than n/4 and logn-1, which is probably more obvious for larger instances with n = 400
and 600. These observations together with the computing times seem to suggest that the fact
of introducing a small number of positive quadratic terms plays again an important role.

8.4.3 Vision instances

This section presents the results for the set of instances Vision, consisting of polynomials of
degree four inspired from the image restoration problem in computer vision (see Section 8.2.2
for a detailed description).

The experiments have been carried out for instances with base images of sizes 10×10, 15×
15, 20×20, 25×25 and 30×30, using n = 100, 225, 400, 625 and 900 variables, respectively.
We present here only figures for images of size 15 × 15. Figures for the remaining instances
are given in Appendix G. All computing times are reported in Appendix D.

Figures 8.9 and 8.10 present the instance identifier on the x-axis and the y-axis displays
the execution times (in seconds) of the methods listed in the legends. Instance identifiers are
of the form base-perturbation-id, where base can be equal to tl (top left rectangle), cr
(centre rectangle) or cx (cross), perturbation can be equal to s (sharp, no perturbation),
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Table 8.14: Random high degree (n = 200): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

200 250 1 9 372 361 361 144 141 141
200 250 2 9 362 348 349 142 139 139
200 250 3 9 382 367 367 139 134 134
200 250 4 9 367 358 358 140 137 137
200 250 5 7 355 348 348 140 138 138
200 300 1 8 463 444 444 169 167 167
200 300 2 9 445 423 426 190 185 185
200 300 3 15 460 438 438 172 163 162
200 300 4 13 505 481 482 178 170 169
200 300 5 12 436 425 425 173 169 169
200 350 1 10 531 499 500 199 195 195
200 350 2 10 524 500 500 208 198 198
200 350 3 13 527 501 503 223 216 216
200 350 4 9 506 482 483 209 206 206
200 350 5 11 510 482 484 207 202 202
200 400 1 14 591 566 566 235 225 224
200 400 2 11 578 552 549 209 205 206
200 400 3 11 617 591 592 232 222 222
200 400 4 16 615 579 581 241 229 228
200 400 5 12 617 594 598 238 231 231
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Table 8.15: Random high degree (n = 200): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

200 250 1 9 437 426 426 468 483 483
200 250 2 9 421 407 408 465 482 482
200 250 3 9 440 425 425 480 495 495
200 250 4 9 432 423 423 444 456 456
200 250 5 7 423 416 416 439 451 451
200 300 1 8 525 506 506 477 495 495
200 300 2 9 519 497 500 561 583 583
200 300 3 15 531 509 509 728 759 756
200 300 4 13 580 556 557 733 763 760
200 300 5 12 517 506 506 614 632 632
200 350 1 10 620 588 589 663 685 685
200 350 2 10 614 590 590 769 802 802
200 350 3 13 629 603 605 777 804 804
200 350 4 9 591 567 568 615 636 636
200 350 5 11 602 574 576 703 727 727
200 400 1 14 689 664 664 927 963 960
200 400 2 11 664 638 635 623 639 639
200 400 3 11 716 690 691 902 939 939
200 400 4 16 715 679 681 999 1034 1031
200 400 5 12 714 691 695 851 882 882

123



Chapter 8. Comparing linear and quadratic reformulations

tl-
s

tl-
l-1

tl-
l-2

tl-
h-1

tl-
h-2 cr-

s
cr-

l-1
cr-

l-2
cr-

h-1
cr-

h-2 cx
-s

cx
-l-

1
cx

-l-
2
cx

-h-
1
cx

-h-
2

0

100

200

300

400

Instances

Ti
m

e
(s

)

SL-2L
SL

PC1
PC2
PC3

Ishikawa

n/4
logn-1

Figure 8.9: Vision 15 × 15 (n = 225,m = 1598): linearizations and quadratizations computing times.

l (low perturbation) or h (high perturbation) and id can be equal to 1 or 2. Only instances
with a low or high perturbation use an id, because for these perturbation settings we have
generated two samples, while there is only one sharp image.

Figure 8.9 reports computing times for all methods, while Figure 8.10 focuses on the
fastest ones. For instances with images of sizes 20 × 20, 25 × 25 and 30 × 30 termwise
quadratizations were not tested, because of their poor performance on smaller instances.

The main conclusion for Vision experiments is that no matter the size of the instance,
there are clearly four classes of methods when according to computational performance. The
fastest method is always SL-2L and is able to solve all instances up to 30 × 30 images in at
most 4 minutes.

Table 8.16 shows a calculation of the average factor by which all methods are slower than
SL-2L. For termwise methods, the averages only take into account the smallest classes of
instances (10 × 10 and 15 × 15), and SL was not tested for 35 × 35 images. The second class
of fastest methods are pairwise cover quadratizations, which are on average four our five
times slower than SL-2L. The third best method is SL, with eight times slower computing
times than SL-2L on average. Termwise quadratizations are the slowest, with times that are
up to nine times slower than pairwise covers and up to 28 times slower than SL-2L.

Table 8.17 presents the number of auxiliary variables introduced by each quadratization
and Table 8.18 reports the number of positive quadratic terms. These values only depend on
the image size, because the definition of higher-degree monomials does not depend on the
base image or the perturbation. Unlike random instances, pairwise covers require less auxil-
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Figure 8.10: Vision 15× 15 (n = 225,m = 1598): linearizations and quadratizations fastest computing times.

Table 8.16: Vision all instances: SL and quadratizations are on average × times slower than SL-2L.

Method × slower than SL-2L (average) % unsolved in 1h % not tested
SL 8.73 0 16.7
PC1 4.47 12 0
PC2 3.72 0 0
PC3 3.74 0 0
Ishikawa 28.54 0 66.7
n/4 27.77 0 66.7
logn-1 25.22 0 66.7
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Table 8.17: Vision: number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

Image size n m PC1 PC2 PC3 Ishikawa n/4 logn-1

10 × 10 100 668 334 321 321 405 405 405
15 × 15 225 1598 799 776 776 980 980 980
20 × 20 400 2928 1464 1431 1431 - - -
25 × 25 625 4658 2329 2286 2286 - - -
30 × 30 900 6788 3394 3341 3341 - - -
35 × 35 1525 9318 4659 4596 4596 - - -

Table 8.18: Vision: number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

Image size n m PC1 PC2 PC3 Ishikawa n/4 logn-1

10 × 10 100 668 416 403 403 648 648 648
15 × 15 225 1598 996 973 973 1568 1568 1568
20 × 20 400 2928 1826 1793 1793 - - -
25 × 25 625 4658 2906 2863 2863 - - -
30 × 30 900 6788 4236 4183 4183 - - -
35 × 35 1525 9318 5816 5753 5753 - - -

iary variables than termwise quadratizations. Pairwise covers also introduce a few hundreds
less positive quadratic terms. Both factors explain the better computational performance of
pairwise covers.

Focusing now on pairwise cover quadratizations, PC1 is slower than PC2 and PC3 for
almost every instance. This makes sense intuitively, since methods PC2 and PC3 model
interactions between monomials more accurately. Moreover, PC1 requires more auxiliary
variables and positive quadratic terms.

Finally, although the three termwise quadratization methods are theoretically the same
(see Remark 10), it seems that logn-1 has a different behavior than the other two termwise
methods, being slightly faster on average. As mentioned in Remark 10 we blame this in-
convenient and unexpected behavior on differences in coding the quadratizations. A pos-
sible explanation is that different orders of the terms and of the variables lead to different
branch & cut trees, resulting in better computing times for logn-1 in many cases. This issue
should however be analyzed in more detail, for example by coding identical equations for all
termwise methods, in the sense of using the same order of variables and terms.
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Large instances We ran some additional tests on instances of size 35 × 35, containing
n = 1225 variables and m = 9318 monomials. SL-2L was able to solve all 35 × 35 instances
within less than ten minutes, while PC1, PC2 and PC3 quadratizations were slower, but still
solved all problems in less than one hour.

However, the time used to create models in Java started to play a role for these instances.
For smaller instances, model creation times were not registered because they were small
compared to the problem resolution time. For 35 × 35 instances, model creation times in
Java are shown in detail in Table D.7 and total times (model creation plus resolution) are
shown in Table D.8, of Appendix D. We display here corresponding figures. Figure 8.11
shows resolution times of the different methods; clearly SL-2L is the fastest. Figure 8.12
shows model creation times. In this case, PC1 is the fastest method while SL-2L is very
slow. Finally, Figure 8.13 shows total times (model creation plus resolution). SL-2L is not
the best method anymore for several instances. Indeed, long model creation times are not
compensated by a faster resolution time of the SL-2L model.

The experiments on large Vision instances highlight a clear drawback of SL-2L as it is
currently implemented. As a reminder, 2-link inequalities are added as a pool of user cuts to
CPLEX 12.7, and all the 2-link inequalities are added to the pool. One can at most generate
m(m − 1) 2-link inequalities, where m is the number of terms of the instance. However, we
do not know exactly how the inequalities are handled by CPLEX during the branch and cut
algorithm. Moreover, this approach works well for relatively small instances but for large
instances model generation takes too much time. Other experiments have shown that for
even larger instances, the memory consumption required to add all 2-links to the pool of cuts
might become too high. A possible solution that we have not explored but that is considered
as a future research question is the definition of a separation algorithm for the 2-link inequal-
ities. Even though the number of 2-link inequalities is only quadratic in the number of terms
of the original multilinear function, a separation procedure could be interesting to generate
effective inequalities in a customized way. One possibility would be to dynamically gener-
ate only the most violated inequalities, or inequalities that we believe to be more relevant.
Such a procedure could potentially avoid memory problems and reduce computing times in
practice. An attempt to generate a subset of relevant inequalities in a pre-processing step has
been implemented and is described in Chapter 9, where we decide heuristically which 2-link
inequalities should be added to the pool of cuts.

8.4.4 Autocorrelated sequences instances: first experiments
This section presents the results for the set of instances Autocorrelated sequences, which
consist of polynomials of degree four, with small number of variables and very large number
of terms. These instances arise in the field of statistichal mechanics, modeling problems such
as the transition of a supercooled liquid to glass. The model, which is closely related to the
Ising model, aims at minimizing the autocorrelation between pairs of spins of the considered
material (see Section 8.2.2 for a detailed description of the instances).

Autocorrelated sequences are the most difficult instances by far. We only report here
results for eight instances out of forty, because none of our methods could solve the remaining
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Figure 8.11: Vision 35 × 35 (n = 1225,m = 9318): linearizations and quadratizations computing times.
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Figure 8.12: Vision 35 × 35 (n = 1225,m = 9318): Java model creation times.
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Figure 8.13: Vision 35 × 35 (n = 1225,m = 9318): total times (model creation + resolution).

instances in reasonable time. Table 8.19 describes the number of variables n and the number
of terms m of the complete set of Autocorrelated sequences instances. Again, it seems that
the difficulty comes from having large ratios m

n . Indeed, the largest instances have only n = 60
variables, but the number of terms is of the order of thousands for the majority of examples.

The work on Autocorrelated sequences is still ongoing. The instances highlighted in
bold, for which we report computational results here, are such that at least one linear or
quadratic reformulation was able to reach the optimum in less than an hour. For the remain-
ing instances, either none of the methods finished within an hour or we run into memory
problems.

It should be noted that not all instances were tested. For example, for instance 25 19, with
n = 25 variables and m = 3040 terms, we run into memory and time limit problems. Then,
we did not test denser instances on 25 variables. For the smallest instance with 45 variables
we also had time and memory problems, so we did not test instances with more variables
than 45. An open research direction is to extend these tests, possibly allowing larger time
limits or using a more powerful machine. Even if the experiments on this test bed is far from
complete, we find it worth to mention these first results because they show the challenging
nature of the Autocorrelated sequences instances. Furthermore, http://polip.zib.de/
autocorrelated_sequences/ states that for several of these instances the optimal value
is still unknown, and that no instance can be solved with a general-purpose solver within an
hour.

Concerning our results, Table 8.20 reports the results of the four linearization methods
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Table 8.19: Autocorrelated sequences: variables (n) and terms (m) in each instance.
Id n m Id n m
20 5 20 207 45 5 45 507
20 10 20 833 45 11 45 2 813
25 6 25 407 45 23 45 10 776
25 13 25 1 782 45 34 45 18 348
25 19 25 3 040 45 45 45 21 993
25 25 25 3 677 50 6 50 882
30 4 30 223 50 13 50 4 457
30 8 30 926 50 25 50 14 412
30 15 30 2 944 50 38 50 25 446
30 23 30 5 376 50 50 50 30 271
30 30 30 6 412 55 6 55 977
35 4 35 263 55 14 55 5 790
35 9 35 1 381 55 28 55 19 897
35 18 35 5 002 55 41 55 33 318
35 26 35 8 347 55 55 55 40 402
40 5 40 447 60 8 60 2 036
40 10 40 2 053 60 15 60 7 294
40 20 40 7 243 60 30 60 25 230
40 30 40 12 690 60 45 60 43 689
40 40 40 15 384 60 60 60 52 575
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Table 8.20: Autocorrelated sequences: linearizations computing times.

Instance Resolution time (secs)

Linearizations

Id n m SL-2L SL SL-2L-Only SL-NoCuts

20 5 20 207 6.94 11.48 1.06 6.13
20 10 20 833 112.27 91.75 47 65.89
25 6 25 407 65.36 137.38 44.52 321.77
30 4 30 223 4.24 15.7 13.47 349.84
35 4 35 263 11.92 36.86 69.03 3104.45
25 13 25 1782 1645.2 2567.17 685.74 2408.69
30 8 30 926 2743.51 > 3600 > 3600 > 3600
40 5 40 447 1321.61 > 3600 > 3600 > 3600

Table 8.21: Autocorrelated sequences: quadratizations computing times.

Instance Resolution time (secs)

Pairwise covers Termwise quadratizations

ID n m PC1 PC2 PC3 Ishikawa n/4 logn-1

20 5 20 207 10.58 5.05 4.27 37.47 34.95 35.34
20 10 20 833 90.28 159.47 137.69 417.72 419.53 365.47
25 6 25 407 106.67 80.17 121.03 629.66 631.77 466.92
30 4 30 223 13.52 7.17 7.03 29.67 31.02 36.08
35 4 35 263 24.13 13.25 11.2 49.77 49.92 54.14
25 13 25 1782 2311.09 > 3600 > 3600 > 3600 > 3600 > 3600
30 8 30 926 > 3600 > 3600 > 3600 > 3600 > 3600 > 3600
40 5 40 447 > 3600 914.27 2053.97 > 3600 > 3600 > 3600

SL-2L, SL, SL-2L-Only and SL-NoCuts and Table 8.21 reports the results of pairwise covers
and termwise quadratizations.

Figures 8.14, 8.15 and 8.16 present, for the easiest examples specified on the x-axis,
corresponding computing times on the y-axis. Figure 8.14 compares linearization methods
only, and shows that none of the methods is clearly better than others, except maybe for SL-
NoCuts, which is clearly much slower than the rest for two of the instances. Figure 8.15
compares quadratizations only. In this case the relative behavior of the quadratizations is
similar to the other instance sets: termwise quadratizations seem to perform worse than pai-
wise covers. Figure 8.16 compares both linearization and quadratization methods and shows
that there is no clear distinction between the performance of the different methods.

We remark that these results are not representative, because of the very small number
of instances that we were able to test. The fact that several rather small instances, starting
from 25 19 (n = 25, m = 3040), present memory problems for the standard linearization
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inequalities is again a motivation for the algorithm presented in Chapter 9, where only a
subset of the 2-link inequalities is chosen in a heuristic way.

Concerning auxiliary variables and positive quadratic terms, similarly as to Vision in-
stances, pairwise covers quadratizations introduce less auxiliary variables and less positive
quadratic terms, which might again explain better computing times for pairwise covers (see
Tables 8.22 and 8.23).

8.5 Conclusions
A first general conclusion is that linearization methods seem to be faster than quadratization
methods for almost all classes of instances. Let us highlight again that this behavior heavily
relies on the fact that we use CPLEX 12.7 to solve both linear and quadratic problems, which
might be detrimental for quadratizations. Section 8.3 presented a thorough study aimed at
improving the resolution times of quadratic reformulations by using persistencies in CPLEX
12.7, but it did not lead to significant results. Since the influence of the underlying linear
and quadratic solver remains a crucial factor when comparing the performance of the refor-
mulations, an essential future research direction would be to make a careful comparison of
our current results with the same experiments using a different solver. Chapter 10 presents in
detail several related ideas to explore.

Another important conclusion is that there might be some hidden factors influencing the
behavior of the resolution methods due to the “blackbox” nature of CPLEX 12.7. For ex-
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Table 8.22: Autocorrelated sequences: number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

ID n m PC1 PC2 PC3 Ishikawa n/4 logn-1

20 5 20 207 70 70 70 117 117 117
20 10 20 833 135 135 135 678 678 678
25 6 25 407 110 110 110 272 272 272
30 4 30 223 84 84 84 109 109 109
35 4 35 263 99 99 99 129 129 129
25 13 25 1782 222 222 222 1535 1535 1535
30 8 30 926 182 182 182 714 714 714
40 5 40 447 150 150 150 257 257 257

Table 8.23: Autocorrelated sequences: number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

ID n m PC1 PC2 PC3 Ishikawa n/4 logn-1

20 5 20 207 103 103 103 268 268 268
20 10 20 833 345 345 345 1395 1395 1395
25 6 25 407 193 193 193 608 608 608
30 4 30 223 111 111 111 246 246 246
35 4 35 263 131 131 131 291 291 291
25 13 25 1782 707 707 707 3132 3132 3132
30 8 30 926 402 402 402 1502 1502 1502
40 5 40 447 223 223 223 588 588 588
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ample, we highlighted the fact that for some degree four instances, even though all termwise
methods have the same equations, there exist relevant differences in computing times. The
difference was particularly striking for Vision instances, where logn-1 behaved in a very dif-
ferent way than n/4 and Ishikawa in spite of having the exact same mathematical expressions.
The correctness of the implementation was carefully checked; the methods only presented
differences in the order in which terms and variables were added to the objective function
in CPLEX 12.7, which we believe results in a different branch & bound tree thus leading
to different computing times. This makes us insist on the fact that one cannot derive final
conclusions from such computational experiments unless there is a consistent behavior over
large sets of instances. This was the case for example for Vision instances, for which the
three groups of methods tested (termwise quadratizations, pairwise covers quadratizations
and linearization) consistently showed the same relative performances over the whole set of
instances.

Concerning the classes of instances, it is clear that the relative performance of the different
methods strongly depends on the nature of the instances. For example, for Vision instances,
pairwise cover quadratizations performed better than the standard linearization alone. This is
an interesting and rather unexpected outcome, contradicting our hypothesis that CPLEX 12.7
is better suited to solve linear than quadratic problems for this particular class of instances.

Another interesting result was obtained for Random high degree instances, where we
compared the relative performance of the different termwise quadratization methods. For
these instances, Ishikawa was more efficient than n/4 and logn-1, which is surprising con-
sidering the fact that Ishikawa requires a higher number of auxiliary variables. These results
confirm an idea previously considered in the literature, namely, the fact that a small number
of variables should not be the only criterion to evaluate the quality of a quadratization, but
one should also consider properties like the number of positive quadratic terms as a vague
measure of distance from submodularity.

Finally, when comparing quadratic reformulations of a different nature, it seems that pair-
wise covers are more efficient than termwise quadratizations in general. This behavior is
consistent for almost all classes of instances. Also, for non-random instances, the standard
linearization with 2-links is more efficient than the standard linearization alone. A common
feature of pairwise covers and 2-link inequalities is that both types of methods take into ac-
count the interactions between monomials, by considering their intersections. This seems to
confirm that a good property of a reformulation is the fact of better exploiting the structure
of the original polynomial problem; a property that we did not consider at a theoretical level
when designing the reformulations, but that is clearly brought out by the experiments.

In the same spirit, let us remark that in our implementation of the nonlinear model for
Vision instances, we might already be overlooking some structural properties of the original
problem. Consider a 2 × 2 window consisting of pixels x11, x12, x21, x22 and consider the
assignment x11 = 0, x12 = 0, x21 = 1, x22 = 1, which is modeled as

30(1 − x11)(1 − x12)x21x22, (8.2)

where the coefficient 30 represents the penalty specified in Table 8.1. In our implementation,
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equation (8.2) is developed into a multilinear expression

30 (x21x22 − x21x22x11 − x21x22x12 + x21x22x11x12) .

The same procedure is applied to all assignments of variables x11, x12, x21, x22 and the multi-
linear terms of all expressions are added together afterwards. However, one could think of im-
plementing these models without developing expression (8.2), but directly defining a quadra-
tization or a linearization, by considering it as a monomial defined on the original xi variables
and on their complements x̄i = 1− xi. For example, the standard linearization inequalities for
(8.2) would be y ≤ 1− x11, y ≤ 1− x12, y ≤ x21, y ≤ x22 and y ≥ 1− x11 +1− x12 + x21 + x22−3.
The reasoning behind this idea is that the fact of not developing expression (8.2) leads to a
more accurate model of the original application, which probably better captures structural
properties like interactions between pixels. Moreover, we will require less auxiliary variables
when reformulating expression (8.2) directly.
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Chapter 9

A heuristic algorithm to select 2-link
inequalities

This chapter presents a heuristic method to add a subset of relevant 2-link inequalities to the
standard linearization instead of the whole set, as was done in the previous chapter. This idea
is motivated by the fact that, even if the number of 2-link inequalities is only quadratic in
the number of monomials of the instance, adding all inequalities might not be necessary to
obtain a good computational performance. We present some preliminary results for Vision

and Autocorrelated sequences instances.

9.1 Motivation

The computational experiments presented in Chapter 8 showed that adding 2-link inequalities
to the standard linearization can yield great improvements for the resolution of some classes
of problems, especially for Vision instances, and potentially for Autocorrelated sequences

instances. The method presented in Chapter 8, denoted by SL-2L, consisted in adding all
2-link inequalities as a pool of user cuts to the branch & cut framework of CPLEX 12.7. This
approach seems reasonable because one can generate at most m(m− 1) inequalities, where m
is the number of monomials of a polynomial. Moreover, 2-links are only added to the pool
for pairs of monomials having an intersection of at least two variables, because otherwise
they are redundant. Since several instances contain many pairs of terms with an intersection
of size smaller than two, the number of effectively added 2-links is usually much smaller than
m(m − 1).

However, Section 8.4.3 of Chapter 8 showed that, for the largest Vision experiments with
9 318 terms, the fact of adding all 2-links resulted in large model creation times, which were
not compensated by the fast resolution of the corresponding integer programs. Furthermore,
the use of all 2-link inequalities for rather small instances in the Autocorrelated sequences

set led to memory problems. Both time and memory issues could be addressed by using al-
gorithms that do not require the addition of the whole set of 2-link inequalities to the standard
linearization model, but only a subset of them.
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We present here an approach that is motivated by the good performance shown by the
quadratizations based on small pairwise covers, especially by PC2 and PC3 which accounted
for the structure of the original problem by modeling subsets of variables that appear often
in the original monomial set using the same auxiliary variable at each occurence. The in-
tuitive idea behind 2-link inequalities is very similar, in the sense that they strengthen the
formulation by accounting for interactions between pairs of monomials. Therefore, we will
use the same idea of counting “popular” intersections and generate the 2-links corresponding
only to subsets of variables that appear often as an intersection of two monomials. The same
technical specifications and parameter settings of Chapter 8 apply here.

9.2 Description of the heuristic: “Most popular 2-links”

We describe here the heuristic algorithm “Most popular 2-links” in high level pseudocode.
Given an integer N2L, representing the number of inequalities that the user wants to generate,
the algorithm will compute the most relevant N2L inequalities, where the relevancy of an
inequality is defined in the sense of the criterion “Most popular intersections first”, described
in Section 7.3. This set of inequalities, which is generally smaller than the whole set of
2-links, will be added as a pool of user cuts to the standard linearization model.

Let S be the set of subsets of variables associated with a multilinear polynomial. The first
step of the pseudocode is the same as the first step of PC2 heuristic. The second step verifies
that the number of inequalities requested by the user does not exceed the maximum number
of 2-links that an instance admits. The last step adds the selected inequalities to the pool of
cuts.

Step 1: Create the priority list PrioritySubterms

1. Compute all two-by-two intersections of monomials in S and count the number of
times that a set of variables appears as a full intersection of two monomials in S.

2. Create PrioritySubterms as follows: the first subterm is the set with most occur-
rences as a full intersection of two monomials in S, the second subterm is the set with
second most occurrences as a full intersection of two monomials in S, and so on.

Step 2: Compute the effective number of 2-links to be added Let Ne f f be the effective
number of 2-links to be added to the formulation.

1. Compute N∩, the number of intersections of pairs of monomials with at least two vari-
ables.

2. If N∩ < N2L set Ne f f = N∩. Else set Ne f f = N2L.
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Step 3: Generate Ne f f 2-link inequalities following the order of PrioritySubterms

1. For each element V in PrioritySubterms

• For each pair of monomials S , T ∈ S with intersection S ∩ T = V , if the pool
of cuts contains less than Ne f f inequalities, then add the 2-link inequalities corre-
sponding to S and T to the pool, else STOP.

9.3 Results
This section presents the computing times obtained by solving Vision and Autocorrelated

sequences instances using the heuristic “Most popular 2-links”. We chose not to test the
heuristic on Random same degree and Random high degree instances because it was not clear
whether adding all 2-link inequalities was helpful with respect to the plain standard lineariza-
tion (see [41] and Chapter 4). However this case could be further investigated, since one
could make the hypothesis that adding the whole set of 2-links is too expensive for Random

same degree and Random high degree instances, but adding only a subset of the inequalities
might be useful.

In all figures, missing data points represent resolution times larger than one hour, which
is the time limit that was set for all experiments.

9.3.1 Vision instances
Let us consider the set of Vision instances. First, in order to have an idea of the total number
of 2-links for each instance, Table 9.1 shows the number of 2-links that can be generated for
the Vision instances. As a reminder, 2-links are only generated for pairs of monomials having
at least two variables in common. Since the polynomials of the Vision instances have many
terms of degree 1 or 2, there are far less than m(m − 1) inequalities. Notice that the number
of 2-links only depends on the size of the image, because the choice of the base image and
the perturbation do not impact the nonlinear part of the model.
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Table 9.1: Vision: maximum number of 2-links per image size.

Image size n m Total # 2-links
10x10 100 668 5 184
15x15 225 1 598 12 824
20x20 400 2 928 23 864
25x25 625 4 658 38 304
30x30 900 6 788 56 144
35x35 1 225 9 318 77 384

Table 9.2: Vision: number of 2-links per level.

Instance # 2-links per level (% of total)
Image size Level 1 Level 2 Level 3 Level 4 Level 5 Total # 2-links
10x10 1000 (19%) 2000 (39%) 3000 (58%) 4000 (77%) 5000 (96%) 5 184
15x15 2500 (19%) 5000 (39%) 7500 (58%) 10000 (78%) 12500 (97%) 12 824
20x20 4700 (20%) 9400 (39%) 14100 (59%) 18800 (79%) 23500 (98%) 23 864
25x25 7600 (20%) 15200 (40%) 22800 (60%) 30400 (79%) 38000 (99%) 38 304
30x30 11200 (20%) 22400 (40%) 33600 (60%) 44800 (80%) 56000 (99%) 56 144
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Figure 9.1: Vision 15 × 15 (n = 225,m = 1598): 2-links heuristic computing times.

In the computational experiments we have defined five levels of 2-link inequalities to add
to the formulation, which are roughly 20%, 40%, 60%, 80% and 100% of the total number
of 2-links. Table 9.2 presents the exact numbers of 2-links defined in each level.

The behavior of the Vision instances is very similar for all image sizes, thus we only
present here Figure 9.1 for 15 × 15 images, while the rest of figures can be found in Ap-
pendix G. The tables corresponding to all instances are in Appendix D. The x-axis of Fig-
ure 9.1 has a mark for each level of 2-links and the y-axis gives the resolution times in seconds
of the instances in the legend. The first data point in the x-axis corresponds to the resolution
times of SL (without 2-links) reported in Chapter 8.

A general trend that can be observed is that the higher the number of 2-links added to the
problem, the smaller the computing times become. Figure 9.1 and the figures in Appendix D
also highlight the fact that the hardest instances are those with high levels of perturbation
(tl-h-1, tl-h-2, cr-h-1, cr-h-2, cx-h-1, cx-h-2), no matter the size of the image.

In some cases there is an increase in computing times when going from lower to higher
levels of 2-links. For many instances, adding only 20% of 2-links seems to be worse than
adding no 2-links at all. This observation should however be taken carefully, because the tests
with no 2-links were run as a separate batch and in another period of time than the remaining
five levels, meaning that the performance of the machine could have slightly changed due
factors out of our control. In order to have a fair comparison the tests should be re-lauched
with the six levels, including the plain SL, in a same batch.

The fluctuations between time measurements of the first levels containing 0%, 20% and
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40% of 2-links seem to increase with the size of the instances. For larger instances, it seems
that starting from a certain level of 2-links added, the time measurements stabilize, at least
for instances with a high perturbation. For the hardest instances with images of size 30×30 in
particular, there is a dramatic difference between adding 60% and 80% of the 2-links (see Fig-
ure G.9), which indicates that many inequalities are added to obtain satisfactory computing
times.

9.3.2 Autocorrelated sequences instances
This section presents the results of the 2-links heuristic for the set of Autocorrelated se-
quences instances. Table 9.3 shows the number of 2-links that can be generated for the Au-
tocorrelated sequences instances. Notice that, compared to Vision instances with a similar
number of terms, Autocorrelated sequences instances potentially admit a much higher num-
ber of 2-link inequalities. One reason for this is that Autocorrelated sequences instances
have less terms of degree 1 or 2. On the other hand Autocorrelated sequences instances
are much denser, meaning that they have a larger ratio m

n . For example, Vision instances of
size 20x20 have 2 928 monomials and use 400 variables, while Autocorrelated sequences

instance 30 15 has a similar number of terms (2 944) but only 30 variables. Intuitively, the
denser instances Autocorrelated sequences will contain more pairs of monomials with an in-
tersection of at least two variables, because there are less choices of variables to be included
in each term. As mentioned in Chapter 8, the higher density of terms in Autocorrelated

sequences instances might explain their intrinsic difficulty.
For Autocorrelated sequences instances, each instance has a different number of 2-links.

As for Vision instances, five levels of 2-links have been defined, and each of these levels
contains approximately 20%, 40%, 60%, 80% and 100% of the total number of 2-links.
Table 9.4 presents the exact number of 2-links corresponding to each level.

Table 9.5 presents the detailed computing times for the standard linearization together
with the specified number of 2-links, Figure 9.2 gives a graphical representation for the easiest
instances and Figure 9.3 presents the results of the most difficult instances.

The results in Figure 9.2 are not as significant as the results for Vision instances, due to the
small number of instances that we were able to test. There seems to be a trend of decreasing
computing times for higher percentages of 2-links, but this trend is not confirmed for instance
20 10, for which adding 100% presents the worst performance. Thus, no relevant conclusions
can be drawn from these experiments. The results in Figure 9.3 are even less informative, due
to the high quantity of missing data points, which represent problems requiring more than one
hour of resolution.

As a final experiment for the Autocorrelated sequences instances, we fixed a very large
number of 2-link inequalities (100 000) to be added to the standard linearization and let
CPLEX 12.7 solve the reformulation for one hour, in order to retrieve the final gap of the
branch & cut procedure. The inequalities to add are chosen using the heuristic described
in Section 9.2. Note that even if 100 000 inequalities are a very large number compared to
Vision instances (which could admit 77 384 2-links for the largest instances), they do not even
represent 0.5% of the total number of inequalities for the largest Autocorrelated sequences
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Table 9.3: Autocorrelated sequences: maximum number of 2-links per instance.
Id n m # 2-links Id n m # 2-links
20 5 20 207 3 136 45 5 45 507 8 086
20 10 20 833 54 704 45 11 45 2 813 235 064
25 6 25 407 10 646 45 23 45 10 776 2 257 348
25 13 25 1 782 172 878 45 34 45 18 348 5 288 906
25 19 25 3 040 426 302 45 45 45 21 993 7 012 544
25 25 25 3 677 581 028 50 6 50 882 24 046
30 4 30 223 2 076 50 13 50 4 457 479 378
30 8 30 926 45 038 50 25 50 14 412 3 363 356
30 15 30 2 944 353 084 50 38 50 25 446 8 309 036
30 23 30 5 376 958 212 50 50 50 30 271 10 872 808
30 30 30 6 412 1 270 298 55 6 55 977 26 726
35 4 35 263 2 466 55 14 55 5 790 696 466
35 9 35 1 381 81 314 55 28 55 19 897 5 303 858
35 18 35 5 002 766 112 55 41 55 33 318 11 986 060
35 26 35 8 347 1 765 148 55 55 55 40 402 16 141 280
40 5 40 447 7 096 60 8 60 2 036 103 238
40 10 40 2 053 149 384 60 15 60 7 294 960 764
40 20 40 7 243 1 281 696 60 30 60 25 230 7 321 614
40 30 40 12 690 3 169 270 60 45 60 43 689 17 394 212
40 40 40 15 384 4 285 626 60 60 60 52 575 23 126 262

Table 9.4: Autocorrelated sequences: number of 2-links per level.

Instance Number of 2-links added for each %

Id n m 20% 40% 60% 80% 100%

20 5 20 207 600 1 200 1 800 2 400 3 136
20 10 20 833 11 000 22 000 33 000 44 000 54 704
25 6 25 407 2 100 4 200 6 300 8 400 10 646
30 4 30 223 400 800 1 200 1 600 2 076
35 4 35 263 500 1 000 1 500 2 000 2 466
25 13 25 1782 34 600 69 200 103 800 138 400 172 878
30 8 30 926 9 000 18 000 27 000 36 000 45 038
40 5 40 447 1 400 2 800 4 200 5 600 7 096
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Table 9.5: Autocorrelated sequences: 2-links heuristic computing times.

Instance Resolution time (secs) for a given % of 2-links

Id n m 20% 40% 60% 80% 100%

20 5 20 207 7.13 4.24 6.22 6.08 6.94
20 10 20 833 66.55 95.23 80.09 76.88 112.27
25 6 25 407 125.98 124.44 70.97 85.25 65.36
30 4 30 223 7.59 8.83 8.00 5.02 4.24
35 4 35 263 23.09 22.61 19.16 9.94 11.92
25 13 25 1782 2675.13 > 3600 1971.77 > 3600 1645.20
30 8 30 926 > 3600 > 3600 > 3600 > 3600 2743.51
40 5 40 447 1492.31 2275.99 1235.26 1197.86 1321.61
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Figure 9.2: Autocorrelated sequences easiest instances: 2-links heuristic computing times.
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Table 9.6: Autocorrelated sequences: gap after 3600s running SL + 100 000 2-links.
Id n m Gap (%) Id n m Gap (%)
20 5 20 207 0 45 5 45 507 9.28
20 10 20 833 0 45 11 45 2813 215.33
25 6 25 407 0 45 23 45 10776 551.37
25 13 25 1782 0 45 34 45 18348 894.76
25 19 25 3040 184.77 50 6 50 882 85.97
25 25 25 3677 177.66 50 13 50 4457 298.25
30 4 30 223 0 50 25 50 14412 763.54
30 8 30 926 36.4 55 6 55 977 95.05
30 15 30 2944 183.65 55 14 55 5790 416.71
30 23 30 5376 229.87 55 28 55 19897 842.24
30 30 30 6412 338.22 60 8 60 2036 147.1
35 4 35 263 0 60 15 60 7294 479.26
35 9 35 1381 89.66 60 30 60 25230 993.9
35 18 35 5002 321.73 45 45 45 21993 ≥ 1000
35 26 35 8347 439.51 50 38 50 25446 ≥ 1000
40 5 40 447 0 50 50 50 30271 ≥ 1000
40 10 40 2053 145.69 55 41 55 33318 ≥ 1000
40 20 40 7243 369.03 55 55 55 40402 ≥ 1000
40 30 40 12690 776.19 60 45 60 43689 ≥ 1000
40 40 40 15384 860.37 60 60 60 52575 ≥ 1000

instances, which can admit up to 23 126 262 inequalities.
Table 9.6 presents the final gaps for every instance. For the last seven listed instances, the

CPLEX log did not even show a gap after one hour, which means that it is larger than 1000%.
Figure 9.4 presents the optimality gaps for those instances with a gap smaller than 1000%.

It can be appreciated from both Figure 9.4 and Table 9.6 that for a vast majority of the in-
stances, the gaps are still very large after one hour of execution, which indicates that the stan-
dard linearization is not a suitable method to solve these instances, even when it is possibly
improved with 2-link inequalities. This confirms that Autocorrelated sequences instances re-
main very challenging, as it is shown in http://polip.zib.de/autocorrelated_sequences/.

9.4 Conclusions
As a general conclusion, the experiments on the 2-links heuristic show that for Vision in-
stances resolution times tend to be shorter for larger pools of user cuts. For the hardest
instances with a high perturbation (tl-h-1, tl-h-2, cr-h-1, cr-h-2, cx-h-1, cx-h-2), computing
times are only significantly reduced for very large pools of user cuts containing around 80%
or almost all inequalities. (See for example figures for 25 × 25 and 30 × 30 images in Ap-
pendix G.) Resolution times of easier instances already drop for smaller pools; for example,
for 10 × 10 and 15 × 15 images, adding only 20 − 40% of 2-links reduces computing times
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by half in many cases.
For Autocorrelated sequences the results are not conclusive, and even with a very large

number of 2-links added heuristically, the gaps after one hour of resolution are very large,
which seems to indicate that linearization methods are not well-suited for these particularly
challenging instances.

A possible extension of the “Most popular 2-links” heuristic is the definition of alterna-
tive criteria to choose the most relevant 2-links. For example, one could select the 2-links
randomly, or give priority to inequalities corresponding to subsets of terms that do not ap-
pear very often in the original monomial set, as opposed to our current implementation. This
criterion might seem counter-intuitive at first, but it relies on the idea that the branch and
cut implementation of CPLEX might be already taking care of variables that appear most
frequently by branching, thus the addition of cuts corresponding to “unpopular” sets of vari-
ables could help by adding complementary information to the algorithm. As mentioned in
Section 8.4.3, another interesting approach would be the definition of a separation algorithm
for the 2-link inequalities, which could lead to a better practical performance, in terms of time
and memory consumption, by dynamically selecting the inequalities to add in the branch and
cut algorithm. Finally, the heuristic should also be tested on the sets of instances Random

same degree and Random high degree. For these instances, the results of Chapter 4 showed
that the addition of the whole set of 2-links did not improve resolution times, however it is
possible that times were slow because the set of 2-links was too large, a hypothesis that could
be tested using the heuristic method presented in this chapter.
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Chapter 10

Conclusions

This thesis considered the problem of minimizing a pseudo-Boolean function, that is, a real-
valued function f in binary variables x ∈ {0, 1}n, without additional constraints. We examined
resolution approaches based on the idea of reformulating the original nonlinear problem into
a linear or a quadratic one, by introducing auxiliary variables. A crucial assumption made
throughout the thesis is that pseudo-Boolean functions are represented as multilinear polyno-
mials; this assumption relying in turn on the well-known fact that a pseudo-Boolean function
can be associated to a unique multilinear expression.

Part I focused on linearizations, more precisely on the standard linearization, a techinque
that consists in introducing a set of auxiliary variables, each one representing a nonlinear
monomial, where the correspondence between variables and monomials is enforced using
linear constraints. Chapter 3 characterized multilinear functions for which the standard lin-
earization inequalities completely describe the convex hull of their integer feasible points.
This characterization was given in terms of the balancedness of the matrix defining the stan-
dard linearization constraints and in terms of the acyclicity of the hypergraph associated with
a multilinear polynomial, and was derived from a more general result considering the signs
of the coefficients. Chapter 4 defined the class of 2-link inequalities, modeling interactions
between pairs of monomials with a non-empty intersection. For the case of functions with
exactly two higher-degree monomials, the standard linearization together with the 2-link in-
equalities is a perfect formulation. Moreover, computational experience shows that the 2-link
inequalities strengthen the standard linearization formulation and can be very useful to solve
non-random instances.

Part II focused on quadratic reformulations. Given a pseudo-Boolean function f , a
quadratization is a quadratic function g depending on the original variables and on a set of
auxiliary variables such that when g is minimized over the auxiliary variables, f is recovered
point by point. This is a broad definition encompassing many quadratizations with differ-
ent properties. Chapter 6 focused on the question of defining quadratizations for pseudo-
Boolean functions using a small number of auxiliary variables. Among other results, we
defined a quadratization for the positive monomial, using only a logarithmic number of vari-
ables, improving previously published upper bounds by orders of magnitude. A matching
lower bound was also provided, proving that our upper bound is best possible. This result is
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especially remarkable because a quadratization for any pseudo-Boolean function can be de-
fined by separately quadratizing the monomials of its multilinear representation. The result
for the positive monomial was derived from a more general result for exact k-out-of-n and at
least k-out-of-n functions, for which logarithmic bounds on the number of auxiliary variables
significantly improve previously published results. Bounds for other classes of functions,
such as symmetric functions or functions with many zeros were also established. Chapter 7
considered a quadratization method of a different nature, which splits each monomial into
two subterms that are associated with an auxiliary variable each. Defining such a quadratiza-
tion with smallest number of auxiliary variables is an NP-hard problem, which we addressed
by defining heuristic algorithms based on the idea of substituting sets of variables appear-
ing in more than one monomial of the original mutlilinear expression by the same auxiliary
variable.

Part III focused on computational experiments. Chapter 8 presented the results of an
extensive set of experiments aimed at comparing the resolution times of several linear and
quadratic reformulations when using CPLEX 12.7. A first conclusion of this chapter is that
linear reformulations are solved for most instances much faster than quadratic reformulations
when using CPLEX 12.7. This is in a sense natural, because advances in quadratic pro-
gramming are generally much more recent than in linear programming. However, this also
highlights the fact that our results are heavily influenced by the choice of underlying linear
and quadratic solvers, and cannot be considered definitive without repeating the experiments
using other linear and quadratic resolution techniques. As a second important conclusion,
let us remark that the performance of the tested methods strongly depends on the set of in-
stances. For example, for non-random instances, methods better exploiting the structure of
the underlying application are much more efficient than the rest, to the extent that quadratic
reformulations with this property are solved faster than the standard linearization. Chapter 9
presented a heuristic algorithm to select a subset of interesting 2-link inequalities, with the
objective of dealing with long model creation times and memory problems encountered when
adding of the whole set of 2-link inequalities to the standard linearization.

Further research on linearizations
Several future research directions emerge in the context of linear reformulations. Let us first
remark that we restricted ourselves to the standard linearization, which is a very precise lin-
earization method. Part I could be generalized by considering other linearization techniques.
Nevertheless, several interesting points can be considered in our setting.

A first natural question is whether the 2-link inequalities can be generalized. Del Pia and
Khajavirad provided a partial answer to this question by defining the class of flower inequali-
ties, generalizing the 2-links to the case of several monomials such that a particular monomial
has an intersection of at least two variables with the rest of monomials. The flower inequali-
ties, together with the standard linearization define a complete description for certain acyclic
hypergraphs [47]. To the best of our knowledge it is still an open question to characterize
all cases for which the 2-link inequalities together with the standard linearization provide a
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perfect formulation. Moreover, perfect formulations for functions with exactly three or four
higher-degree monomials have not been specifically addressed in the literature.

From a computational point of view, an interesting idea that has not been implemented
is the definition of a separation algorithm to avoid the addition of the whole set of 2-link in-
equalities to the reformulation. Indeed, even if the 2-links are only in quadratic number in the
size of the input, the addition of all inequalities becomes impractical for certain instances of
reasonably large size. The main objective of implementing a separation procedure would be
to improve computing times and memory consumption in practice, for example by dynami-
cally generating effective inequalities during the execution of the branch and cut algorithm,
such as most violated inequalities or most relevant ones.

Further research on quadratizations
Several research directions concerning quadratizations arise from the results presented in
Part II. From a theoretical perspective, our contributions mainly concerned the question of
minimizing the number of auxiliary variables required to define quadratizations in termwise
procedures. Most lower and upper bounds presented in Chapter 6 are tight in the sense
of having the same order of magnitude. However, it would be nice to close the unit gap
remaining for exact k-out-of-n functions and the slightly larger gap for at least k-out-of-
n functions. Another interesting question would be to consider further classes of pseudo-
Boolean functions to derive similar results.

A more general aspect worth investigating is the definition of other desirable properties
for quadratizations, such as those mentioned in Chapter 5. We only briefly analyzed the
number of positive quadratic terms in the experimental results of Chapter 8, but a thorough
analysis of the influence of this magnitude on computing times would be worth considering.

One of the main reasons as to why quadratic reformulations are widely used by the com-
puter vision community is the use of persistencies, which we briefly described in Chapter 8.
Given a quadratic binary optimization problem, persistencies allow to fix a subset of the vari-
ables to their provable optimal values by solving its continuous standard linearization. This
approach is very useful in computer vision where models contain millions of variables and
persistencies can substantially reduce the size of these problems. Moreover, the resolution of
the continuous standard linearization of the quadratic problem provides the roof dual bound
[65], which has proven very useful for image restoration and also for other problems [25]. We
made a naive implementation to calculate persistencies, by directly solving the corresponding
linear problem using CPLEX 12.7. Vision instances did not show significant improvements
in computing times, and the use of persistencies seemed to be even detrimental with our
implementation. However, for a subset of the Random high degree instances, the use of per-
sistencies greatly improved computing times. The set of instances showing this behavior was
not significant enough to use persistencies in all experiments, but it would be interesting to
investigate further why such improvements were obtained for that precise set of instances.
Moreover, several related ideas remain to be explored, such as the use of roof duality bounds
as a bounding procedure in a the branch & bound framework of CPLEX (or another solver).
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Boros et al. [25] proposed a very efficient algorithm based on network flows which returns
the largest possible subset of variables to fix; this algorithm has not been tested on our in-
stances, and this is a question to address in the near future. Finally, one could also think of
generalizing the persistency result to higher-degree binary problems.

General considerations on computational experiments
Let us highlight some ideas specific to the computational experiments presented in Part III.

A major drawback of the computational experiments presented in Chapter 8 is that the
reported resolution times heavily depend on the choice of the software used to solve the
linear and quadratic reformulations. We chose CPLEX 12.7 because it is an extensively
used commercial solver. However, it might not be able to exploit interesting properties of
quadratic problems, leading to a false impression that linear reformulations are always better
than quadratic ones. Several ideas can be implemented in order to draw a more complete
picture of which reformulations are best. A straightfoward idea would be to run the same set
of experiments using different commercial solvers for linear and quadratic problems. Another
possible approach is to use algorithms specifically designed to handle the quadratic case,
such as a convexification-based resolution method [13, 14]. An important challenge of this
approach is the interaction between both implementations. We consider this as a subject of
investigation in the near future, in the context of a collaboration with the authors.

Furthermore, another disadvantage of using a “blackbox” solver is that little control of the
algorithms is left to the user, despite the large set of parameters to tune. Indeed, we observed
in Section 8.4.1 that all termwise quadratizations have the same mathematical expression
for Vision instances, but that in some cases the behavior of one of the methods was very
different from the other two. We believe that this inconvenient result is a consequence of
small differences in the order of the terms and variables when coding the equations, which
can result in different structures of the branch & bound tree. A related aspect is the fact that
in a “blackbox” solver, the user might not be aware of some random decisions that are taken
by CPLEX during the resolution of an integer program. For example, when deciding the
next branch to explore in a branch & bound algorithm, ties might be broken with a random
draw. As mentioned in the release notes of CPLEX 12.7, the solver offers now the possibility
of running a model several times and compiling statistical tests on the average runtimes and
standard deviations of each execution. Such tests have not been carried out and could be
considered to further clarify the reason of unsatisfactory results as the above.

One could also think of several improvements concerning particular classes of instances.
Regarding Vision instances, all models are degree four polynomials, because interactions of
pixels are taken into account for windows of size 2 × 2. This model is very limited, and a
direct extension of the existing implementation would be to consider larger windows, or even
different choices for pixel neighborhoods, like crosses. Another important improvement in
the way that Vision instances are handled concerns the way in which the polynomials them-
selves are defined. As mentioned in the conclusions of Chapter 8, the fact of developing the
expressions corresponding to the assignments of values to pixel windows into a multilinear
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polynomial might already result in a less accurate model of the underlying problem.
Finally, the preliminary experiments on the set of Autocorrelated sequences instances

did not lead to firm conclusions. Autocorrelated sequences is clearly the most difficult set
of instances. We included the results of these first experiments in this thesis to remark the
challenge that they represent to our reformulation methods, but it is an open question to
understand why these instances are so difficult to solve.

As a final future research question let us highlight again that throughout the thesis we
assumed that a pseudo-Booelan function was represented by its unique multilinear polyno-
mial. A key future research direction would be to study reformulation methods that do not
rely on this assumption. This is an interesting question both from a theoretical and from a
computational perspective. A motivation to further investigate this point is the application
of joint supply chain management design and inventory management presented in Chapter 1.
This problem is modeled as a nonlinear optimization problem in binary variables containing
square roots in the objective function, and is particularly interesting because it is a real-world
application representing a significant challenge for the reformulation methods presented in
this thesis.

Final word
There exists a current trend towards a better understanding of nonlinear problems in several
fields such as mathematical programming, optimization and operations research and also in
more distant areas like computer vision. We believe that the interest in nonlinear problems
will continue to grow in the near future because of their significant modeling possibilities.

This thesis aimed at contributing our grain of sand in the context of unconstrained non-
linear binary optimization. Of course, linear and quadratic reformulation techniques should
be considered among many other methods such as reformulation-linearization techniques,
semi-definite programming, or branch & bound algorithms, and it is not clear whether one
of these methods is clearly better than the rest. Nonetheless, this thesis shows that there are
many interesting questions to investigate in the context of reformulations.

We explored theoretical questions, such as valid inequalities, perfect formulations, and
properties to define interesting reformulations such as minimizing the number of auxiliary
variables. From a computational point of view, the results presented in this thesis show
that many of the considered methods can be very competitive and solve large problems in
reasonable time. An important point illustrated by our experiments is that it is becoming in-
creasingly difficult to properly compare the computational performance of different methods
by relying on commercial solvers, because they are becoming more and more complex and
it is difficult to identify the features of the “blackbox” influencing the results. This thesis
also showed that it is fundamental to consider both theoretical and computational aspects to
gain a better understanding of a problem. Finally, the previous literature on which we built
part of our results comes from the computer vision community, showing the importance of
collaboration between fields, not only for applied but also for methodological advances.
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Appendix A

Tables: Persistencies for Vision instances

The tables in this appendix present the total number of variables of problem (QP), the percent-
ages of fixed variables using persistencies and the computing times of quadratization methods
with and without using persistencies for Vision instances with images of sizes 10×10, 20×20,
25 × 25 and 30 × 30. The conclusions of these experiments are analogous to those described
in Section 8.3 for 15 × 15 images.
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Table A.1: Vision 10 × 10 (n = 100,m = 668): total number of variables in problem (QP).

Pairwise covers Termwise quadratizations

PC1 PC2 PC3 Ishik n/4 logn-1

# variables QP 434 421 421 505 505 505

Table A.2: Vision 10 × 10 (n = 100,m = 668): percentage of variables fixed using persistencies.

Instance (10 × 10) Fixed variables (%)

Pairwise covers Termwise quadratizations

Base Quality PC1 PC2 PC3 Ishik n/4 logn-1

top left rect sharp 18.89 38.48 38.48 0.00 0.00 0.00
top left rect low 18.89 38.48 38.48 0.00 0.00 0.00
top left rect low 18.89 38.48 38.48 0.00 0.00 0.00
top left rect high 18.89 38.48 38.48 0.00 0.00 0.00
top left rect high 18.89 38.48 38.48 0.00 0.00 0.00
centre rect sharp 18.89 38.48 38.48 0.00 0.00 0.00
centre rect low 18.89 38.48 38.48 0.00 0.00 0.00
centre rect low 18.89 38.48 38.48 0.00 0.00 0.00
centre rect high 18.89 38.48 38.48 0.00 0.00 0.00
centre rect high 18.89 38.48 38.48 0.00 0.00 0.00
cross sharp 18.89 38.48 38.48 0.00 0.00 0.00
cross low 18.89 38.48 38.48 0.00 0.00 0.00
cross low 18.89 38.48 38.48 0.00 0.00 0.00
cross high 18.89 38.48 38.48 0.00 0.00 0.00
cross high 18.89 38.48 38.48 0.00 0.00 0.00
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Table A.3: Vision 10 × 10 (n = 100,m = 668): resolution times using persistencies.

Instance (10 × 10) Exec. times (secs)

Pairwise covers

Base Quality PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

top left rect sharp 2.89 5.44 3.02 5.28 3.08 6.33
top left rect low 3.58 3.66 4.13 3.89 3.89 3.73
top left rect low 3.72 3.47 4.03 4.09 3.41 3.69
top left rect high 8.27 8.27 7.16 7.05 7.25 7.53
top left rect high 9.55 9.7 8.63 8.94 8.72 8.45
centre rect sharp 3.75 3.69 3.64 3.76 3.61 3.98
centre rect low 4.06 4.01 3.38 3.50 3.50 3.52
centre rect low 3.70 3.77 3.53 3.69 3.61 3.76
centre rect high 6.45 6.50 7.94 8.34 7.25 6.77
centre rect high 5.83 5.92 5.72 5.72 5.81 6.13
cross sharp 3.41 3.47 4.17 4.09 4.19 4.05
cross low 3.94 3.84 3.80 3.63 3.70 3.72
cross low 4.23 4.47 4.09 4.00 4.08 4.11
cross high 5.44 5.49 5.47 5.45 5.53 6.05
cross high 6.28 6.26 6.22 6.14 6.14 6.14
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Table A.4: Vision 20 × 20 (n = 400,m = 2928): total number of variables in problem (QP).

Pairwise covers Termwise quadratizations

PC1 PC2 PC3 Ishik n/4 logn-1

# variables QP 1864 1831 1831 2205 2205 2205

Table A.5: Vision 20 × 20 (n = 400,m = 2928): percentage of variables fixed using persistencies.

Instance (20 × 20) Fixed variables (%)

Pairwise covers Termwise quadratizations

Base Quality PC1 PC2 PC3 Ishik n/4 logn-1

top left rect sharp 19.42 39.43 39.43 0.00 0.00 0.00
top left rect low 19.42 39.43 39.43 0.00 0.00 0.00
top left rect low 19.42 39.43 39.43 0.00 0.00 0.00
top left rect high 19.42 39.43 39.43 0.00 0.00 0.00
top left rect high 19.42 39.43 39.43 0.00 0.00 0.00
centre rect sharp 19.42 39.43 39.43 0.00 0.00 0.00
centre rect low 19.42 39.43 39.43 0.00 0.00 0.00
centre rect low 19.42 39.43 39.43 0.00 0.00 0.00
centre rect high 19.42 39.43 39.43 0.00 0.00 0.00
centre rect high 19.42 38.07 38.07 0.00 0.00 0.00
cross sharp 19.42 39.43 39.43 0.00 0.00 0.00
cross low 19.42 39.43 39.43 0.00 0.00 0.00
cross low 19.42 39.43 39.43 0.00 0.00 0.00
cross high 19.42 39.43 39.43 0.00 0.00 0.00
cross high 19.42 39.43 39.43 0.00 0.00 0.00
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Table A.6: Vision 20 × 20 (n = 400,m = 2928): resolution times using persistencies.

Instance (20 × 20) Exec. times (secs)

Pairwise covers

Base Quality PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

top left rect sharp 45.38 47.42 41.09 40.66 40.06 39.69
top left rect low 48.61 50.97 42.94 42.44 42.58 42.53
top left rect low 50.78 48.66 45.24 46.95 45.75 45.02
top left rect high 153.77 153.08 123.55 125.34 126.64 127.06
top left rect high 169.81 158.99 137.98 139.77 136.84 140.33
centre rect sharp 51.00 48.50 43.89 45.38 43.55 45.47
centre rect low 48.75 49.52 48.88 49.59 48.88 49.75
centre rect low 55.06 55.19 51.16 49.70 49.17 50.30
centre rect high 190.58 189.45 147.25 158.38 149.92 145.33
centre rect high 147.34 146.61 133.81 130.66 131.50 134.84
cross sharp 53.14 52.84 39.80 41.00 40.22 40.89
cross low 53.91 55.52 47.14 47.39 48.20 48.11
cross low 54.81 54.44 43.33 43.41 43.26 43.86
cross high 163.03 163.16 132.16 128.61 127.89 132.11
cross high 155.39 153.58 122.72 117.06 117.13 120.28
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Table A.7: Vision 25 × 25 (n = 625,m = 4658): total number of variables in problem (QP).

Pairwise covers Termwise quadratizations

PC1 PC2 PC3 Ishik n/4 logn-1

# variables QP 2954 2911 2911 3505 3505 3505

Table A.8: Vision 25 × 25 (n = 625,m = 4658): percentage of variables fixed using persistencies.

Instance (25 × 25) Fixed variables (%)

Pairwise covers

Base Quality PC1 PC2 PC3 Ishik n/4 logn-1

top left rect sharp 19.53 39.57 39.57 0.00 0.00 0.00
top left rect low 19.53 38.85 38.85 0.00 0.00 0.00
top left rect low 19.53 39.57 39.57 0.00 0.00 0.00
top left rect high 19.53 39.57 39.57 0.00 0.00 0.00
top left rect high 19.53 39.57 39.57 0.00 0.00 0.00
centre rect sharp 19.53 39.57 39.57 0.00 0.00 0.00
centre rect low 19.53 39.57 39.57 0.00 0.00 0.00
centre rect low 19.53 39.57 39.57 0.00 0.00 0.00
centre rect high 19.53 39.57 39.57 0.00 0.00 0.00
centre rect high 19.53 39.57 39.57 0.00 0.00 0.00
cross sharp 19.53 39.57 39.57 0.00 0.00 0.00
cross low 19.53 39.57 39.57 0.00 0.00 0.00
cross low 19.53 39.57 39.57 0.00 0.00 0.00
cross high 19.53 39.57 39.57 0.00 0.00 0.00
cross high 19.53 39.57 39.57 0.00 0.00 0.00
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Table A.9: Vision 25 × 25 (n = 625,m = 4658): resolution times using persistencies.

Instance (25 × 25) Exec. times (secs)

Pairwise covers Termwise quadratizations

Base Quality PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

top left rect sharp 124.41 121.58 117.44 114.77 113.33 112.64
top left rect low 143.48 135.83 104.52 102.16 104.61 103.13
top left rect low 141.06 143.67 111.77 111.33 112.13 113.31
top left rect high 453.98 455.28 466.64 506.30 458.78 478.83
top left rect high 493.22 484.03 501.86 505.59 512.13 499.94
centre rect sharp 135.67 139.33 96.95 97.61 98.42 97.91
centre rect low 125.73 125.16 128.94 127.45 127.41 127.64
centre rect low 143.94 146.52 109.11 109.33 111.22 112.33
centre rect high 427.88 415.73 467.61 459.30 461.13 466.50
centre rect high 484.22 493.56 490.69 494.58 503.78 495.89
cross sharp 131.52 129.89 116.38 118.52 115.95 119.89
cross low 155.83 156.27 109.31 112.28 109.41 107.16
cross low 141.61 142.91 120.59 119.47 120.95 122.58
cross high 455.13 459.95 409.61 414.97 432.33 406.51
cross high 415.02 416.08 524.76 529.00 539.27 536.22
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Table A.10: Vision 30 × 30 (n = 900,m = 6788): total number of variables in problem (QP).

Pairwise covers Termwise quadratizations

PC1 PC2 PC3 Ishik n/4 logn-1

# variables QP 4294 4241 4241 5105 5105 5105

Table A.11: Vision 30 × 30 (n = 900,m = 6788): percentage of variables fixed using persistencies.

Instance (30 × 30) Fixed variables (%)

Pairwise covers Termwise quadratizations

Base Quality PC1 PC2 PC3 Ishik n/4 logn-1

top left rect sharp 19.61 39.66 39.66 0.00 0.00 0.00
top left rect low 19.61 39.66 39.66 0.00 0.00 0.00
top left rect low 19.61 39.66 39.66 0.00 0.00 0.00
top left rect high 19.61 39.66 39.66 0.00 0.00 0.00
top left rect high 19.61 39.66 39.66 0.00 0.00 0.00
centre rect sharp 19.61 39.66 39.66 0.00 0.00 0.00
centre rect low 19.61 39.66 39.66 0.00 0.00 0.00
centre rect low 19.61 39.66 39.66 0.00 0.00 0.00
centre rect high 19.61 37.40 37.40 0.00 0.00 0.00
centre rect high 19.61 38.48 38.48 0.00 0.00 0.00
cross sharp 19.61 39.66 39.66 0.00 0.00 0.00
cross low 19.61 38.46 38.46 0.00 0.00 0.00
cross low 19.61 39.66 39.66 0.00 0.00 0.00
cross high 19.61 39.66 39.66 0.00 0.00 0.00
cross high 19.61 39.66 39.66 0.00 0.00 0.00
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Table A.12: Vision 30 × 30 (n = 900,m = 6788): resolution times using persistencies.

Instance (30 × 30) Exec. times (secs)

Pairwise covers

Base Quality PC1 PC1-pers PC2 PC2-pers PC3 PC3-pers

top left rect sharp 227.27 235.31 173.48 182.28 172.73 176.92
top left rect low 237.86 233.67 174.72 179.89 176.67 178.59
top left rect low 227.41 230.03 192.38 190.01 193.01 188.56
top left rect high 1250.88 1229.86 682.78 677.58 690.20 676.00
top left rect high 1085.67 1087.61 705.70 731.36 699.38 716.36
centre rect sharp 243.13 244.14 175.52 175.28 173.64 178.06
centre rect low 257.39 251.53 178.99 180.24 178.36 178.55
centre rect low 244.25 250.55 184.20 188.06 194.16 188.94
centre rect high 889.16 880.36 726.19 725.20 755.75 730.95
centre rect high 1187.81 1182.78 821.73 787.30 774.13 808.88
cross sharp 220.13 223.39 173.56 177.45 173.72 176.63
cross low 275.16 267.77 181.14 185.78 184.36 180.91
cross low 266.39 267.16 182.92 188.47 182.13 186.06
cross high 1321.61 1350.50 764.63 776.59 773.03 783.16
cross high 1360.53 1312.69 946.42 970.22 973.34 956.69
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Appendix B

Tables: Random same degree instances

B.1 Computing times of linearizations and quadratizations
This section contains the tables presenting execution times of the experiments described in
Section 8.4.1 for Random same degree instances. Tables B.1 and B.2 presents results for
instances of degree three and degree four, respectively. Corresponding figures can be found
in Section 8.4.1 and Appendix E.
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Table B.1: Random same degree (deg = 3): linearizations and quadratizations computing times.
Instance Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

n m deg id SL PC1 PC2 PC3 Ishikawa n/4 logn-1

200 400 3 1 1.19 9.48 7.91 8.44 22.56 22.91 17.95
200 400 3 2 1.17 12.63 10.67 10.52 20.89 25.09 20.23
200 400 3 3 0.55 6.83 4.67 2.98 12.23 10.89 9.56
200 400 3 4 1.02 11.03 9.47 7.22 21.13 21 18.05
200 400 3 5 0.38 9.44 6.91 10.44 21.2 22.45 17.38
200 500 3 1 12.36 110.47 84.5 96.45 71.13 65.13 61.5
200 500 3 2 8.81 45.55 33.13 39.66 57.06 65.06 64.64
200 500 3 3 4.47 24.01 24.13 21.98 37.41 39.89 37.97
200 500 3 4 5.47 24.36 17.08 17.33 36.25 37.2 36.91
200 500 3 5 8.72 27.36 28.45 43.25 46.23 63.72 44.5

400 700 3 1 3.13 16.11 18.33 19.03 35.53 39.42 37.13
400 700 3 2 0.5 13.59 6.36 10.94 21.64 22.16 22.73
400 700 3 3 0.83 18.69 23.41 16.88 34.63 41.75 33.39
400 700 3 4 1.51 18.94 21.44 15.83 48.83 46.08 41.74
400 700 3 5 1.67 22.89 20.41 19.69 43.26 46.56 38.77
400 800 3 1 12.64 106.36 68.47 80.39 101.64 98.08 91.73
400 800 3 2 10.78 63.05 47.8 72.77 95.59 95.84 76.47
400 800 3 3 6.23 34.09 27.31 35.77 71.81 80.61 68.88
400 800 3 4 16.36 205.97 161.19 350.69 144.42 245.83 142.41
400 800 3 5 11.64 121.67 118.8 75.11 125.5 127 87.34

600 1100 3 1 9.8 54.19 66.59 52.7 85.42 103.23 120.27
600 1100 3 2 17.17 149.64 119.45 435.08 155.69 184.5 149.97
600 1100 3 3 11 113.45 106.2 99.66 158.41 160.03 180.7
600 1100 3 4 21.31 432.36 477.49 412.06 348.51 223.98 301.14
600 1100 3 5 2.5 41.8 52.89 54.63 76.56 103.11 102.44
600 1200 3 1 26.53 971.09 784.16 850.52 387.48 474.3 349.53
600 1200 3 2 14.51 202.67 126.58 203.08 300.53 234.81 239.97
600 1200 3 3 38.5 720.25 625.34 685.55 237.67 372.72 340.55
600 1200 3 4 68.83 782.66 803.36 1345.23 949.25 605.55 1094.74
600 1200 3 5 56.84 856.23 643.47 781.69 517.05 448.95 383.5
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Table B.2: Random same degree (deg = 4): linearizations and quadratizations computing times.
Instance Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

n m deg id SL PC1 PC2 PC3 Ishikawa n/4 logn-1

200 250 4 1 0.7 8.47 5.83 6.28 38.5 38.61 37.76
200 250 4 2 0.34 8.22 4.75 7.47 26.13 25.68 28.08
200 250 4 3 0.44 5.83 7.42 5.08 32.78 31.16 33.5
200 250 4 4 0.72 10.11 7.77 7.64 35.2 34.64 29.89
200 250 4 5 0.36 7.06 6.98 3.64 31.42 31 34.77
200 300 4 1 2.89 28.49 18.88 14.92 70.56 104.39 78.49
200 300 4 2 0.38 13.83 10.66 11.63 42.76 39.28 44.81
200 300 4 3 5.55 78.73 29.89 25.52 97.59 87.89 137.88
200 300 4 4 4.81 108.52 85.47 47 268.17 249.56 337.53
200 300 4 5 1.75 18.34 17.61 19.47 64.36 57.28 87.67

400 450 4 1 0.42 15.17 17.84 12.64 59.92 72.41 71.86
400 450 4 2 0.58 12.03 11.8 11.64 72.8 75.95 65.94
400 450 4 3 0.77 18.06 18.64 16.09 106.81 84.63 95.89
400 450 4 4 0.81 15.7 12.13 18.13 98.83 86.67 96.3
400 450 4 5 0.61 14.38 11.69 12.28 88.67 104 96.78
400 500 4 1 6.36 95.89 63.89 65.13 725.01 440.92 981.39
400 500 4 2 5.14 58.55 61.69 51.67 188.41 191.05 298.38
400 500 4 3 4.13 79.89 42.59 42 340.92 187.2 196.63
400 500 4 4 4.58 103.01 55.52 59.41 293 573.33 603.13
400 500 4 5 7.42 80.74 59.14 78 266.14 227.94 362.89

600 650 4 1 2.69 41.83 38.92 39.72 182.14 180.48 235.73
600 650 4 2 2.31 54.95 42.14 42.77 241.88 331.3 246.22
600 650 4 3 0.66 23.3 23.61 25.7 139.75 146.59 160.95
600 650 4 4 0.84 21.73 27.86 26.7 153.94 158.73 204.86
600 650 4 5 0.41 26.03 21.63 21.47 158.03 132.58 156.63
600 700 4 1 14.38 586.13 250.3 237.52 1256.36 2357.16 1484.92
600 700 4 2 2.66 49.58 37.94 44.66 224.23 266.27 262.88
600 700 4 3 6.66 68.05 62.08 77.44 424.97 427.03 421.55
600 700 4 4 5.48 64.86 73.11 60.27 292.26 433.91 463.67
600 700 4 5 0.98 28.81 28.36 27.72 161.17 192.47 198.11
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Appendix B. Tables: Random same degree instances

B.2 Number of auxiliary variables and positive quadratic
terms

Tables B.3 and B.4 present the number of auxiliary variables required for each quadratization
method for Random same degree instances of n = 400 and n = 600 variables, of degrees
three and four, respectively. Tables B.5 and B.6 present the number positive quadratic terms
of each quadratization for the same instances.
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B.2. Number of auxiliary variables and positive quadratic terms

Table B.3: Random same degree (deg = 3): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

400 700 3 1 697 680 680 700 700 700
400 700 3 2 696 668 668 700 700 700
400 700 3 3 695 677 677 700 700 700
400 700 3 4 693 677 677 700 700 700
400 700 3 5 694 677 677 700 700 700
400 800 3 1 796 761 761 800 800 800
400 800 3 2 796 767 767 800 800 800
400 800 3 3 795 763 763 800 800 800
400 800 3 4 797 767 767 800 800 800
400 800 3 5 794 774 774 800 800 800

600 1100 3 1 1092 1072 1072 1100 1100 1100
600 1100 3 2 1097 1072 1072 1100 1100 1100
600 1100 3 3 1096 1071 1071 1100 1100 1100
600 1100 3 4 1094 1076 1076 1100 1100 1100
600 1100 3 5 1093 1073 1073 1100 1100 1100
600 1200 3 1 1195 1165 1165 1200 1200 1200
600 1200 3 2 1196 1171 1171 1200 1200 1200
600 1200 3 3 1192 1162 1162 1200 1200 1200
600 1200 3 4 1195 1170 1170 1200 1200 1200
600 1200 3 5 1198 1169 1169 1200 1200 1200
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Table B.4: Random same degree (deg = 4): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

400 450 4 1 893 867 867 450 450 450
400 450 4 2 894 860 860 450 450 450
400 450 4 3 898 860 861 450 450 450
400 450 4 4 895 857 857 450 450 450
400 450 4 5 895 857 857 450 450 450
400 500 4 1 990 953 953 500 500 500
400 500 4 2 993 957 958 500 500 500
400 500 4 3 991 949 949 500 500 500
400 500 4 4 989 957 957 500 500 500
400 500 4 5 991 944 945 500 500 500

600 650 4 1 1295 1258 1259 650 650 650
600 650 4 2 1293 1260 1260 650 650 650
600 650 4 3 1294 1263 1263 650 650 650
600 650 4 4 1292 1264 1264 650 650 650
600 650 4 5 1292 1265 1265 650 650 650
600 700 4 1 1395 1357 1357 700 700 700
600 700 4 2 1393 1350 1350 700 700 700
600 700 4 3 1395 1352 1352 700 700 700
600 700 4 4 1395 1348 1348 700 700 700
600 700 4 5 1392 1352 1352 700 700 700
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B.2. Number of auxiliary variables and positive quadratic terms

Table B.5: Random same degree (deg = 3): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

400 700 3 1 1037 1020 1020 1020 1020 1020
400 700 3 2 1016 988 988 960 960 960
400 700 3 3 1036 1018 1018 1023 1023 1023
400 700 3 4 1051 1035 1035 1074 1074 1074
400 700 3 5 1037 1020 1020 1029 1029 1029
400 800 3 1 1203 1168 1168 1221 1221 1221
400 800 3 2 1192 1163 1163 1188 1188 1188
400 800 3 3 1206 1174 1174 1233 1233 1233
400 800 3 4 1182 1152 1152 1155 1155 1155
400 800 3 5 1185 1165 1165 1173 1173 1173

600 1100 3 1 1628 1608 1608 1608 1608 1608
600 1100 3 2 1646 1621 1621 1647 1647 1647
600 1100 3 3 1659 1634 1634 1689 1689 1689
600 1100 3 4 1674 1656 1656 1740 1740 1740
600 1100 3 5 1638 1618 1618 1635 1635 1635
600 1200 3 1 1802 1772 1772 1821 1821 1821
600 1200 3 2 1781 1756 1756 1755 1755 1755
600 1200 3 3 1779 1749 1749 1761 1761 1761
600 1200 3 4 1777 1752 1752 1746 1746 1746
600 1200 3 5 1751 1722 1722 1659 1659 1659
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Table B.6: Random same degree (deg = 4): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m deg id PC1 PC2 PC3 Ishikawa n/4 logn-1

400 450 4 1 1100 1074 1074 1242 1242 1242
400 450 4 2 1113 1079 1079 1314 1314 1314
400 450 4 3 1142 1104 1105 1464 1464 1464
400 450 4 4 1119 1081 1081 1344 1344 1344
400 450 4 5 1135 1097 1097 1440 1440 1440
400 500 4 1 1257 1220 1220 1602 1602 1602
400 500 4 2 1241 1205 1206 1488 1488 1488
400 500 4 3 1218 1176 1176 1362 1362 1362
400 500 4 4 1243 1211 1211 1524 1524 1524
400 500 4 5 1218 1171 1172 1362 1362 1362

600 650 4 1 1604 1567 1568 1854 1854 1854
600 650 4 2 1609 1576 1576 1896 1896 1896
600 650 4 3 1631 1600 1600 2022 2022 2022
600 650 4 4 1634 1606 1606 2052 2052 2052
600 650 4 5 1621 1594 1594 1974 1974 1974
600 700 4 1 1749 1711 1711 2124 2124 2124
600 700 4 2 1737 1694 1694 2064 2064 2064
600 700 4 3 1732 1689 1689 2022 2022 2022
600 700 4 4 1751 1704 1704 2136 2136 2136
600 700 4 5 1727 1687 1687 2010 2010 2010
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Appendix C

Tables: Random high degree instances

C.1 Computing times of linearizations and quadratizations
This section contains the tables presenting execution times of the experiments described in
Section 8.4.2 for Random high degree instances. Tables C.1, C.2 and C.3 present results for
instances with n = 200, 400 and 600 variables, respectively. Corresponding figures can be
found in Section 8.4.2 and Appendix F.
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Table C.1: Random high degree (n = 200): linearizations and quadratizations computing times.

Instance Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

n m id deg SL PC1 PC2 PC3 Ishikawa n/4 logn-1

200 250 1 9 0.03 0.95 1.17 1.02 5.38 7.72 6.97
200 250 2 9 0.06 2.31 1.48 1.69 12.08 20.72 19.23
200 250 3 9 0.03 2.78 1.95 1.8 14.16 43.78 21.44
200 250 4 9 0.03 1.55 0.97 1.11 11.91 22.59 12.58
200 250 5 7 0.09 1.77 1.91 1.83 12.06 26.3 11.08
200 300 1 8 0.08 4.3 4.31 6.23 17.36 68.47 20.59
200 300 2 9 0.33 11.42 10.58 10.39 46.5 218.3 98.63
200 300 3 15 0.05 3.74 4 3.26 49.22 426.19 93.03
200 300 4 13 0.09 11.19 9.06 7.5 275.42 2350.66 477.39
200 300 5 12 0.08 6.45 3.86 3.91 33.2 79.77 47.88
200 350 1 10 0.16 10.95 5.12 5.53 61.98 243.77 68.3
200 350 2 10 0.2 14.03 10.28 10.58 368.33 2218 658.72
200 350 3 13 0.16 16.26 8.61 11.19 129.56 898.66 368.16
200 350 4 9 0.14 7.06 4.38 4.5 32.75 61.41 42.72
200 350 5 11 0.14 4.27 4.97 3.39 39.02 97.22 53.03
200 400 1 14 0.09 12.52 11.53 9.16 686.83 > 3600 > 3600
200 400 2 11 0.17 15.45 11.59 15.95 30.72 57.58 38.26
200 400 3 11 0.19 20.17 20 21.53 > 3600 > 3600 > 3600
200 400 4 16 0.47 25.06 18.09 19.44 > 3600 > 3600 > 3600
200 400 5 12 0.11 12.99 13.89 12.63 337.84 785.8 647.08
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Table C.2: Random high degree (n = 400): linearizations and quadratizations computing times.

Instance Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

n m id deg SL PC1 PC2 PC3 Ishikawa n/4 logn-1

400 450 1 16 0.06 3.69 3.25 4.08 224.2 2837.99 592.56
400 450 2 10 0.06 4.05 3.91 2.94 363.81 > 3600 509.19
400 450 3 11 0.28 8.56 4.39 3.42 46.72 778.34 221.41
400 450 4 11 0.06 5.2 2.84 3.64 98.61 1269.49 368.45
400 450 5 17 0.09 4.45 5.16 4.8 117.97 1300.09 385.63
400 500 1 10 0.09 8.05 6.7 7.03 48.38 254.53 86.39
400 500 2 12 0.06 7.08 7.41 5.06 1686.19 > 3600 > 3600
400 500 3 11 0.13 6.02 5.75 6.05 415.33 > 3600 > 3600
400 500 4 12 0.08 13.05 14.16 11.55 579.28 > 3600 1647.22
400 500 5 12 0.11 7.08 7.22 7.51 142.09 1256.81 218.33
400 550 1 13 0.11 8.28 8.97 7.53 182.09 1761.45 650.53
400 550 2 12 0.13 5.67 5.55 9.47 112.34 866.19 314.05
400 550 3 10 0.16 12.03 11.3 9.8 1458.97 > 3600 > 3600
400 550 4 12 0.09 14.89 15.03 10.61 105.72 1065.45 181.59
400 550 5 14 0.09 16.69 10.03 10.34 1745.39 > 3600 > 3600
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Table C.3: Random high degree (n = 600): linearizations and quadratizations computing times.

Instance Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

n m id deg SL PC1 PC2 PC3 Ishikawa n/4 logn-1

600 650 1 12 0.06 12.81 10.25 12.84 477.95 1611.5 671.23
600 650 2 11 0.11 4.84 6.11 5.95 2432.58 > 3600 > 3600
600 650 3 11 0.11 9.51 7.49 8.58 267.99 1955.31 630.14
600 650 4 10 0.11 4.41 4.16 4.59 25.03 80.2 33
600 650 5 12 0.09 7.66 7.11 7.84 3261.55 > 3600 > 3600
600 700 1 9 0.11 8.08 7.24 8.33 202.8 > 3600 576.14
600 700 2 9 0.19 9.05 8.06 9.22 454.5 3542.8 592.77
600 700 3 9 0.16 14.55 16.42 16.26 2243.06 > 3600 > 3600
600 700 4 10 0.13 9.84 13.24 11.3 720.55 > 3600 1448.69
600 700 5 10 0.11 8.98 8.16 9.19 445.14 > 3600 696.52
600 750 1 14 0.22 25.13 16.99 19.36 > 3600 > 3600 > 3600
600 750 2 11 0.19 20.36 19.28 16.23 724.81 2043.56 766.44
600 750 3 11 0.14 15.74 13.45 14.5 > 3600 > 3600 > 3600
600 750 4 11 0.13 5.49 5.33 5.73 810.03 > 3600 > 3600
600 750 5 11 0.14 9.55 9.05 8.55 616.41 > 3600 3371.05
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C.2. Number of auxiliary variables and positive quadratic terms

C.2 Number of auxiliary variables and positive quadratic
terms

Tables C.4 and C.5 present the number of auxiliary variables required for each quadratiza-
tion for Random high degree instances with n = 400 and n = 600 variables, respectively.
Tables C.6 and C.7 present the number of positive quadratic terms of each quadratization for
the same instances.
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Table C.4: Random high degree (n = 400): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

400 450 1 16 671 662 663 276 267 266
400 450 2 10 663 653 651 268 258 258
400 450 3 11 684 673 671 277 271 271
400 450 4 11 684 666 670 281 274 274
400 450 5 17 693 678 677 272 266 266
400 500 1 10 766 754 755 302 297 297
400 500 2 12 752 736 735 308 301 301
400 500 3 11 743 728 727 291 281 281
400 500 4 12 774 746 747 297 286 286
400 500 5 12 757 742 742 302 292 292
400 550 1 13 797 785 785 324 317 316
400 550 2 12 775 769 769 294 286 286
400 550 3 10 814 798 796 318 310 310
400 550 4 12 849 823 822 336 329 329
400 550 5 14 843 818 817 339 330 329
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Table C.5: Random high degree (n = 600): number of y variables in quadratizations.

Instance # y variables

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

600 650 1 12 1024 1010 1010 397 386 386
600 650 2 11 949 937 936 359 345 345
600 650 3 11 951 943 943 373 365 365
600 650 4 10 919 909 908 341 339 339
600 650 5 12 992 977 978 372 358 358
600 700 1 9 1046 1029 1029 413 406 406
600 700 2 9 1023 1011 1011 380 369 369
600 700 3 9 1053 1045 1045 417 405 405
600 700 4 10 1084 1074 1074 418 406 406
600 700 5 10 1051 1032 1033 406 394 394
600 750 1 14 1109 1091 1090 425 413 413
600 750 2 11 1151 1136 1136 423 417 417
600 750 3 11 1157 1142 1142 441 426 426
600 750 4 11 1047 1037 1036 392 376 376
600 750 5 11 1091 1082 1080 422 413 413

179



Appendix C. Tables: Random high degree instances

Table C.6: Random high degree (n = 400): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

400 450 1 16 789 789 790 1080 1120 1117
400 450 2 10 777 767 765 940 975 975
400 450 3 11 810 799 797 950 982 982
400 450 4 11 810 792 796 987 1024 1024
400 450 5 17 811 796 795 929 965 965
400 500 1 10 902 890 891 968 1000 1000
400 500 2 12 890 874 873 1101 1146 1146
400 500 3 11 867 852 851 1024 1058 1058
400 500 4 12 901 873 874 1014 1047 1047
400 500 5 12 883 868 868 997 1033 1033
400 550 1 13 938 926 926 1108 1154 1151
400 550 2 12 892 886 886 985 1017 1017
400 550 3 10 954 938 936 1119 1161 1161
400 550 4 12 1007 981 980 1213 1264 1264
400 550 5 14 982 957 956 1110 1148 1145
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Table C.7: Random high degree (n = 600): number of positive quadratic terms.

Instance # positive quadratic terms

Pairwise covers Termwise quadratizations

n m id deg PC1 PC2 PC3 Ishikawa n/4 logn-1

600 650 1 12 1190 1176 1176 1284 1323 1323
600 650 2 11 1097 1085 1084 1277 1325 1325
600 650 3 11 1105 1097 1097 1191 1236 1236
600 650 4 10 1071 1061 1060 1022 1055 1055
600 650 5 12 1139 1124 1125 1362 1412 1412
600 700 1 9 1228 1211 1211 1311 1358 1358
600 700 2 9 1199 1187 1187 1336 1373 1373
600 700 3 9 1231 1223 1223 1383 1424 1424
600 700 4 10 1271 1261 1261 1484 1541 1541
600 700 5 10 1224 1205 1206 1357 1402 1402
600 750 1 14 1291 1273 1272 1402 1448 1448
600 750 2 11 1334 1319 1319 1355 1399 1399
600 750 3 11 1350 1335 1335 1685 1751 1751
600 750 4 11 1212 1202 1201 1438 1485 1485
600 750 5 11 1277 1268 1266 1445 1497 1497
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Appendix D

Tables: Vision instances

D.1 Computing times of linearizations and quadratizations
This section contains the tables presenting execution times of the experiments described in
Section 8.4.3 for Vision instances. Tables D.1, D.2, D.3, D.4, D.5 and D.6 present the res-
olution times of linear and quadratic reformulations of problems with image sizes 10 × 10,
15 × 15, 20 × 20, 25 × 25, 30 × 30 and 35 × 35, respectively. Table D.7 and D.8 present,
respectively, model creation times in Java and total times (model creation plus resolution) for
35 × 35 images. Corresponding figures can be found in Section 8.4.3 and Appendix G.
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Table D.1: Vision 10 × 10 (n = 100,m = 668): linearizations and quadratizations computing times.

Instance (10 × 10) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 0.76 2.83 2.69 2.77 2.81 11.86 10.73 15.67
top left rect low 0.84 3.81 4.2 3.91 4.55 20.53 18.31 26.55
top left rect low 1.06 3.44 3.06 3.09 3.05 18.67 17.69 22.78
top left rect high 2.09 12.47 7.72 6.58 6.63 46.27 46.88 41.69
top left rect high 2.84 11.19 8.67 7.97 7.97 57.13 58.42 40.06
centre rect sharp 1.02 4.72 3.28 3.33 3.34 29.42 29.72 33.28
centre rect low 1.2 3.92 3.58 3.14 3.25 30.73 31 31.66
centre rect low 0.95 5.36 3.44 3.7 3.31 25.86 25.23 33.28
centre rect high 1.64 10.86 6 6.22 6.17 36.22 36.38 25.97
centre rect high 1.8 14.08 5.44 5.51 5.38 27.16 27.19 28.81
cross sharp 1.09 4.3 3.19 3.78 3.75 26.3 26.64 34.89
cross low 1.2 3.72 3.45 3.44 3.47 31.14 30.77 28.28
cross low 1.08 6.19 4.56 4.23 4.67 37.63 39.31 32.73
cross high 1.75 13.95 5.2 5.2 5.22 39.75 38.55 22.95
cross high 2.44 12.88 6.11 5.92 5.83 40.73 41.03 37.53
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Table D.2: Vision 15 × 15 (n = 225,m = 1598): linearizations and quadratizations computing times.

Instance (15 × 15) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 2.84 16.42 16.31 11.75 12.08 159.75 120.42 80.22
top left rect low 7.23 25.78 18.14 13.45 12.83 169.05 156.98 98.22
top left rect low 4.75 23.41 16.94 14.95 14.92 175.52 169.03 155.66
top left rect high 9.2 69.66 53.84 24.97 21.53 283.11 288.2 276.94
top left rect high 12.26 128.03 71.94 31.5 31.86 330.53 328.67 302.22
centre rect sharp 4.88 28.78 19.67 12.17 11.98 193.27 192.38 77.59
centre rect low 5.63 32.8 17.3 14.42 14.28 228.16 216.47 191.67
centre rect low 4.59 36.86 24.28 14.73 14.72 201.44 199.98 205.91
centre rect high 10.44 101.31 47.3 23.76 23.97 277.47 290.52 223.36
centre rect high 14.2 112.98 39.95 34.19 34.45 308.58 306.05 241.59
cross sharp 4.36 21.59 19.28 12.09 12.23 219.95 224.05 206.19
cross low 4.66 20.94 21.84 12 12.09 185.52 171.11 106.56
cross low 5.09 35.75 18.41 11.83 12.06 133.14 139.8 181.48
cross high 10.14 122.33 48.05 31.38 31.38 168.75 169.38 143.53
cross high 11 102.31 45.98 23.3 23.63 366.03 357.67 286.78
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Table D.3: Vision 20 × 20 (n = 400,m = 2928): linearizations and quadratizations computing times.

Instance (20 × 20) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 10.78 66.22 46.03 40.36 41.14 - - -
top left rect low 14.25 74.7 48.38 42.88 42.38 - - -
top left rect low 13.25 79.88 48.77 45.78 46.08 - - -
top left rect high 39.45 269.48 151.05 120.14 119.88 - - -
top left rect high 36.7 490.05 161.09 142.39 144.2 - - -
centre rect sharp 14.73 82.05 49.36 43.75 43.33 - - -
centre rect low 15.89 99.42 48.55 48.55 47.55 - - -
centre rect low 16.95 105.09 55.78 47.11 47.45 - - -
centre rect high 44.48 433.42 182.89 145.25 151.42 - - -
centre rect high 31.88 581.25 157.36 129.56 127.53 - - -
cross sharp 13.58 77.69 53.22 39.91 40.59 - - -
cross low 16.22 84.59 53.38 48.58 48.17 - - -
cross low 15.89 110.91 56.25 42.83 43.91 - - -
cross high 34.76 235.41 158.33 127.72 125.7 - - -
cross high 43.55 945.25 154.83 118.2 118.72 - - -

186



D
.1.

C
om

puting
tim

es
oflinearizations

and
quadratizations

Table D.4: Vision 25 × 25 (n = 625,m = 4658): linearizations and quadratizations computing times.

Instance (25 × 25) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 28.83 135.19 122.11 112.23 112.72 - - -
top left rect low 29.03 206.14 148.55 101.01 102.48 - - -
top left rect low 29.67 259.64 138.19 108.23 108.23 - - -
top left rect high 68.53 > 3600 550.63 455.19 470.83 - - -
top left rect high 87.23 1300.77 465.44 490.83 500.44 - - -
centre rect sharp 32 308.36 135.63 95.63 94.31 - - -
centre rect low 30.09 174.39 120.52 125.67 130.67 - - -
centre rect low 34.7 259.63 146.5 106.42 110.14 - - -
centre rect high 93 > 3600 440.59 451.03 454.61 - - -
centre rect high 72.27 > 3600 548.92 499.13 482.33 - - -
cross sharp 34.92 308.02 126.09 119.3 114.61 - - -
cross low 35.16 452.16 152.14 106.06 105.02 - - -
cross low 37.23 211.66 142.55 116.8 120.31 - - -
cross high 72.28 > 3600 464.3 406.02 402.42 - - -
cross high 75.44 3141.48 431.56 524 521.11 - - -
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Table D.5: Vision 30 × 30 (n = 900,m = 6788): linearizations and quadratizations computing times.

Instance (30 × 30) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 45.05 471.17 226.97 168.09 169.44 - - -
top left rect low 45.27 413.52 227.72 171.58 179.19 - - -
top left rect low 49.11 613.26 222.95 186.44 186.13 - - -
top left rect high 181.84 > 3600 1212.14 690.25 671.41 - - -
top left rect high 202.05 > 3600 1091.8 740.05 745.22 - - -
centre rect sharp 57.28 692.39 243.89 171.83 170.67 - - -
centre rect low 55.31 837.78 248.83 177.33 173.58 - - -
centre rect low 57.49 434.86 266.89 182.69 176.78 - - -
centre rect high 230.51 2406.17 853.19 766.95 744.86 - - -
centre rect high 210.06 > 3600 1252.03 766.48 776.72 - - -
cross sharp 63.3 594.19 217.5 173.19 172.05 - - -
cross low 57.84 774.3 267.69 177.64 178.72 - - -
cross low 55.67 681.16 272.36 178.05 181.17 - - -
cross high 184.67 > 3600 1326.47 762.67 766.61 - - -
cross high 244.08 > 3600 1295.44 899.19 927.45 - - -
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Table D.6: Vision 35 × 35 (n = 1225,m = 9318): linearizations and quadratizations computing times.

Instance (35 × 35) Resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 76.31 - 315.58 352.89 342.61 - - -
top left rect low 73.66 - 340.47 368.16 370.92 - - -
top left rect low 74.08 - 379.45 393.61 401.48 - - -
top left rect high 382.38 - 2516.42 2254.06 2319.98 - - -
top left rect high 514.47 - 2972.42 2619.05 2732.97 - - -
centre rect sharp 76.83 - 404.94 401.17 386.08 - - -
centre rect low 86.34 - 406.74 456.48 450.25 - - -
centre rect low 86.94 - 447.44 458.27 467.14 - - -
centre rect high 313.95 - 1993.61 2268.91 2274.39 - - -
centre rect high 389.92 - 1958.56 1623.27 1609.41 - - -
cross sharp 93.92 - 361.91 374.63 368.63 - - -
cross low 101.94 - 409.05 428.02 411.23 - - -
cross low 94.09 - 377.7 472.42 467.03 - - -
cross high 396.16 - 2154.95 1603.64 1609.47 - - -
cross high 254.72 - 2313.64 1871.97 1938.81 - - -
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Table D.7: Vision 35 × 35 (n = 1225,m = 9318): Java model creation times.

Instance (35 × 35) Model creation time (Java) (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 414.69 - 1.42 146.11 265.39 - - -
top left rect low 301.34 - 0.53 131.84 258.08 - - -
top left rect low 624.92 - 0.55 150.39 232.52 - - -
top left rect high 344.62 - 0.58 151.94 231.02 - - -
top left rect high 373.53 - -0.42 126.95 214.03 - - -
centre rect sharp 366.17 - 0.06 141.83 213.92 - - -
centre rect low 460.66 - 0.26 139.52 216.75 - - -
centre rect low 601.06 - 0.56 139.73 213.86 - - -
centre rect high 596.05 - 0.39 140.09 209.61 - - -
centre rect high 596.08 - 0.44 138.73 207.59 - - -
cross sharp 598.08 - 0.09 141.37 213.37 - - -
cross low 598.06 - -0.05 138.98 213.77 - - -
cross low 598.91 - 0.3 138.58 214.97 - - -
cross high 600.84 - 0.05 136.36 215.53 - - -
cross high 597.28 - 0.36 140.03 210.19 - - -
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Table D.8: Vision 35 × 35 (n = 1225,m = 9318): total times (model creation + resolution).

Instance (35 × 35) Model + resolution time (secs)

Linearizations Pairwise covers Termwise quadratizations

Base Quality SL-2L SL PC1 PC2 PC3 Ishikawa n/4 logn-1

top left rect sharp 491 - 317 499 608 - - -
top left rect low 375 - 341 500 629 - - -
top left rect low 699 - 380 544 634 - - -
top left rect high 727 - 2517 2406 2551 - - -
top left rect high 888 - 2972 2746 2947 - - -
centre rect sharp 443 - 405 543 600 - - -
centre rect low 547 - 407 596 667 - - -
centre rect low 688 - 448 598 681 - - -
centre rect high 910 - 1994 2409 2484 - - -
centre rect high 986 - 1959 1762 1817 - - -
cross sharp 692 - 362 516 582 - - -
cross low 700 - 409 567 625 - - -
cross low 693 - 378 611 682 - - -
cross high 997 - 2155 1740 1825 - - -
cross high 852 - 2314 2012 2149 - - -
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D.2 2-links heuristic
Tables D.9, D.10, D.11, D.12 and D.13 present the execution times of the 2-links heuristic
for image sizes 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30 and 35 × 35, respectively. Some
interpretations of these figures have been made in Section 9.3.1.
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Table D.9: Vision 10 × 10 (n = 100,m = 668): 2-links heuristic computing times.

Instance (10 × 10) Resolution time (secs) for a given number of 2-links (2L)

Base Quality 1000 2L 2000 2L 3000 2L 4000 2L 5000 2L 5200 2L

top left rect sharp 3.03 2.25 1.98 1.02 0.94 0.88
top left rect low 3.92 2.81 1.69 1 0.94 1.13
top left rect low 3.23 2.63 2.41 0.92 0.75 0.94
top left rect high 11.39 11.31 4.02 2.84 3.27 3.23
top left rect high 7.06 5.14 4.14 2.27 3.48 3.78
centre rect sharp 3.39 2.58 1.34 1.31 1.05 1.03
centre rect low 6.36 4.53 2.36 1.47 1.52 1.44
centre rect low 3.8 3.09 1.84 1.11 1.14 1.16
centre rect high 6.11 5.27 3.8 2.2 1.97 1.7
centre rect high 10.5 8.51 3.36 2.95 2.36 2.25
cross sharp 4.36 2.84 1.78 0.97 0.97 1.08
cross low 3.97 3.69 1.8 1.16 1.14 1.22
cross low 3.02 2.27 2 1.03 1.13 1.06
cross high 11.42 7.53 3.5 1.86 2.11 2.55
cross high 12.95 7.53 8.28 2.44 1.73 1.76
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Table D.10: Vision 15 × 15 (n = 225,m = 1598): 2-links heuristic computing times.

Instance (15 × 15) Resolution time (secs) for a given number of 2-links (2L)

Base Quality 2500 2L 5000 2L 7500 2L 10000 2L 12500 2L 12900 2L

top left rect sharp 14.33 10.36 7.25 4.63 3.73 3.7
top left rect low 17.44 13.02 6.13 4.11 4.34 4.45
top left rect low 17.78 12.33 9.98 5.16 4.78 4.59
top left rect high 90.84 27.52 19.76 13.84 9.25 9.34
top left rect high 162.74 56.8 31.64 20.13 10.99 12.02
centre rect sharp 14.13 21.02 10 5.14 5.42 5.59
centre rect low 32.5 19.75 13.84 6.34 5 5.11
centre rect low 31.55 17.31 11.08 5.98 4.92 4.98
centre rect high 71.45 27.19 32.22 13.78 10.13 9.41
centre rect high 52.78 35.55 35.44 18.31 12.83 10.33
cross sharp 25.31 12.75 9.09 5.28 4.63 5.09
cross low 36.13 14.47 9.84 5.7 5.17 5.31
cross low 27.56 16.39 10.02 5.97 5.03 5.22
cross high 73.84 43.94 28.89 14 11.63 12.27
cross high 53.11 43.33 20.33 13.78 11.55 11.83
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Table D.11: Vision 20 × 20 (n = 400,m = 2928): 2-links heuristic computing times.

Instance (20 × 20) Resolution time (secs) for a given number of 2-links (2L)

Base Quality 4700 2L 9400 2L 14100 2L 18800 2L 23500 2L 23900 2L

top left rect sharp 60.78 46.09 24.09 14.33 12.7 12.44
top left rect low 51.67 55.05 29.48 14.8 14.84 15.13
top left rect low 72.63 64.66 36.33 18.17 14.13 14.06
top left rect high 238.06 220.41 128.67 54.7 42.3 45.14
top left rect high 395.41 483.01 96.2 40.92 47.58 41.42
centre rect sharp 72.39 40.08 40.08 16.59 15.61 15.22
centre rect low 133.66 72.28 40.24 19.33 15.58 16.75
centre rect low 97.55 46.56 30.98 17.56 17.95 18.47
centre rect high 720.5 241.14 178.22 76.69 42.58 44.22
centre rect high 157.08 146.59 116.45 59.47 36.91 34.39
cross sharp 74.25 50.17 27.13 15.31 15.56 16.59
cross low 88.84 67.22 29.36 17.34 15.42 14.89
cross low 64.52 71.67 35.09 16.19 14.47 15.89
cross high 705.86 292.05 166.75 53.45 37.83 37.98
cross high 258.69 222.28 276.94 62.08 41.55 44.38
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Table D.12: Vision 25 × 25 (n = 625,m = 4658): 2-links heuristic computing times.

Instance (25 × 25) Resolution time (secs) for a given number of 2-links (2L)

Base Quality 7600 2L 15200 2L 22800 2L 30400 2L 38000 2L 38400 2L

top left rect sharp 109.09 90.39 82.22 36.42 27.89 28.09
top left rect low 143.61 130.63 75.44 41.03 29.06 29.69
top left rect low 225.26 132.83 102.75 43.8 29.19 29.3
top left rect high 1984.75 586.14 908 121.53 87.95 87.73
top left rect high > 3600 940.38 399.98 113 105.5 100.02
centre rect sharp 130.02 96.75 68 33.2 32.55 33.27
centre rect low 208.94 190.55 87.06 35.05 29.44 30.44
centre rect low 236.13 122.25 78.86 43.88 37.61 36.19
centre rect high 1252.16 1897.95 1053.2 133.7 100.41 97.75
centre rect high 1603.17 627.94 478.78 181.89 92.09 102.91
cross sharp 248.05 108.75 50.39 33.17 31.67 31.3
cross low 404.95 191.33 70.19 40.75 35.83 35.24
cross low 310.69 172.76 70.69 36.51 37.86 37.97
cross high 2660.97 1074.94 469.36 125.95 93.88 89.58
cross high 943.11 1642.26 471.48 157.02 69.14 70.2
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Table D.13: Vision 30 × 30 (n = 900,m = 6788): 2-links heuristic computing times.

Instance (30 × 30) Resolution time (secs) for a given number of 2-links (2L)

Base Quality 11200 2L 22400 2L 33600 2L 44800 2L 56000 2L 56200 2L

top left rect sharp 267.03 206.69 127.53 71.14 44.47 44.98
top left rect low 401.22 339.09 202.16 97.38 54.11 55.39
top left rect low 509.41 315.44 156.02 89.28 52.55 51.81
top left rect high > 3600 > 3600 2880.06 190.42 179.64 179.55
top left rect high > 3600 > 3600 > 3600 195.41 201.94 205.64
centre rect sharp 443.73 289.56 130.11 57.09 54.66 55.69
centre rect low 535.81 333.64 204.02 59.08 58.33 58.3
centre rect low 669.86 304.31 137.83 73.8 52.11 53.51
centre rect high > 3600 > 3600 2275.77 485.51 232.66 235.66
centre rect high > 3600 1923.78 2097.17 663.36 153.06 169.98
cross sharp 377.38 246.56 122.41 62.5 61.81 61.3
cross low 359.13 326.58 137 65.31 50.06 51.63
cross low 504.41 293.11 115.8 64.34 56.78 56.72
cross high 2985 > 3600 2138.06 428.61 140.97 174.88
cross high > 3600 3229.01 2402.56 560.78 263.38 394.14
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Appendix E

Figures: Random same degree instances

E.1 Computing times of linearizations and quadratizations
This appendix contains figures summarizing the results of the computational experiments
comparing linearization and quadratization methods for Random same degree instances with
n = 400 and 600 variables. The analysis of these figures is analogous to the analysis made in
Section 8.4.1 for instances with n = 200.

As a reminder, Figures E.1, E.3, E.5, E.6, E.2, E.4, E.7 and E.8, show the instance iden-
tifier on the x-axis and the y-axis represents execution times of the methods listed in the
legends. Instance identifiers are of the form n-m-d-id, where n is the number of variables of
the polynomial, m is the number of monomials, d is the degree and id is simply an id for the
polynomial. For example, instance 400-700-3-2 has 400 variables, 700 terms all of which
have degree 4 and it is the second polynomial with these parameters. Tables corresponding
to the figures in this appendix can be found in Appendix B.
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Figure E.1: Random same degree (n = 400, deg = 3): linearizations and quadratizations computing times.
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Figure E.2: Random same degree (n = 600, deg = 3): linearizations and quadratizations computing times.
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Figure E.3: Random same degree (n = 400, deg = 4): linearizations and quadratizations computing times.
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Figure E.6: Random same degree (n = 400): termwise quadratizations computing times by degree.
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Figure E.8: Random same degree (n = 600): termwise quadratizations computing times by degree.
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Appendix F

Figures: Random high degree instances

F.1 Computing times of linearizations and quadratizations
This appendix contains figures summarizing the results of the computational experiments
comparing linearization and quadratization methods for Random high degree instances with
n = 400 and 600 variables. The analysis of these figures is analogous to the analysis made in
Section 8.4.2 for instances with n = 200.

Figures F.1, F.2, F.3 and F.4, show the instance identifier on the x-axis and the y-axis
represents the execution times of the methods listed in the legends. Instance identifiers are of
the form n-m-d-id, where n is the number of variables of the polynomial, m is the number of
monomials, d is the degree of the polynomial and id is simply an id for the polynomial. For
example, instance 400-450-11-3 has 400 variables, 450 terms, the degree of the polynomial
is 11 and it is the third polynomial with these parameters. Only parameters n and m are fixed;
the degree of the polyomial is determined randomly, as is the degree of each monomial.
Tables corresponding to the figures in this appendix can be found in Appendix C.
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Figure F.1: Random high degree (n = 400): linearizations and quadratizations computing times.
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Figure F.2: Random high degree (n = 400): linearizations and quadratizations fastest computing times.
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Figure F.3: Random high degree (n = 600): linearizations and quadratizations computing times.
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Figure F.4: Random high degree (n = 600): linearizations and quadratizations fastest computing times.
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Appendix G

Figures: Vision instances

G.1 Computing times of linearizations and quadratizations
This section contains figures summarizing the results of the computational experiments com-
paring linearization and quadratization methods for Vision instances with base images of
sizes 10 × 10, 20 × 20, 25 × 25 and 30 × 30, using n = 100, 400, 625 and 900 variables,
respectively. The analysis of these figures is analogous to the analysis made in Section 8.4.3
for instances with image size 15 × 15 and n = 225.

Figures G.1, G.2, G.3, G.4 and G.5, present the instance identifier on the x-axis and the
y-axis represents the execution times of the methods listed in the legends. Instance identifiers
are of the form base-perturbation-id, where base can be equal to tl (top left rectangle),
cr (centre rectangle) or cx (cross), perturbation can be equal to s (sharp, no perturbation),
l (low perturbation) or h (high perturbation) and id can be equal to 1 or 2. Only instances
with a low or high perturbation use an id, because for these perturbation settings we have
generated two samples, while there is only one possible sharp image. Tables corresponding
to the figures in this appendix can be found in Appendix D.

G.2 2-links heuristic
This section contains the figures of the results of computational experiments on the 2-links
heuristic for Vision instances base images of sizes 10×10, 20×20, 25×25 and 30×30, using
n = 100, 400, 625 and 900 variables, respectively. The analysis of these figures is analogous
to the analysis made in Section 9.3.1 for instances with image size 15 × 15 and n = 225.

Figures G.6, G.7, G.8 and G.9, show on the x-axis the number of 2-links added to the
pool of user cuts, and corresponding computing times are represented on the y-axis. There
is a plot for each instance in the legend; instances are identified as in the previous section.
Tables corresponding to the figures in this appendix can be found in Appendix D.
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Figure G.1: Vision 10 × 10 (n = 100,m = 668): linearizations and quadratizations computing times.
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Figure G.2: Vision 10 × 10 (n = 100,m = 668): linearizations and quadratizations fastest computing times.
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Figure G.3: Vision 20 × 20 (n = 400,m = 2928): linearizations and quadratizations computing times.
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Figure G.4: Vision 25 × 25 (n = 625,m = 4658): linearizations and quadratizations computing times.
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Figure G.5: Vision 30 × 30 (n = 900,m = 6788): linearizations and quadratizations computing times.
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Figure G.6: Vision 10 × 10 (n = 100,m = 668): 2-links heuristic computing times.
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Figure G.7: Vision 20 × 20 (n = 400,m = 2928): 2-links heuristic computing times.
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Figure G.8: Vision 25 × 25 (n = 625,m = 4658): 2-links heuristic computing times.
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Figure G.9: Vision 30 × 30 (n = 900,m = 6788): 2-links heuristic computing times.
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[16] P. Bonami, M. Kilinç, and J. Linderoth. Algorithms and software for convex mixed
integer nonlinear programs. In J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear
Programming, pages 1–39, 2012. (Cited on page 2.)

[17] E. Boros, Y. Crama, and P. L. Hammer. Upper-bounds for quadratic 0–1 maximization.
Operations Research Letters, 9(2):73–79, 1990. (Cited on page 4.)

[18] E. Boros, Y. Crama, and P. L. Hammer. Chvátal cuts and odd cycle inequalities in
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