
Optimal Connected Vertex Clustering

Master Thesis in Computer Science

Sebastian Krott

sebastian.krott@rwth-aachen.de
RWTH Aachen University

student ID: 314056

August 20, 2018

1st examiner 2nd examiner
Prof. Dr. Gerhard Woeginger Prof. Dr. Marco Lübbecke
Chair of Computer Science 1 Chair of Operations Research
Algorithms and Complexity

mailto:sebastian.krott@rwth-aachen.de

Abstract

We introduce an optimization problem on graphs called Connected Vertex Clustering
Problem (CVCP). The input consists of a finite graph, arbitrary linear constraints to
restrict the set of feasible clusters and a linear objective function. The expected solution
is a vertex clustering that optimizes the objective under the condition that each cluster
induces a connected subgraph and satisfies the custom constraints. Besides partitional
clustering, i.e., node partitioning, the solution may also be restricted to packings or
coverings of nodes. We show that this highly configurable problem is NP-hard and
propose a branch-and-price method as a solution approach. The suggested method is
implemented as a framework which is capable of solving arbitrary CVCP instances. The
framework can easily be extended with new features due to its plug-in architecture.
This allows to exploit the characteristics of specific variants of the CVCP in order to
enhance the efficiency of the solution process. We evaluate the developed framework on
a districting problem for the German federal elections and on the Odd Cycle Packing
Problem.

Contents

List of Figures vii

List of Tables ix

Abbreviations xi

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 2
1.3. Outline . 3

2. Preliminaries 5
2.1. Common Math . 5
2.2. Graph Theory . 5
2.3. Cluster Analysis . 6
2.4. Linear Programming . 7
2.5. Mixed Integer Programming . 8
2.6. Set Covering, Packing and Partitioning 9

2.6.1. Problem Definition . 9
2.6.2. Mixed Integer Program Formulation 9
2.6.3. Related Problems . 10

3. Related Work 11
3.1. Vertex Clustering . 11
3.2. Ryan-Foster Branching . 11
3.3. Connectivity . 12

3.3.1. Node Cuts . 13
3.3.2. Node Separators . 14
3.3.3. Shortest Path Subtrees . 14

4. Connected Vertex Clustering Problem 17
4.1. Original Formulation . 17
4.2. Hardness . 20
4.3. Aggregated Extended Formulation . 21

5. Method 25
5.1. Master Problem . 26
5.2. Pricing . 27

5.2.1. Reduced Costs . 27
5.2.2. Pricing Problem . 28

iii

Contents

5.2.3. Pricing Loop . 30
5.3. Branching . 30

5.3.1. Branching in the Master Problem 30
5.3.2. Branching Constraints in the Pricing Problem 34
5.3.3. Objective Function Adjustments in the Pricing Problem 35

5.4. Branch-and-Price . 36
5.4.1. Farkas Pricing . 37
5.4.2. Upper Bounds . 37

6. Implementation 39
6.1. Tools and Libraries . 39

6.1.1. Libraries . 39
6.1.2. Integrated Development Environment 40

6.2. Framework Architecture . 41
6.2.1. Main Packages . 41
6.2.2. Core Classes . 41
6.2.3. Plug-In Architecture . 44

6.3. Features . 45
6.4. Pricers . 47

6.4.1. Shortest Path Subtrees Pricer . 47
6.4.2. Separator Inequalities Pricer . 48

6.5. Initializers . 49

7. Odd Cycle Packing Problem 51
7.1. Pricing Problem . 53
7.2. Framework Plug-Ins . 53

8. German Political Districting Problem 55
8.1. Pricing Problem . 56

8.1.1. Objective Function . 56
8.1.2. Custom Constraints . 63

8.2. Framework Plug-Ins . 63

9. Computational Results 67
9.1. Performance Metrics and Performance Profiles 67
9.2. Odd Cycle Packing Problem . 69

9.2.1. Dataset . 69
9.2.2. Evaluation . 70

9.3. German Political Districting Problem . 72
9.3.1. Dataset . 72
9.3.2. Evaluation . 72

9.4. Summary . 75

10.Conclusion and Outlook 77
10.1. Outlook . 78

Appendix A. Solving Process Plots 91

iv

Contents

Appendix B. OCPP Experiments Data 97

Appendix C. GPDP Experiments Data 105

v

List of Figures

3.1. Connected subgraph without shortest path subtree. 15

5.1. General outline of the concept of branch-and-price. 25

6.1. UML package diagram of the top-level packages of the CVC Framework. 41
6.2. UML class diagram of the core classes of the CVC Framework. 42
6.3. UML class diagram of the plug-in architecture of the CVC Framework. 44
6.4. Clustering visualization generated by the CVC Framework. 46

7.1. Non-induced odd cycle subgraph. 51

8.1. Administrative boundaries of a constituency. 58
8.2. Piecewise linear function for modeling population balance. 60

9.1. OCPP performance profiles. 70
9.2. GPDP performance profiles. 73
9.3. Average number of subproblems solved by the SPSP per PR. 74

A.1. Primal and dual bound over time. 92
A.2. Duration and number of variables added to the RMP for each PR. . . . 93
A.3. Duration and number of variables added to the RMP for each single PP. 94
A.4. Pricer calls of each pricing round. 95
A.5. Variables of the optimal root LP/IP solution contained in the RMP. . . . 96

vii

List of Tables

4.1. Input of the CVCP. 17

6.1. Supported I/O formats. 45

7.1. CVCP configuration for the OCPP. 52

8.1. CVCP configuration for the GPDP. 56

9.1. Hardware specification of the clustOR machines. 67
9.2. Performance metrics. 68

B.1. OCPP instances. 97
B.2. OCPP solving time. 99
B.3. OCPP gap. 101
B.4. OCPP PR time and unsuccessful PR time. 103

C.1. GPDP instances. 105
C.2. GPDP solving time. 106
C.3. GPDP gap. 106
C.4. GPDP PR time and unsuccessful PR time. 107

ix

Abbreviations

Abbreviation Definition
BWG Bundeswahlgesetz (German Federal Elections Act)
CVC Connected Vertex Clustering
CVCP Connected Vertex Clustering Problem
GI Greedy Initializer
GP Greedy Pricer
GPDP German Political Districting Problem
LP Linear Program
LPR LP Relaxation
MIP Mixed Integer Program
MP Master Problem
OCPN Odd Cycle Packing Number
OCPP Odd Cycle Packing Problem
PR Pricing Round
RMP Restricted Master Problem
SIP Separator Inequalities Pricer
SPSP Shortest Path Subtrees Pricer
SSP Stable Set Problem
TCI Three-Cycle Initializer
TCP Three-Cycle Pricer

xi

1. Introduction

The digitalization of industries and everyday life, the expansion of the internet and
other technological advances like the smart phone have led us to the age of big data.
An enormous volume of data is being generated, transmitted, stored and processed
on a per-second basis. In this environment, cluster analysis as a tool for data struc-
turing, exploration and processing has become more relevant than ever. A clustering
algorithm groups a set of data objects into different clusters based on some notion of
similarity. Today, such clustering techniques are used for a plethora of computer science
applications including information retrieval, data reduction and pattern recognition.

Part of the ever-growing mass of data like the structure of the web or contacts in
online social networks can be represented by graphs. A graph consists of nodes which
embody objects and of edges that describe relationships or links between these objects.
Considering, e.g., a social network, we may represent users in terms of nodes and let
two users be connected by an edge if they are a contact of each other. Since graphs are
commonly used as an abstract model, some algorithms have been specifically tailored
to solve clustering problems on graphs. Regarding social networks, e.g., clustering
algorithms are used for community detection and recommender systems.

Due to the described developments in information technology, recent research in
cluster analysis has put a strong emphasis on algorithmic efficiency. Many common
large-scale applications have numerous highly efficient algorithms designed specifically
for them. However, in many smaller problem scenarios, efficiency is, albeit still desirable,
a far less critical factor. Instead, it may be preferable to employ a method that is capable
of handling additional cluster requirements that are unique to the problem at hand; or
to optimize the clustering based not only on similarity, but also other measures.

This thesis proposes a highly adaptable graph clustering approach that is based on
mixed integer programming. Typically, graph clustering algorithms derive the similarity
between nodes from the graph’s edges or corresponding edge weights. The goal is to
obtain dense clusters where all nodes are closely connected to one another. Instead, we
consider connectivity as a necessary condition for any cluster and compute a solution
that optimizes a completely custom-definable linear objective. The objective may take
cluster density into account, but can also consider other factors or even disregard the
structure of the graph completely. Moreover, our method allows to impose individual
constraints on the clusters via linear inequalities. Thus, certain clusters can be declared
infeasible to meet application requirements.

1.1. Motivation

The development of the new clustering approach was inspired by a practical application.
Every four years, the German citizens elect the Bundestag, their federal parliament.

1

1. Introduction

Prior to each election, the legislator and the Federal Election Commissioner (German:
Bundeswahlleiter) are responsible for redefining the constituencies. Therefore, various
aspects regarding administrative boundaries, population deviation, contiguity and the
previous constituency allocations are taken into account. To date the constituencies are
still defined manually in a nontransparent process. Determining the constituencies in
terms of a mathematically well-defined allocation problem would in contrast allow for
an unbiased and transparent solution adhering to highest democratic standards. This
applies even more to countries without a voting system of proportional representation
where the winner takes it all. Due to this concept, the outcome of an election may be
strongly affected by the definition of constituencies. In the United States of America, the
deliberate manipulation of voting districts even reached such extremes that it coined the
term “Gerrymandering” which is a blend of the name Gerry and the word salamander
[8, 13, 51]. The administration of Elbridge Gerry, a former Governor of Massachusetts,
formed such a bizarre constituency that caricatures compared its shape to a salamander.
In addition to preventing purposeful manipulation or unintended minor inequalities, a
formal problem definition also creates the potential of saving resources via automatic
computation of the constituencies.

Besides, due to changes in the landscape of political parties and peculiarities of the
German voting system, the number of members of the German Bundestag has steadily
grown over the past legislative periods. In order to cope with this trend, a reduction
of the number of constituencies is being discussed [7, 46]. However, in practice it is
typically attempted to adjust constituencies as little as possible with respect to the
previous election. Consequently, a complete redefinition that optimizes different quality
metrics is much more complex than the usually applied "minimum change" allocation
strategy. Considering the large amount of potential allocations, possibly even for
multiple scenarios with differing numbers of constituencies, an automated approach
would once again be not only more efficient but also more traceable.

1.2. Contribution

Originating from the German Political Districting Problem (GPDP), a formal graph-based
definition of the constituency allocation problem, we derive a generalized problem
that can be applied to many application scenarios. This Connected Vertex Clustering
Problem (CVCP) is defined as a mixed integer program which allows the introduction
of custom variables, custom linear constraints and a custom linear objective function.
Additionally, the CVCP allows to define which type of clustering should be computed,
i.e., whether nodes shall occur in exactly, at least or at most one cluster.

We show that the CVCP is NP-hard and develop a branch-and-price method that
solves arbitrary problem instances to optimality. For this purpose, we extend the
so-called Ryan-Foster branching for partitioning problems to packing and covering
scenarios.

Our method is implemented as a framework that serves as a general solver and is
designed for extendability. Thus, it is possible to increase efficiency by exploiting special
characteristics of different CVCP variants. The developed framework is evaluated on
the GPDP and the Odd Cycle Packing Problem (OCPP), another optimization problem

2

1.3. Outline

on graphs. We compare the computational results for different general purpose and
problem-specific components.

1.3. Outline

After the introduction, Chapter 2 defines certain terminology and notations to provide
a basic understanding for the subsequent content. It touches on different areas like
graph theory, cluster analysis and linear and mixed integer programming. In order to
go more into depth on topics closely related to this thesis, Chapter 3 discusses some of
the related work. Chapter 4 formally introduces the original formulation of the CVCP
as a mixed integer program. Using Dantzig-Wolfe decomposition, the CVCP’s original
formulation is then transformed into an aggregated extended formulation. In Chapter 5,
we propose a branch-and-price approach for solving CVCP instances. For this purpose,
we generalize Ryan-Foster branching to the packing and covering case. The master
problem, the pricing problem, the branching and some additional aspects are described
in detail. Chapter 6 presents the Connected Vertex Clustering (CVC) Framework that we
developed for evaluating our approach. After discussing the framework architecture
and selected features, we examine different implementations for modeling connectivity
through linear constraints. Chapters 7 and 8 introduce the OCPP and the GPDP as
specializations of the CVCP. Each problem is formally defined and problem-specific
plug-ins for the CVC Framework are presented. To evaluate our method, Chapter 9
discusses computational results that are obtained from applying different variants of
our solving approach to OCPP and GPDP instances. Finally, Chapter 10 summarizes
all findings in a conclusion and provides an outlook on potential future research.

3

2. Preliminaries

For more clarity and a better understanding, we introduce basic terms and notations.

2.1. Common Math

For n ∈ N, we denote the set {1, . . . , n} of the first n natural numbers as [n]. The
power set P(S) of a set S is the set of all subsets of S, i.e., P(S) = {S′ | S′ ⊆ S}. It
holds |P(S)| = 2|S|. Assume that the set S is numbered, i.e., S = {s1, ..., sn}. The
characteristic vector xxxS′ ∈ {0, 1}n of subset S′ ⊆ S is then given by (xS′)i = 1 iff si ∈ S′.
Two arbitrary sets S1 and S2 are called disjoint, if they do not share any elements, i.e.,
if S1 ∩ S2 = ∅. For some vector xxx ∈ Rn, we define its support as the set of all indices
whose components differ from zero, i.e., supp(xxx) = {i | xi 6= 0}. For S′ ⊆ S, it follows
S′ = {si ∈ S | i ∈ supp(xxxS′)}.

2.2. Graph Theory

We will continue with a brief introduction into graph theory. A (finite) graph G = (V, E)
is defined as a pair consisting of a set of nodes or vertices V = {v1, . . . , vn} and a set
of edges E = {e1, . . . , em}. When dealing with multiple graphs, the node set and edge
set of a graph G are also denoted as V(G) and E(G), respectively, to avoid confusion.
Evidently, the number of nodes is given by |V| = n ∈N and the number of edges by
|E| = m ∈N.

One distinguishes between directed and undirected graphs. If a graph G is directed,
then each edge e ∈ E is a pair of two nodes, i.e., e = (u, v) with u, v ∈ V. Through
the pair’s order the edge is given a specific orientation. We can say that e is directed
from the source (node) u to the target (node) v. On the other hand, if G is undirected,
then an edge e = {u, v} is simply a set of two nodes and the edge does not possess any
orientation.

If a node u belongs to an edge e, it is also referred to as an end node of that edge.
Two nodes u, v ∈ V which are connected by an edge e ∈ E are said to be neighbors or
adjacent to one another. Additionally, we say that u and v are incident to e and vice
versa. Two edges sharing a common end node are incident, too.

An edge with two identical end nodes is called a loop. A simple graph is an
undirected graph without loops. Unless stated otherwise, we will assume graphs to be
simple and finite.

Definition 2.1 (Subgraph, Node-Induced Subgraph). A graph G’=(V’,E’) is a subgraph
of G=(V,E), iff V ′ ⊆ V and E′ ⊆ E. Since G’ is a graph, V ′ must contain all end nodes
of the edges E′. If E′ contains all the edges from E whose end nodes are both in V ′,

5

2. Preliminaries

i.e., E′ = {e ∈ E | e ⊆ V ′}, then we refer to G′ as a (node-)induced subgraph. Given a
graph G, any node-induced subgraph is defined by the node set V ′ alone and therefore
denoted G[V ′].

Definition 2.2 (Walk, Finite Path, Connectivity). A (finite) walk p of length ` in an
undirected graph G is a sequence of ` of its edges (ej1 , . . . , ej`) connecting a sequence of
`+ 1 vertices (vi1 , . . . , vi`+1). This means that ejk ∈ E is incident to vik ∈ V and vik+1 ∈ V
for all k ∈ [`]. A path is a walk p without repeating nodes. An undirected graph G is
connected iff each pair of nodes u, v ∈ V is connected through a path.

In order to express, e.g., distances between nodes, the edges of a graph can be
assigned edge weights w(e) ∈ R. For such a weighted graph, we define a path’s length
as the sum of the weights of the corresponding edges, i.e., `(p) = ∑e∈p w(e). A path
from a node u to a node v is a shortest path, if there exists no path of smaller length
connecting these nodes. The distance d(u, v) between two nodes is defined as the length
of a shortest path from u to v. If the two nodes are not connected and no such path
exists, it holds d(u, v) = ∞. An unweighted graph is transformed into a weighted
graph by defining w(e) = 1 for all edges e ∈ E.

Definition 2.3 (Cycle, Simple Cycle, Tree). A closed walk or cycle is a walk c = (v, . . . , v)
where the first and the last node are the same. If a cycle has no further repetition of
nodes other than at the last node, it is called a simple cycle. A tree is a connected graph
without cycles.

A subtree is a tree subgraph of a graph G. Note that each pair of nodes in a tree is
connected by exactly one path. A shortest path subtree of G with root r ∈ V ′ is a subtree
where each path (r, . . . , v) from the root to a node v ∈ V ′ is a shortest path in G.

2.3. Cluster Analysis

As already mentioned in Chapter 1, clustering is the task of dividing a set S =

{s1, . . . , sn} of n ∈ N objects into different groups or clusters [22, 61]. These clusters
should be homogeneous, i.e., contain objects that share common characteristics or are
otherwise closely related to one another. The resulting set of clusters C = {C1, C2, . . . }
with Ck ⊆ S is also called clustering. Each object must occur in at least one subset, i.e.,
it must hold

⋃
k Ck = S. If all clusters are pairwise disjoint, then C is called a partitional

clustering. If objects may occur in multiple clusters, we refer to C as an overlapping
clustering. In this thesis, we examine the clustering of graph nodes, where the objects S
correspond to the nodes V. In this context we will use the term cluster not only to refer
to subsets Ck ⊆ V of some clustering C, but also to the corresponding subgraphs G[Ck].

In order to group the objects, a clustering algorithm typically makes use of a similarity
function s(si, sj) which assigns a similarity value to an arbitrary pair of objects si, sj ∈ S.
For vertex clustering, the similarity of two nodes u, v ∈ V can be derived from their
distance, i.e., s(u, v) = 1

d(u,v) . However, in contrast to many other graph clustering
approaches, the aim of this thesis is not to determine clusters of minimal node distances.
Instead, we regard connectivity as a necessary condition for each cluster, but do not
prioritize density, i.e., the amount of edges within the clusters.

6

2.4. Linear Programming

2.4. Linear Programming

A linear program (LP) is a formal representation of an optimization problem in terms of
linear constraints and a linear objective function [50]. An LP in canonical form is defined
as follows:

max cccTxxx (2.1)

s.t. Axxx ≤ bbb (2.2)

xxx ≥ 0 (2.3)

Here, the term (2.1) is the linear objective function that is to be maximized over the
variables xxx ∈ Rn for given coefficients ccc ∈ Rn. Inequality (2.2) models the linear
constraints that are to be satisfied. They are defined by a given coefficient matrix
A ∈ Rm×n as the left hand side and a right hand side bbb ∈ Rm. Moreover, inequality
(2.3) adds non-negativity constraints for all variables.

A solution (vector) xxx is called feasible, iff it satisfies both constraint (2.2) and constraint
(2.3). Otherwise, xxx is infeasible. A feasible solution xxx∗ is optimal iff

cccTxxx∗ = max {cccTxxx | xxx is feasible} .

An LP is feasible if it has a feasible solution and infeasible otherwise. A feasible LP
without an optimal solution is called unbounded since the objective function may then
assume arbitrarily large values.

The main solution approach for LPs is the simplex method [15]. This method iteratively
selects new feasible solutions of monotonously increasing objective value. Given the
right configuration, the algorithm is finite and has proven to perform well for many
practical applications despite exponential worst case complexity.

For any LP, there exists a corresponding so-called dual problem. Given a canonical LP
as above, the dual problem is defined as:

min bbbTyyy

s.t. ATyyy ≥ ccc

yyy ≥ 0

In the context of duality, the original problem is also referred to as the primal problem.
Note that the dual problem is an LP, too. Any feasible solution of the dual problem
provides a bound for the objective function value of feasible primal solutions. Assume,
e.g., that the objective function of the primal problem is to maximized. Let xxx be a
feasible solution of the primal and yyy a feasible solution of the dual problem. Then it
holds

cccTxxx ≤ bbbTyyy . (2.4)

An objective function bound that is derived from the dual problem according to
inequality (2.4) is named dual bound.

7

2. Preliminaries

2.5. Mixed Integer Programming

Mixed integer (linear) programming extends linear programming techniques to a more
generalized form of problems [50]. In contrasts to LPs, a mixed integer program (MIP)
may additionally comprise integer constraints for each variable xi with i ∈ [n] such as
xi ∈ {0, 1} or xi ∈N. Hence, MIPs extend the range of expressible problems. The LP
relaxation (LPR) of a MIP is the LP that is obtained by replacing all integer constraints
with corresponding lower and upper bounds for the variables. E.g., for a binary variable
one would define 0 as a lower and 1 as an upper bound.

In order to solve MIPs, typically the so-called branch-and-bound approach is applied
which solves multiple subproblems in a tree-like structure [14]. We start with the
original problem as the root node of the branch-and-bound tree. If the optimal solution
of the LPR at the current node is fractional, we split the corresponding problem into
multiple subproblems by adding new constraints according to some branching rule.
The subproblems are then added to the branch-and-bound tree as child nodes of the
current node. If the optimal solution of the LPR at the current node is integral or the
LPR is infeasible, then the MIP of the node is solved as well. Hence, the corresponding
branch terminates, rendering the node as a leaf of the final branch-and-bound tree. For
any non-leaf node in the branch-and-bound tree, an optimal solution of its MIP is given
by the best optimal solution of any of its child nodes. If all children are infeasible, then
so is the parent node. Consequently, once every branch terminated, the solution to each
MIP and in particular the original root node MIP can be computed bottom-up.

The branching rule must meet some criteria to ensure that the branch-and-bound
approach terminates and finds an optimal solution. First of all, if the parent node MIP
has an optimal solution, then at least one optimal solution must be feasible in one of
the child nodes, too. This is guaranteed to be true in particular when each feasible
solution of the parent MIP is feasible in at least one of the child nodes. Secondly, all
branches must terminate, i.e., reach a leaf node where the LPR either has an integral
solution or is infeasible.

One common branching rule is to divide the parent MIP into two subproblems, each
with either a new upper or lower bound for some variable with fractional optimal
solution value x∗i /∈N [1]:

xi ≤ bx∗i c
xi ≥ dx∗i e

This strategy is also referred to as variable branching.
Moreover, it is sometimes possible to terminate branches early. The current node in

the branch-and-bound tree is then not further divided into subproblems although its
LPR is feasible and the optimal solution still fractional. Assume that we maximize the
objective function and that an upper bound z is known for the objective of the optimal
solution of the node’s MIP. This may, e.g., be a dual bound as described in Section 2.4.
If a feasible solution xxx for the original problem with cccTxxx ≥ z has already been found at
some other node in the branch-and-bound tree, then there is no need to investigate the
current branch any further.

8

2.6. Set Covering, Packing and Partitioning

2.6. Set Covering, Packing and Partitioning

The CVCP may be regarded as a variant of the problems of set covering, packing and
partitioning, which are closely related to one another [3, 38, 57].

2.6.1. Problem Definition

For each of the three problems, the input consists of a finite set S = {s1, ..., sn} named
universe and a set S = {S1, . . . , Sns} ⊆ P(S) of ns ∈ N different corresponding
candidate subsets. The expected output is a selection C ⊆ S of subsets whose cardinality
is to be either minimized or maximized under different conditions in each case. For the
exact problem definition and later use, we define the following terms:

A set C ⊆ P(S) is a covering of the universe S iff each element of S is contained in at
least one subset Sk ∈ C: ⋃

Sk∈C
Sk = S (2.5)

A set C ⊆ P(S) is a packing of the universe S iff no element of S occurs in more than
one subset Sk ∈ C, i.e., all subsets are pairwise disjoint:

Sk1 ∩ Sk2 = ∅ ∀Sk1 , Sk2 ∈ C (2.6)

A set C ⊆ P(S) is a partitioning of the universe S iff each element of S occurs in exactly
one subset Sk ∈ C, i.e., if it fulfills both condition (2.5) and condition (2.6).

Note that any partitioning is also both a packing and a covering. Based on the
previous definitions we define the three optimization problems as follows:

Definition 2.4 (Set Covering Problem).
Input: A universe S and candidate sets S = {S1, . . . , Sns}, Sk ⊆ S.
Output: A covering C∗ ⊆ S of minimal cardinality.

Definition 2.5 (Set Packing Problem).
Input: A universe S and candidate sets S = {S1, . . . , Sns}, Sk ⊆ S.
Output: A packing C∗ ⊆ S of maximal cardinality.

Definition 2.6 (Set Partitioning Problem).
Input: A universe S and candidate sets S = {S1, . . . , Sns}, Sk ⊆ S.
Output: A partitioning C∗ ⊆ S of minimal cardinality.

For all three optimization problems, the corresponding decision problem is known
to be NP-complete.

2.6.2. Mixed Integer Program Formulation

All three problems can be formulated as a MIP. First, we introduce decision variables
λk:

λk ∈ {0, 1} with λk =

{
1 if candidate set Sk occurs in the clustering C
0 otherwise

∀k ∈ [ns]

9

2. Preliminaries

Corresponding coefficients aik are given by:

aik ∈ {0, 1} with aik =

{
1 if object si is an element of candidate set Sk

0 otherwise

∀i ∈ [n], ∀k ∈ [ns]

The MIP is then defined as:

max ∑
k∈[ns]

cλk (2.7)

s.t. Aλλλ

≤ 1 if set packing

= 1 if set partitioning

≥ 1 if set covering

(2.8)

λλλ ∈ {0, 1}ns (2.9)

Here, λλλ = (λ1, . . . , λns)
T is the vector of all decision variables λk. In the objective

function (2.7), we define c = 1 for set packing and c = −1 for set covering and
partitioning in order to optimize cardinality. Depending on the problem, constraint
(2.8) ensures that the derived solution is a packing, partitioning or covering. Constraint
(2.9) enforces binary values for the variables.

2.6.3. Related Problems

Besides the standard variants in the Definitions 2.4, 2.5 and 2.6, each of the three
problems may be generalized for cost optimization. For this purpose, all subsets
Sk ∈ S are associated with a cost c(Sk) as an additional input. Instead of maximizing
or minimizing the cardinality of C the goal is then the optimization of the total cost
c(C) = ∑Sk∈C c(Sk). Typically, it holds c(Sk) > 0 for set packing and c(Sk) < 0 for set
partitioning. The standard variant of each problem is the special case where the cost
function is constant so that no set is given any preference.

Furthermore, the problems of set selection are closely related to vertex clustering.
Assume that the universe S corresponds to the node set V. Consequently, the candidate
subsets V are node clusters Vk ⊆ V. The Set Partitioning Problem is then equivalent to
computing a partitional clustering of minimal cost since each node appears in exactly
one subset of a feasible solution C. Similarly, the Set Covering Problem corresponds
to searching a minimal cost overlapping clustering since each node must be part of at
least one subset in the solution. Note at last that according to Definition 2.5, a solution
to the Set Packing Problem is not necessarily a clustering because a packing does not
always contain all elements of the universe. However, any node packing can easily
be extended to a clustering by adding one additional set that comprises exactly the
vertices that were left out. Given this interpretation, in the following we apply the term
clustering also to node packings.

10

3. Related Work

3.1. Vertex Clustering

The task of vertex clustering has been studied extensively and numerous general clus-
tering approaches as well as methods designed specifically for clustering vertices are
available [2, 36, 49]. Some of these methods are highly efficient and thus applicable to
large graphs with hundreds of thousand or even millions of nodes. Certain approaches
already support the computation of connected clusters or even “highly connected clus-
ters” already out-of-the-box [37]. Others, like hierarchical clustering, can be configured
to also compute connected clusters only.

However, the suggested problem requires additional restrictions to be taken in
to account. Constrained clustering algorithms allow to include prior knowledge or
conditions into cluster computation [6, 20]. Most of the developed approaches consider
two different types of constraints. Must-link constraints determine that two different
objects si, sj ∈ S must belong to the same cluster. In contrast, cannot-link constraints
state that the objects si and sj must be assigned to different clusters. Beyond that, some
clustering methods were introduced that obey constraints for balancing the size of
clusters or binding it from below [4, 6]. Despite providing some control over cluster
feasibility, these techniques are still too inflexible for modeling a wider range of custom
constraints and additionally do not allow the optimization of user-defined objective
functions.

3.2. Ryan-Foster Branching

For enhanced customizability, we opt for a mixed integer programming approach. This
enables the definition of an arbitrary linear objective function to be optimized and
the introduction of constraints in terms of linear inequalities. As already explained in
Section 2.6, the model of the Set Covering, Packing and Partitioning Problem can be
applied to compute different types of clusterings. As a branching rule, it is possible to
employ standard variable branching. However, this would directly fix a single decision
variable with fractional solution value 0 < λ∗k < 1 to the value 0 in the first branch and
to value 1 in the second branch. Setting λk to 0 excludes the corresponding cluster Sk
from the clustering. Setting λk to 1 forces Sk to be part of the clustering. Generally, in
the first case remain a lot more potential solutions than in the second one. The resulting
branch-and-bound tree is thus heavily unbalanced, wherefore this branching rule is not
recommendable for the CVCP.

An alternative strategy is the so-called Ryan-Foster branching, which was developed
for set partitioning problems [5, 48, 52, 55]. Let all candidate subsets be different and
non-empty. Assume then that the given optimal LP solution λλλ∗ contains some decision

11

3. Related Work

variable λa with a fractional solution value λ∗a . Since no candidate subset is empty,
there exists some object si ∈ Sa. Due to the partitioning constraint (2.8), there must be
a second candidate subset Sb with si ∈ Sb and 0 < λ∗b < 1. Moreover, all candidate
subsets are different, so there is some other object sj that appears either in the first
subset Sa or in the second subset Sb, but not in both. Consequently, it holds:

0 < ∑
Sk∈S :{si ,sj}⊆Sk

λ∗k < 1 (3.1)

To perform Ryan-Foster branching, we determine two such objects si and sj and
divide the problem into two branches based on the following constraints:

∑
Sk∈S :{si ,sj}⊆Sk

λk = 1 (3.2)

∑
Sk∈S :{si ,sj}⊆Sk

λk = 0 (3.3)

According to equation (3.1), the previous fractional solution λλλ∗ is infeasible in both
branches. We refer to the branch with the first constraint as the same-branch. It excludes
all candidate subsets that contain only exactly one of the objects si and sj. W.l.o.g.,
assume sj ∈ Sb. The same-branch then enforces λa = 0. The branch with the second
constraint is called the differ-branch. Here, all subsets comprising both objects si and sj
are excluded and thus it must hold λb = 0.

As each object must occur in exactly one selected subset, any feasible MIP solution
will satisfy either equation (3.2) or equation (3.3). Moreover, the number of objects and
therefore the number of pairs to branch on is finite. Each time we branch, the sum in
the inequality (3.1) which is determined by the pair {si, sj} is restricted to an integral
value. Consequently, after a finite number of branchings no such fractional sum can
exist. Since we can derive such a sum for any fractional decision variable, an optimal
solution must then be integral.

3.3. Connectivity

Another important aspect is the definition of connectivity constraints to ensure connec-
tivity of the node clusters. As a common modeling tool, graphs form the foundation
of many famous optimization problems in the area of operation research like the
Traveling Salesman Problem, network flow problems or assignment problems. Still,
we encountered only a few techniques to express subgraph connectivity via linear
constraints.

Let us introduce some new variables for presenting these concepts. For some given
graph G, a subset of nodes V ′ shall be determined that induces a connected subgraph
G[V ′]. Whether a node vi ∈ V belongs to subset V ′ is modeled by a decision variable
xi:

xi ∈ {0, 1} with xi =

{
1 if vi ∈ V ′

0 otherwise
∀vi ∈ V

12

3.3. Connectivity

Besides the node variables, some approaches employ additional edge variables yij

yij ∈ {0, 1} with yij =

{
1 if {vi, vj} ∈ E′

0 otherwise
∀{vi, vj} ∈ E (3.4)

where E′ = E(G[V ′]) is the edge set of the subgraph induced by V ′. In order to ensure
that each edge variable yij assumes value 1 iff both corresponding end nodes vi and vj
are selected, the following constraints are added:

xi ≥ yij ∀{vi, vj} ∈ E (3.5)

xj ≥ yij ∀{vi, vj} ∈ E (3.6)

xi + xj − 1 ≤ yij ∀{vi, vj} ∈ E (3.7)

Here, the inequalities (3.5) and (3.6) model the implications

yij = 1⇒ xi = 1∧ xj = 1 ∀{vi, vj} ∈ E

and the constraints (3.7) the reverse implications

xi = 1∧ xj = 1⇒ yij = 1 ∀{vi, vj} ∈ E .

All constraints combined result in the equivalence of both statements. Note that the
discreteness of the node variables xi and the previous constraints imply the discreteness
of the edge variables, which therefore is not necessary to demand.

3.3.1. Node Cuts

One option is to formulate connectivity constraints based on (node) cuts [24, 41]. A
node cut C = (Ṽ, V \ Ṽ) is a partitioning of the node set V into two disjoint subsets
Ṽ ⊆ V and V \ Ṽ. Each node cut determines a corresponding cut set Ẽ(C) as the set of
all edges with exactly one end node in Ṽ:

Ẽ(C) = {{vi, vj} ∈ E | vi ∈ Ṽ, vj /∈ Ṽ}

A graph is connected iff for each node cut with ∅ ⊂ Ṽ ⊂ V the corresponding cut set
is non-empty.

In order to define suitable node cuts for the connectivity constraints, the node set is
expanded by an artificial source node, i.e., V+ = V ∪ {vs}. New edges are added to
connect the source node to all other nodes:

E+ = E ∪ {{vs, vi} | vi ∈ V}

Then a node induced subgraph of the original graph is determined which additionally
is connected to the source node vs by a single edge.

The source node is automatically considered to be selected, thus a corresponding
node variable is not required. Only additional decision variables ysi are introduced to
facilitate the selection of a source node edge:

ysi ∈ {0, 1} with ysi =

{
1 if source node edge {vs, vi} is selected

0 otherwise
∀vi ∈ V

13

3. Related Work

Connectivity is obtained via two different types of constraints:

∑
{vi ,vj}|vi∈(V+\Ṽ),vj∈Ṽ

yij ≥ xt ∀Ṽ ⊆ V, ∀vt ∈ Ṽ (3.8)

∑
{vs,vj}∈E+

ysj = 1 (3.9)

Here, equation (3.9) ensures that only one source node edge is selected as intended. The
cut inequalities (3.8) guarantee that there is no empty cut set for the derived subgraph.

For a more detailed understanding assume that the derived subgraph is unconnected,
i.e., there are two different connected components Va and Vb. The source node vs can
be connected to at most one of these components due to equation (3.9). W.l.o.g. we
assume that vs is not connected to Vb. For Ṽ = Vb and any arbitrary vt ∈ Vb constraint
(3.8) is then not satisfied.

Assume in reverse that the subgraph is connected. If ∅ ⊂ Ṽ ∩V ′ ⊂ V ′, then the cut
set Ẽ(Ṽ ∩V ′, V ′ \ Ṽ) in G[V ′] is non-empty and the cut inequality holds for all vt ∈ Ṽ.
If Ṽ ∩ V ′ = ∅, the constraint holds because xt = 0 for all vt /∈ V ′. Finally, if V ′ ⊆ Ṽ,
then some vj ∈ Ṽ is connected to the source node. Thus, ysj equals 1 and since vs /∈ Ṽ
the cut inequality is again satisfied.

3.3.2. Node Separators

Another approach is to define connectivity constraints using node separators [12, 25, 59].
Given two non-adjacent nodes a, b ∈ V, an (a, b)-separator is a set of nodes Ṽ ⊆
V \ {a, b} so that there is no path connecting a and b in G[V \ Ṽ]. An (a, b)-separator Ṽ
is minimal, iff there is no proper subset Ṽ2 ⊂ Ṽ that also separates a and b. For V ′ ⊆ V,
it holds:

∃ path p = (a, . . . , b) in G[V ′]⇔ ∀ minimal (a, b)-separators Ṽ : Ṽ ∩V ′ 6= ∅ (3.10)

Consequently, G[V ′] is connected iff the right hand side of equivalence (3.10) is satisfied
for all node pairs a, b ∈ V ′.

Thus, connectivity is achieved by ensuring that for any given pair of nodes in the
subgraph all corresponding minimal a, b-separators Ṽ contain at least one node v ∈ V ′:

∑
vi∈Ṽ

xi ≥ xa + xb − 1

∀va, vb ∈ V : {va, vb} /∈ E, ∀ minimal (va, vb)-separator Ṽ (3.11)

If both nodes a and b are selected, the sum to the left must be at least 1 so that all
minimal (a, b)-separators contain at least one node that also occurs in V ′.

3.3.3. Shortest Path Subtrees

Mehrotra et al. propose a strategy for deriving heuristic connectivity constraints from
shortest path subgraphs [45]. Since their work focuses on the definition of constituencies
for the federal elections in the United States of America, one major goal is the prevention

14

3.3. Connectivity

of Gerrymandering as described in Section 1.1, i.e., the manipulation of constituen-
cies for affecting election outcomes. Consequently, they suggest that constituencies
should be compact and penalize non-compactness dΣ measured by the reciprocal of the
closeness centrality of some center node vc ∈ V ′:

dΣ(vc) = ∑
v∈V′

d(v, vc)

A constituency or cluster is thus considered compact if all of its nodes can be reached
from a given center vc within short distance. With this objective in mind, constraints
are defined that do enforce connectivity but exclude some connected subgraphs that
are “unlikely to be compact” according to the chosen center vc and dΣ.

For a given center vc, the idea is to compute a subtree of a shortest path tree with
root vc. For v ∈ V, let

N<(v, vc) = {u ∈ V | {u, v} ∈ E ∧ d(u, vc) = d(v, vc)− 1}

be defined as the shortest path predecessors of v with respect to vc, i.e., the set of all nodes
that are adjacent to v but closer to vc. The nodes {vc} ⊆ V ′ ⊆ V form a shortest path
subtree with root vc iff each selected node v ∈ V ′ \ {vc} has a selected neighbor that is
closer to vc then itself, i.e.,

N<(v, vc) ∩V ′ 6= ∅ ∀v ∈ V ′ \ {vc} . (3.12)

Connecting each node v ∈ V ′ \ {vc} to one of the neighbors in N<(v, vc) yields a
corresponding tree. The node-induced subgraph G[V ′] is derived from the tree by only
adding further edges and is therefore also connected.

Condition (3.12) translates to the following linear constraints:

∑
vj∈N<(vi ,vc)

xj ≥ xi ∀vi ∈ V \ {vc} (3.13)

The remaining problem is that the choice of a suitable center node vc is dependent of
the subset V ′ to be determined. To circumvent this issue, the resulting MIP is solved
once for each node v ∈ V as the center.

1

2 3 4 5 6 7

Figure 3.1.: Connected subgraph (marked blue) without corresponding shortest path subtree.

Note that condition (3.12) is sufficient but not necessary for connectivity, even if
the center vc can be chosen arbitrarily. Figure 3.1 provides the counter-example of a
connected subgraph without a corresponding shortest path subtree. Let V ′ be the set
of all nodes marked blue. Then G[V ′] is connected, but there is no vc ∈ V ′ that fulfills
condition (3.12). For vc ∈ {2, 3, 4}, it holds N<(7, vc) = {1} and thus N<(7, vc) ∩V ′ =
∅. In reverse, for vc ∈ {5, 6, 7}, N<(2, vc) = {1} and again N<(2, vc) ∩V ′ = ∅.

15

4. Connected Vertex Clustering Problem

This chapter formally introduces the CVCP as a linear optimization problem. In the first
part, we formulate the so-called original formulation. This linear program is based on
binary assignment variables xik stating whether a node vi ∈ V belongs to cluster Ck ⊆ V
of the clustering C. Next, we show that the CVCP is an NP-hard optimization problem.
Finally, we apply Dantzig-Wolfe decomposition to transform the original formulation into
an aggregated extended formulation. Here, for each feasible cluster C a decision variable
λC determines whether C ∈ C.

4.1. Original Formulation

Section 2.6 already outlined how to model clusterings as MIPs. We follow this approach
for the CVCP. The goal is to compute an optimal cost clustering for the nodes of a given
graph G. The nodes of each cluster must form a connected subgraph of G. The cost of
a clustering is determined by a linear objective function. Arbitrary additional variables
and constraints may be introduced for each cluster to adapt the objective function and
to define further restrictions besides connectivity.

Formally, we denote the input of the problem as a tuple

(o_type, c_type, G, Y,Y , A, bbb, cccx, cccy, kmin, kmax) (4.1)

of compulsory and optional data. Table 4.1 provides an overview over the inputs.

Table 4.1.: Input of the CVCP.
Symbol Description
o_type optimization type (max/min)
c_type clustering type (partitioning/packing/covering)
G graph to cluster
Y (optional) matrix of additional custom variables
Y integer constraints on Y
A, bbb (optional) matrix and vector defining additional custom constraints
cccx assignment costs
cccy custom variable costs
kmin (optional) maximum number of clusters
kmax (optional) minimum number of clusters

The optimization type o_type states whether the objective value should be maximized
or minimized. In the following we will only consider the maximization option because
any minimization problem may be transformed into an equivalent maximization
problem by negating the objective function. The clustering type c_type determines the

17

4. Connected Vertex Clustering Problem

kind of clustering to compute and is one of the three options packing, partitioning and
covering described in Section 2.6.1. G = (V, E) is a simple finite graph defining the
nodes to be clustered and providing the connectivity information. The optional input
values kmin and kmax provide an upper and lower bound for the number of clusters. If
no bounds are given, it is always possible to define kmin = 0 and kmax = |P(V)| = 2n.

Assume for now that a bound kmax is given and that kmin = 0. We define K = [kmax] as
the set of cluster indices and try to determine a node clustering C = {C1, . . . , Ckmax} ⊆
P(V). Similar to Section 3.3, binary variables are applied to model which nodes belong
to a cluster. However, for the CVCP we are dealing with multiple clusters so that each
assignment variable xik has an additional cluster index k:

xik ∈ {0, 1} with xik =

{
1 if vi ∈ Ck

0 otherwise
∀vi ∈ V, ∀k ∈ K

We denote the vector of all assignment variables of cluster k as xxxk = (x1k, . . . , xnk)
T ∈

{0, 1}n.
The CVCP can then be described as a MIP of the following form:

max ∑
k∈K

cccT
x xxxk + cccT

y yyyk (4.2)

s.t. ∑
k∈K

xxxk

≤ 1 if c_type = packing

= 1 if c_type = partitioning

≥ 1 if c_type = covering

(4.3)

Axxxxk + Ayyyyk ≤ bbb ∀k ∈ K (4.4)

A′xxxxk + A′yyyyk ≤ b′b′b′ ∀k ∈ K (4.5)

xxxk ∈ {0, 1}n ∀k ∈ K (4.6)

yyyk ∈ Y ∀k ∈ K (4.7)

Each column yyyk ∈ R` of matrix Y ∈ R`×|K| is a vector of additional custom variables
which may be used to define the cost and further constraints for cluster Ck. Vector
cccx ∈ Rn defines the costs of assigning a node to a cluster and cccy ∈ R` the costs of the
custom variables. The objective function (4.2) is formed by the sum of these costs. The
clustering constraints (4.3) vary depending on the type of clustering to compute.

The inequalities (4.5) represent the clusters’ connectivity constraints. Section 3.3
showed that some approaches require more variables than the assignment variables xik
alone for modeling connectivity. Such additional variables are considered to be part of
the custom variables Y.

Matrix A ∈ Rm×(n+`) and vector bbb ∈ Rm define arbitrary additional linear constraints
for each cluster on the variables xxxk and yyyk. We divide A into Ax ∈ Rm×n for the
assignment variables and Ay ∈ Rm×` for the custom variables. The custom constraints
are then given by the inequalities (4.4).

Constraint (4.6) enforces binary values for the assignment variables. Input Y ⊆ R`

determines the integer constraints on yyyk via yyyk ∈ Y .
Note that the actual number of clusters in an optimal solution may be smaller than

the bound kmax. Therefore, feasible solutions must be allowed to contain one or more

18

4.1. Original Formulation

empty clusters which however should not to affect the objective function. For an empty
cluster Ck = ∅, the total cost of all cluster variables xxxk and yyyk is thus assumed to
amount to 0.

Furthermore, for typical CVCP instances it is possible to determine a far smaller
value than 2n for kmax. If c_type is partitioning or packing, then no node may appear
in more than one cluster. Consequently, any feasible solution can comprise at most n
non-empty clusters consisting of a single node each so that we can define kmax = n.
When computing a covering (or overlapping clustering) this bound does not hold. In
general, any connected cluster may be feasible. For fully connected graphs, all 2n

subgraphs are connected. However, for kmax = 2n already very small graphs will render
the problem infeasible for standard solvers due to the exponential number of variables
and corresponding constraints. Still, this is typically not an issue in practice since
for most covering problems all non-empty clusters will affect the objective function
negatively, i.e.,

cccT
x xxxk + cccT

y yyyk < 0 ∀k ∈ K, Ck 6= ∅ . (4.8)

Thus, each non-empty cluster of an optimal solution will cover at least one node that is
not part of any other cluster. Again, we may define kmax = n. Moreover, in Section 4.3
we will remodel the problem in such a way that this issue becomes obsolete.

Note also that we assume all non-empty clusters of the solution to differ by at least
one node. For packings and partitionings, this must hold because nodes may not
appear in more than one cluster. For coverings this is not strictly enforced by the model,
but again in practice typically satisfied by an optimal solution due to negative cluster
costs for non-empty clusters. Consequently, multiple occurrences of the same cluster
can be excluded. Nevertheless, it is also possible to demand unique clusters explicitly
based on the boolean XOR operation and additional variables zik1k2 :

zik1k2 ≤ xik1 + xik2 ∀vi ∈ V, ∀k1 < k2 ∈ K (4.9)

zik1k2 ≥ xik1 − xik2 ∀vi ∈ V, ∀k1 < k2 ∈ K (4.10)

zik1k2 ≥ xik2 − xik1 ∀vi ∈ V, ∀k1 < k2 ∈ K (4.11)

zik1k2 ≤ 2− xik1 − xik2 ∀vi ∈ V, ∀k1 < k2 ∈ K (4.12)

zik1k2 ∈ 0, 1 ∀vi ∈ V, ∀k1 < k2 ∈ K (4.13)
n

∑
i=1

zik1k2 ≥
1
n

n

∑
i=1

xik1 ∀k1 < k2 ∈ K (4.14)

Constraints (4.9) – (4.13) ensure that zik1k2 = xik1 ⊕ xik2 . Hence, inequality (4.14) guar-
antees that any two clusters k1 and k2 differ by at least one node when cluster k1 is
non-empty.

Finally, the presented model does not yet take into account the lower bound kmin for
the number of clusters. For kmin > 0, minor adaptions to the model are required. First,
we add new binary variables zne

k to determine all non-empty clusters:

zne
k ∈ {0, 1} with zne

k =

{
1 if Ck 6= ∅

0 otherwise
∀k ∈ K

19

4. Connected Vertex Clustering Problem

Additional constraints ensure that all variables zne
k assume the intended value:

zne
k ≤

n

∑
i=1

xik ∀k ∈ K

zne
k ≥

n

∑
i=1

1
n

xik ∀k ∈ K

Then we require all feasible solutions to contain at least kmin non-empty clusters:

∑
k∈K

zne
k ≥ kmin

In the following, we will not consider uniqueness constraints nor constraints for
enforcing a minimum number of clusters to be part of the model. However, after remod-
eling the problem we arrive at a new formulation that prevents multiple occurrences
of the same cluster and allows for both lower and upper bounds on the number of
clusters.

4.2. Hardness

The CVCP is NP-hard because, e.g., the NP-hard Set Partitioning Problem from Section
2.6 can be reduced to it in polynomial time. For such a reduction, we define the
graph of the CVCP to be complete with one node for each element of the universe S.
Consequently, any subgraph is feasible based on the connectivity constraints alone.
In order to ensure that only clusters corresponding to candidate subsets are feasible,
we add binary custom variables yS

k ∈ {0, 1} for all S ∈ (S ∪ {∅}) and the following
custom constraints:

n · yS
k ≤ ∑

si∈S
xik + ∑

si /∈S
1− xik ∀S ∈ (S ∪ {∅}), ∀k ∈ K (4.15)

∑
S∈(S∪{∅})

yS
k = 1 ∀k ∈ K (4.16)

The constraints (4.15) enforce that yS
k equals 1 iff cluster Ck corresponds to the subset S.

Due to equation (4.16), each cluster Ck must thus be empty or correspond to a candidate
subset. We select c_type = partitioning to obtain a partitioning and determine its
cardinality by defining the objective function as the number of non-empty clusters:

∑
k∈K

zne
k

Let o_type = min. For an optimal CVCP solution, the corresponding clustering is then
a solution of the Set Packing Problem, i.e., a partitioning C∗ ⊆ S of minimal cardinality.
Hence, the CVCP is NP-hard and no polynomial time algorithm solves this problem to
optimality under the assumption that P 6= NP.

20

4.3. Aggregated Extended Formulation

4.3. Aggregated Extended Formulation

The previous section introduced what is called the original formulation of the CVCP.
However, it is not ideal to solve the problem in the presented form. First of all,
guaranteeing cluster connectivity as described in, e.g., Sections 3.3.1 or 3.3.2 requires a
vast number of constraints. Fischetti et al. show that this problem may be solved by
employing a branch-and-cut method [25]. Alternatively, a more efficient or heuristic
approach for modeling connectivity might be found. As indicated in Section 4.1,
another problem is that the number of cluster indices may grow exponentially in the
size of the graph for some covering scenarios.

However, the main issue is less obvious and caused by the choice of the assignment
variables xik. A node vi belongs to cluster Ck iff xik = 1. Let us now consider an
assignment comprising two clusters C1 and C2. Then we can obtain a new equivalent
solution by simply exchanging clusters C1 and C2, i.e., we redefine xnew

i1 = xi2 and
xnew

i2 = xi1. Hence, there are different representations for the exact same clustering.
Generally, for any given solution of the original CVCP, any permutation of the cluster
order leads to an equivalent assignment. This phenomenon of certain MIPs is known
as symmetry and a common characteristic of related packing, covering and assignment
problems [29, 44]. Unnecessarily having to examine equivalent solutions of a symmetric
MIP may render the solver very inefficient.

Another consequence of the symmetry is that the LP solutions of the problem’s linear
relaxation may not provide information for deriving a clustering. For a feasible primal
LP solution, let xxxk be the average of the assignment vectors, i.e.,

xxxk =
1

kmax
∑
k∈K

xxxk .

If all assignment vectors are defined as xxxk, we obtain a new solution where the clustering
constraints are still satisfied but each node is equally assigned to all clusters. Note that
the new solution has the same objective value as the original one. Consequently, even
an optimal solution may not group any nodes into clusters.

In order to avoid the aforementioned issues, we transform the CVCP by applying the
so-called Dantzig-Wolfe decomposition [16, 17]. This decomposition divides the original
problem into a master problem and one or more subproblems. All problems are then
solved in a combined iterative process that leads to an optimal solution of the original
problem. There are different variants of Dantzig-Wolfe decompositions. The more
general convexity approach expresses the original variables via a convex combination
of extreme points and extreme rays [19, 18, 43, 53]. In our case, we will focus on
an alternate discretization technique particularly targeting at MIPs [28, 43, 54, 56].
However, since only the binary variables xik ∈ {0, 1} are transformed, both approaches
in fact coincide for the CVCP [43].

Examining the original CVCP formulation from Section 4.1, it can be seen that many
constraints only comprise variables related to one cluster. Thus, the CVCP has the

21

4. Connected Vertex Clustering Problem

following overall structure:
B1 B2 · · · B|K|
D

D
. . .

D

vvv1

vvv2
...

vvv|K|

 ≤

bbb
ddd
ddd
...
ddd

 (4.17)

Here, we define vector vvvT
k = (xxxT

k , yyyT
k) as the vector comprising all variables that belong

to cluster Ck. Matrix D incorporates the custom constraints (4.4) and the connectivity
constraints (4.5). These are exactly the constraints restricted to occurrences of variables
vvvk of only a single cluster Ck. In contrast, the clustering constraints (4.3) incorporate
variables of all vvvk and are jointly defined by the matrices Bk.

Since the constraints defined by matrix D are limited to a certain set of variables,
they provide the problem with a special structure. This becomes obvious through the
characteristic diagonal blocks in the constraint matrix which imply that all variables
have non-zero coefficients in at most one block. The constraints defined by these block
matrices are therefore called structural constraints. The remaining constraints based on
the matrices Bk are referred to as linking constraints because they bind variables from
multiple blocks together.

Dantzig-Wolfe decomposition now exploits the special structure of the constraint
matrix for the separation of the original problem into smaller problems that can be
solved more efficiently. Let X be the set of all feasible xxxk-vectors based on the structural
and integer constraints alone:

X = {xxx ∈ {0, 1}n | ∃ yyy ∈ Y : D · (xxx, yyy) ≤ ddd}

Let further zmax
y (xxx) be the maximum value of cccT

y yyy for a given xxx ∈ X :

zmax
y (xxx) = max{cccT

y yyy | D · (xxx, yyy) ≤ ddd}

An alternative formulation of the original CVCP is then:

max ∑
k∈K

(
cccT

x xxxk + zmax
y (xxxk)

)

s.t. ∑
k∈K

xxxk

≤ 1 if c_type = packing

= 1 if c_type = partitioning

≥ 1 if c_type = covering

xxxk ∈ X ∀k ∈ K

Note that the new model solely depends on the assignment variables xik. Each vector
xxx ∈ X defines a unique feasible cluster C ⊆ V based on the node assignments, i.e.,
C = {vi | i ∈ supp(xxx)}. Define V = {V1, . . . , Vnv} as the set of all feasible clusters with
nv = |V|. Note that the mapping

map : X → V , xxx 7→ C = {vi | i ∈ supp(xxx)}

22

4.3. Aggregated Extended Formulation

is bijective since the inverse function is given by the characteristic vector xxxC of cluster
C. In order to avoid the redundant solutions caused by symmetry, we define a new
representation of the solution space:

X =

{
∑

C∈V
λC ·map−1(C) | ∑

C∈V
λC = 1, λλλ ∈ {0, 1}nv

}

=

{
∑

C∈V
λC · xxxC | ∑

C∈V
λC = 1, λλλ ∈ {0, 1}nv

}
(4.18)

Essentially, we represent any vector xxx ∈ X in terms of a vector λλλ by setting the entry
λC of the corresponding cluster C to 1. Thus, we introduce new cluster variables λCk to
substitute for xxxk:

λCk ∈ {0, 1} with λCk =

1 if solution cluster Ck equals
feasible cluster C

0 otherwise
∀C ∈ V , ∀k ∈ K

Let λλλk = (λV1k, . . . , λVnv k)
T. The corresponding cost vector cccλ is derived from the total

cluster costs:
(cccλ)C = cccT

x xxxC + zmax
y (xxxC) ∀C ∈ V (4.19)

Substituting for xxxk as in equation (4.18) results in an extended formulation of the CVCP:

max ∑
k∈K

cccλλλλk

s.t. ∑
k∈K

∑
C∈V

λCk · xxxC

≤ 1 if c_type = packing

= 1 if c_type = partitioning

≥ 1 if c_type = covering

∑
C∈V

λCk = 1 ∀k ∈ K (4.20)

λλλk ∈ {0, 1}nv ∀k ∈ K

Nevertheless, the symmetry issue of redundant solutions still remains. Arbitrary
permutations of the vectors λkλkλk are different representations of the same clustering.
However, with a small adaptation we can prevent this problem and even reduce the
number of variables and hence the complexity of the model. Therefore, we first declare
the empty cluster infeasible by excluding it from V and then aggregate variables over
the clusters. Since all clusters in the solution are supposed to be different, the selected
clusters can be encoded by a single vector λλλ ∈ {0, 1}nv :

λC ∈ {0, 1} with λC =

1 if feasible cluster C forms

part of the solution C
0 otherwise

∀C ∈ V

Note, that the cardinality 2nv of the power set P(V) corresponds to the number of
possible values for λλλ. Hence, the mapping from λλλ to the feasible clusterings is bijective.

23

4. Connected Vertex Clustering Problem

We avoid symmetry and obtain the aggregated extended formulation of the CVCP:

max cccT
λλλλ

s.t. ∑
C∈V

λC · xxxC

≤ 1 if c_type = packing

= 1 if c_type = partitioning

≥ 1 if c_type = covering

(4.21)

λλλ ∈ {0, 1}nv

The correctness of the model follows almost directly from the extended formulation
by replacing any sum over the λλλk with just the single vector λλλ. Additionally, equation
(4.20) is dropped since λλλ does not just encode one but all selected clusters. Without any
additional constraints, any cluster C ∈ V could so far in theory still have been selected
by multiple λλλk. As mentioned in Section 4.1, this behavior is actually not desired. Thus,
the aggregated extended formulation prevents multiple cluster occurrences without
having to add any further constraints to the model. As each entry of value 1 in λλλ

corresponds to a selected non-empty cluster, the definition of bounds for the number
of clusters is also simple and straight forward:

∑
C∈V

λC ≥ kmin

∑
C∈V

λC ≤ kmax (4.22)

However, even with the aggregated extended formulation there still is one major issue.
The number of subsets of V and thus the amount of potentially feasible clusters grows
exponentially in n. Hence, solving the problem with a standard solver is not an option
for larger instances. Consequently, we solve the problem based on the new model via a
branch-and-price approach that is described in the following.

24

5. Method

As already mentioned, the aggregated extended formulation still comprises a large
number of variables. Also, the transformed model requires restricting the cluster
variables λj to feasible clusters only. Hence, employing a standard solver additionally
requires the precomputation of all feasible clusters and their corresponding costs
before the algorithm can even start. Instead, we opt for a branch-and-price approach
[5, 18, 42, 43]. This method is particularly useful for problems with a vast number of
variables but only few constraints, such as the aggregated extended CVCP. Figure 5.1
illustrates the concept’s general outline.

The main idea is to reduce the size of the original problem by considering only a

Master Problem (MP)

Initial Restricted Master
Problem (RMP)

Branch-and-Bound Tree (BBT)

Current RMP

LP Relaxation (LPR) of RMP

Feasible?

Pricing Problem (PP)

Positive Reduced Costs?

Solution is Integral?

Branching

Terminate

select a subset of
variables providing a
feasible solution

add the initial RMP as
the root of the BBT

select node to process
from the BBT

relax binary constraints

check feasibility

YES: compute optimal
primal and dual solution
via simplex method

NO: current node has
not feasible solution

solve by exploiting
problem structure

NO: LP solution
is optimal over
all variables

YES: feasible for
MP and optimal
for current node

NO: infeasible
for MP

add child nodes with
branching constraints
to the BBT

YES: add
variable to
the RMP

x Initialization

x Branching

x Pricing

Figure 5.1.: General outline of the concept of branch-and-price, given that the MP is feasible. The
approach can be divided into three main steps which are represented by different colors.

25

5. Method

limited number of variables. In the initialization phase, a small subset of variables is
selected for which the problem is still feasible. These can, e.g., be the base variables
of a known feasible solution. The branch-and-bound method described in Section
2.5 is then applied to the smaller problem in order to compute an integer solution.
Additionally, this method is extended by the so-called pricing loop. Each time the LPR
of the small problem is solved to optimality at some node in the branch-and-bound
tree, it is checked whether the introduction of any missing variables may improve the
solution. If so, a suitable variable is added to the small problem. Since introducing a
new variable is equivalent to adding a new column to the simplex tableau, pricing is
also called column generation. When no improving variables are left, the pricing loop
ends and standard branch-and-bound continues. This way, branching and pricing
alternates until all branches of the branch-and-bound tree have terminated. Carried out
correctly, branch-and-price is an exact solution approach.

The remainder of this chapter explains our method and the general concept of branch-
and-price in more detail. First, the master problem and the restricted master problem
are formally introduced in Section 5.1. Afterwards, Sections 5.2 and 5.3 describe how
the pricing and the branching are performed. Finally, Section 5.4 provides a summary
of the whole approach and examines some additional aspects.

5.1. Master Problem

Branch-and-price is applied with the goal of finding an optimal solution to a MIP which
in this case is the aggregated extended formulation of the CVCP. In the framework
of branch-and-price, we refer to this model as the master problem (MP). Assume for
simplicity that the MP is of the form

max ∑
C∈V

cCλC

s.t. ∑
C∈V

aaaCλC ≤ bbb

λC ∈ {0, 1} ∀C ∈ V

where matrix A ∈ Rm×nc and vector bbb are the left and right side of the linear constraints.
Vector aaaC is the column of A corresponding to variable λC.

Originating from the MP, a subset of the variables is chosen to start out with. Assume,
e.g., that a heuristic method is employed to determine a feasible solution λλλinit of the MP.
The selected variables can then be defined as the cluster variables of the corresponding
set of clusters V ′ ⊆ V defined as

V ′ = {Vi ∈ V | i ∈ supp(λλλinit)} .

A restricted master problem (RMP) is derived as the problem with the same objective

26

5.2. Pricing

function and constraints as the MP but restricted to the selected variables:

max ∑
C∈V ′

cCλC

s.t. ∑
C∈V ′

aaaCλC ≤ bbb

λC ∈ {0, 1} ∀C ∈ V ′ (5.1)

Replacing the binary constraints (5.1) with the inequalities

0 ≤ λC ≤ 1 ∀C ∈ V ′ (5.2)

yields the corresponding LPR. In the partitioning and packing scenario, the upper
bounds on the cluster variables are obsolete because they are indirectly enforced by the
clustering constraints from equation (4.21). As long as no covering is computed, these
bounds are therefore removed from the problem. This does not just reduce the size of
the model but also the amount of resulting dual variables. The advantage of omitting
unrequired dual variables becomes apparent later in Sections 5.2 and 5.3.

In order to solve the LPR with the simplex method, it is transformed into slack form.
Therefore, all inequalities are replaced by equations. Additionally, a suitable slack
variable is introduced for each former inequality to allow the equation to be satisfied:

max cT
s λλλs

s.t. Asλλλs = bbbs

λλλs ≥ 0

λλλs is the vector including all variables of the LPR and the new slack variables. Matrix
As and vector bbbs are the left and right side of the constraints, including also the upper
bounds from inequalities (5.2). The application of the simplex method renders an
optimal solution λλλ∗s for this slack form representation of the RMP’s LPR.

5.2. Pricing

The RMP was deduced from the MP by dropping many of the original variables. Then,
we applied the simplex method to solve the slack form LPR of the RMP. In order to find
an optimal solution for the original MP, we now search for variables which are not yet
part of the RMP and help to improve the objective function value of the current LPR.

5.2.1. Reduced Costs

For this purpose, we split the slack form variables λλλs into the basic variables λλλB and
the non-basic variables λλλN and As into AB and AN accordingly. Note that AB is an
invertible square matrix as it corresponds to the basic variables, whose columns are
linearly independent. It holds:

Asλλλs = bbbs ⇔ ABλλλB + ANλλλN = bbbs ⇔ λλλB = A−1
B bbbs − A−1

B ANλλλN

27

5. Method

We insert this equation into objective function:

cccT
s λλλs = cccT

BλλλB + cccT
NλλλN = cccT

B

(
A−1

B bbbs − A−1
B ANλλλN

)
+ cccT

NλλλN

= cccT
B A−1

B bbbs +

(
cccT

N − cccT
B A−1

B AN︸ ︷︷ ︸
cccT

N

)
λλλN (5.3)

Vector cccT
N is the so-called reduced cost indicating how a change of the non-basic

variables affects the objective function value. If the MP has a better solution than the
optimal solution λλλ∗s of the LPR, then there must be some variable λC∗ with C∗ /∈ V ′
whose introduction results in an increase of the linear objective function. In analogy to
the pricing step of the simplex method, it is checked if a suitable λC∗ exists. As λC∗ is
yet unintroduced, its current value is zero. Hence, we may add it to the tableau without
impacting any other variables or constraints and consider it as a non-basic variable.
Due to λC∗ ≥ 0 and equation (5.3), it is necessary that λC∗ has positive reduced costs:

0 < (cN)C∗ (5.4)

= (cN)C∗ − (cT
B A−1

B AN)C∗

= (cN)C∗ − (πππ∗s)
T(aaaN)C∗

Here, πππ∗s is the optimal dual solution corresponding to λλλ∗s .

5.2.2. Pricing Problem

In order to identify a suitable cluster C∗ ∈ V \ V ′ that satisfies inequality (5.4), we
define the following subproblem called pricing problem (PP):

C∗ = arg maxC∈V{(cN)C − (πππ∗s)
T(aaaN)C} (5.5)

Note that all feasible clusters C ∈ V are being considered here, including the ones in V ′
that do already form part of the RMP. However, for an optimal slack form solution λλλ∗s
and the corresponding dual solution πππ∗s , it can be shown that

0 ≥ (cN)C − (πππ∗s)
T(aaaN)C ∀C ∈ V ′ .

Hence, in the case of C∗ ∈ V ′ there is no feasible cluster fulfilling condition (5.4).
At first, solving the PP seems to render the entire solution approach useless. It

requires maximization over all feasible clusters C ∈ V which is exactly what we tried to
omit all along. However, exploiting the problem structure allows to solve this problem
more efficiently. Instead of explicit optimization over all clusters, the best cluster is
computed directly by formulating the PP as the following MIP:

max (cccx −πππ∗x)
Txxx + cccT

y yyy

s.t. Axxxx + Ayyyy ≤ bbb

A′xxxx + A′yyyy ≤ b′b′b′

xxx ∈ {0, 1}n

yyy ∈ Y

28

5.2. Pricing

This formulation is similar to the original CVCP in Section 4.1 and we use the same
definitions. The most significant difference is that only a single cluster is being consid-
ered here. This means in particular that the previous symmetry issues no longer apply.
The variable index k of the variables xxx and yyy was dropped. Moreover, we define (πππ∗x)i
as the components of πππ∗s which corresponds to the clustering constraint of node vi.

The goal is now to show that the new MIP corresponds to the PP (5.5). For any feasible
solution, the equivalent cluster is derived as in Chapter 4.3, i.e., C = {vi | i ∈ supp(xxx) }.
The same chapter illustrates that the feasible solutions of the PP correspond exactly
to the feasible clusters of the MP. According to the definition of the MP’s cluster costs
(4.19), it further holds:

(cN)C ≥ cccT
x xxx + cccT

y yyy

Equality is met iff yyy maximizes the objective function for the given xxx. In particular, this
is also the case for any optimal solution (xxx∗, yyy∗). Hence, only the term (πππ∗s)

T(aaaN)C of
the PP definition remains to be matched.

For any constraint in the MP that does not contain variable λC, it holds ((aaaN)C)i = 0
for the corresponding row i. Consider the clustering constraints (4.21) first. Variable λC
occurs precisely in the clustering constraints of the nodes vt ∈ C. It follows:

(πππ∗s)i((aaaN)C)i = (πππ∗x)txt

The second group of constraints are the variables’ upper bounds (5.2). We distinguish
between the three clustering types.

Partitioning and Packing

As explained in Section 5.1, the bounds are removed for the partitioning and packing
scenario. Hence, the MIP is equivalent to the PP (5.5).

Covering

In the covering scenario, the upper bounds are present. For any row i corresponding
to an upper bound, it holds ((aaaN)C)i = 1 iff λC is the bounded variable. Hence, the
corresponding dual value (πππ∗s)i only becomes relevant if the computed cluster C is
already part of the RMP. However, in this case its reduced costs are non-positive. Even
if C was the optimal solution of the PP, it would not pass condition (5.4) and would
not be added to the RMP. Thus, we do not consider the term (πππ∗s)i((aaaN)C)i in the MIP
and accept that the objective function value may not correspond to the reduced costs
for any RMP cluster in V ′. Instead, we add constraints to ensure that these clusters are
declared infeasible if their objective function value is positive. The following constraint
renders a single cluster C infeasible:

∑
vi∈C

(1− xi) + ∑
vi /∈C

xi ≥ 1 (5.6)

Depending on whether a lower bound kmin > 0 for the number of clusters is given or
not, we add the exclusion constraint (5.6) for different variables.

First, let no lower bound kmin > 0 be given. Hypothetically, we assume that there is
a feasible MP solution containing multiple occurrences of the same cluster. Note that

29

5. Method

removing a duplicate cluster from a solution cannot violate any covering constraint,
branching constraint, upper bound kmax for the number of clusters or variable bound.
Hence, after removing all duplicates the given solution remains feasible. Let now
C ∈ V ′ be a cluster present in the RMP. If cluster C has non-positive costs cC ≤ 0, then
multiple occurrences cannot improve the objective function. It holds (πππ∗s)i = 0 and
the MIP computes the reduced costs of C correctly. Hence, there is no need to declare
cluster C infeasible. However, (πππ∗s)i = 0 does not hold if cluster C has cost cC > 0. In
this case, the MIP computes the reduced costs of cluster C incorrectly and we add a
corresponding exclusion constraint.

Assume now that a lower bound kmin > 0 is given. If a feasible solution would contain
multiple occurrences of the same cluster, the removal of the duplicates might now
violate the lower bound. Consequently, for any cluster C ∈ V ′ it may hold(πππ∗s)i 6= 0,
even if its cost is non-positive, i.e., cC ≤ 0. Therefore, exclusion constraints are added
for all clusters in the RMP.

5.2.3. Pricing Loop

Based on the PP, we can now compute an optimal cluster C∗ ∈ V to improve the
objective function value. If C∗ satisfies inequality (5.4), it further holds C∗ /∈ V ′ and the
corresponding cluster variable λC∗ is inserted into the RMP. Then, both the LPR of the
RMP and the PP are resolved. This pricing loop continues until the reduced costs of λC∗

are non-positive. In this case, the solution λλλ∗ is not just optimal for the LPR of the RMP
but also for the LPR of the MP itself. If λλλ∗ is integral, it is also feasible for the MP and
the current branch terminates. Otherwise, λλλ∗ does not satisfy the integer constraints
and is therefore infeasible for the MP. According to branch-and-bound, we continue
by applying a branching rule to split the current RMP into smaller subproblems. The
details of branching and its effects on the PP are described in Section 5.3.

5.3. Branching

Assume that an optimal solution λλλ∗ for the current LPR was computed and no further
improving variables can be introduced. If the solution is fractional, it is infeasible for
the MP and we compute an integral one via a standard branch-and-bound strategy as
described in Section 2.5.

5.3.1. Branching in the Master Problem

Section 2.5 introduced variable branching as a branching rule. Applied to the CVCP,
each of the two created subproblems would contain a new upper or lower bound for
some variable with fractional solution λ∗C as a branching constraint:

λC ≤ bλ∗Cc
λC ≥ dλ∗Ce

Section 3.2 described why this branching rule is not recommended for the CVCP and
presented Ryan-Foster branching as an alternative for partitioning problems. In the

30

5.3. Branching

following, we will recall this method in the context of the CVCP and then adapt it for
the packing and covering scenario.

Partitioning

For the CVCP, the candidate subsets from Section 3.2 are given by the set of feasible
clusters C ∈ V ′ in the RMP. Let λλλ∗ be an optimal solution of the current node’s LPR
with fractional cluster variable λCa , i.e., 0 < λ∗Ca

< 1. We know that a node vs ∈ Ca

exists which is also part of a second fraction cluster Cb. Moreover, all clusters are
different and thus there exists some node vt ∈ (Ca4 Cb) ⊆ (V \ {vs}). Adapting the
inequalities (3.1) to the CVCP, it holds:

0 < ∑
C∈V ′ :{vs,vt}⊆C

λ∗C < 1 (5.7)

The branching constraints for Ryan Forster branching are then given by the following
two equations:

∑
C∈V ′ :{vs,vt}⊆C

λC = 1 (5.8)

∑
C∈V ′ :{vs,vt}⊆C

λC = 0 (5.9)

Constraint (5.8) belongs to the same-branch where the two nodes vs and vt must be part
of the same cluster. For the differ-branch, constraint (5.9) ensures that the two nodes
do not occur together in any cluster. Due to the inequalities (5.7), either constraint
guarantees that the previous fractional optimal solution λλλ∗ is no longer feasible in the
corresponding subproblem.

Packing

We apply the same branching constraints (5.8) and (5.9) as for the partitioning case.
Therefore, we first prove the following theorem:

Theorem 5.1. Let λλλ∗ be an optimal basic solution of the LPR at some node in the branch-and-
bound tree of a CVCP with c_type = packing. Let the solution further contain a fractional
cluster Ca. Then it holds:

∃v ∈ Ca : ∑
C∈V ′ :v∈C

λ∗C = 1 (5.10)

Proof. Due to λλλ∗ ≥ 0 and λ∗Ca
> 0, the cluster variable λCa does not occur in any

differ-branching constraint (5.9). We distinguish three cases:

Case 1. Variable λ∗Ca
forms part of a same-branching constraint (5.8) for two nodes

vs, vt ∈ Ca. It holds :

1 = ∑
C∈V ′ :{vs,vt}⊆C

λ∗C ≤ ∑
C∈V ′ :vs∈C

λ∗C ≤ 1

where the last inequality is given by the packing constraint (4.21) of node vs. Since all
terms must be equal, the theorem holds for v = vs.

31

5. Method

Case 2. Variable λ∗Ca
does not occur in any same-branching constraint, but the packing

constraint (4.21) of some node v′ ∈ Ca is satisfied with equality. Again, it follows

∑
C∈V ′ :v′∈C

λ∗C = 1

and the theorem holds for v = v′.

Case 3. Variable λ∗Ca
does not occur in any same-branching constraint and there is no

node v′ ∈ Ca whose packing constraint is satisfied with equality. We show that this
leads to a contradiction. Let λλλB be the vector of basic variables. We denote the basic
matrix by AB and the corresponding right hand side by bbbB. It holds:

A−1
B bbbB = λλλ∗B (5.11)

Note that AB contains only tight rows, i.e., equations corresponding to constraints
that are satisfied with equality. Moreover, λCa is greater than 0 and thus one of the
basic variables in λλλB. None of the packing constraints containing λCa are tight and the
variable does not occur in any branching constraints. The upper bound (5.2) of λCa is
not tight either because the variable is fractional. Thus, the only remaining constraints
containing λCa are the bounds on the number of clusters, if defined. We distinguish
two subcases:

Case 3.1. The CVCP contains a lower or upper bound for the number of clusters which
is satisfied with equality. If kmin < kmax, then only one of the two constraints is tight.
Otherwise, kmin = kmax and both bounds correspond to the same equation. Hence, one
equation is redundant and not part of AB. Either way, λCa occurs only in a single row
of AB. W.l.o.g., let this row be the last. It holds (aaaB)Ca = (0, . . . , 0, 1)T. All entries of
AB and bbbB are integers. Moreover, the last row of AB only contains the values 0 and 1.
Hence, solving equation (5.11) for λλλ∗B via Gaussian Elimination results in λ∗Ca

∈ Z. This
contradicts the premise of λ∗Ca

being fractional.

Case 3.2. The CVCP contains no bounds for the number of clusters or these bounds are
not satisfied with equality. It follows (aaaB)Ca = 0, which contradicts the premise that λλλ∗

is a basic solution.

Since all subcases of Case 3 result in a contradiction, this case cannot occur and the
theorem holds.

Assume now that an optimal basic solution λλλ∗ with a fractional cluster Ca is given.
Theorem 5.1 states that there is some node vs ∈ Ca for which equation (5.10) holds.
Since 0 < λ∗Ca

< 1, the node vs must belong to a second fractional cluster Cb. All clusters
are pairwise different and hence there exists a node vt ∈ (Ca4 Cb) ⊆ (V \ {vs}). Only
one of the two clusters Ca and Cb contains vt and the inequalities (5.7) hold.

Thus, we branch based on the same constraints as for the partitioning case. Since each
node occurs in at most one cluster, every feasible solution of the parent MIP will again
satisfy either equation (5.8) or equation (5.9). Note that in contrast to the partitioning
scenario, not every node vs ∈ Ca must reoccur in another cluster. To identify a suitable
vs, one may iterate over the nodes of the other fractional clusters until a shared node is
found.

32

5.3. Branching

Covering

We extend Ryan-Foster branching to the covering scenario. Therefore, the branching
constraints are defined as

∑
C∈V ′ :V′⊆C

λC ≥ 1 (5.12)

∑
C∈V ′ :V′⊆C

λC = 0 (5.13)

for some node set V ′ ⊆ V with |V ′| ≥ 2. For |V ′| = 2, these branching constraints are
similar to those of the partitioning and packing scenario. For consistency, we again refer
to the branch based on constraint (5.12) as the same-branch and the branch derived
from constraint (5.13) the differ-branch.

First we show the following theorem:

Theorem 5.2. Let λλλ∗ be an optimal basic solution of the LPR at some node in the branch-and-
bound tree of a CVCP with c_type = covering. Let the solution further contain a fractional
cluster Ca. Then it holds:

∃V ′ ⊆ Ca : V ′ 6= ∅ ∧ ∑
C∈V ′ :V′⊆C

λ∗C = 1 (5.14)

Proof. Due to λλλ∗ ≥ 0 and λ∗Ca
> 0, the cluster variable λCa does not occur in any

differ-branching constraint (5.13). We distinguish two cases:

Case 1. Variable λCa occurs in a clustering constraint or same-branching constraint
satisfied with equality. All of these constraints are of the form

∑
C∈V ′ :V′′⊆C

λC ≥ 1

with V ′′ ⊆ Ca, |V ′′| = 1 for the clustering constraints and |V ′′| ≥ 2 for the branching
constraints. Hence, the theorem holds for V ′ = V ′′ where V ′′ corresponds to a constraint
satisfied with equality.

Case 2. Otherwise, no clustering constraint or branching constraint containing λCa is
satisfied with equality. Similarly to Case 3 in the proof of Theorem 5.1, we show by
contradiction that this is not possible. Let again λλλB be the vector of basic variables,
AB the basic matrix and bbbB the corresponding right hand side. λCa is fractional and
thus a basic variable. Neither the clustering constraints nor the branching constraints
containing λCa are tight. The variable’s upper bound is not satisfied with equality either.
Again, the only remaining constraints that might contain λCa are the bounds on the
number of clusters and we distinguish two subcases:

Case 2.1. A lower or upper bound for the number of clusters is defined and satisfied
with equality. As for Theorem 5.1, λCa occurs only in a single row of AB and w.l.o.g.
(aaaB)Ca = (0, . . . , 0, 1)T. All entries of AB and bbbB are integers and the last row of AB

consists only of coefficients 0 and 1. Solving equation (5.11) we obtain again λ∗Ca
∈ Z

which contradicts the premise that λ∗Ca
is fractional.

Case 2.2. No bound for the number of clusters is defined or none of the defined bounds
are satisfied with equality. Consequently, it holds (aaaB)Ca = 0 in contradiction to the
premise that λλλ∗ is a basic solution.

33

5. Method

Consequently, all subcases of Case 2 result in a contradiction and this case cannot
occur. In conclusion, the theorem holds.

Let now λλλ∗ be an optimal basic solution with a fractional cluster Ca. According to
Theorem 5.2, condition (5.14) holds for some V ′′ ⊆ Ca. Due to 0 < λ∗Ca

< 1, a second
fractional cluster Cb ⊇ V ′′ exists. Since all clusters are different, there is some node
v ∈ (Ca4 Cb) ⊆ (V \V ′′). As v only occurs in one of the two clusters Ca and Cb, for
V ′ = V ′′ ∪ {v} follows

0 < ∑
C∈V ′ :V′⊆C

λ∗C < 1 (5.15)

and additionally |V ′| ≥ 2. Hence, we define the branching constraints based on the
node set V ′. If multiple sets V ′′ exists, one of minimal cardinality is selected.

Given a feasible solution of any parent MIP, the sum over any set of cluster variables
must be at least zero and integral. Each feasible solution will therefore satisfy either
constraint (5.12) or constraint (5.13). Since V is finite, so is P(V). Consequently, after a
finite number of branchings no node set V ′ ⊆ V satisfying the inequalities (5.15) exists.
All cluster variables are then integral due to Theorem 5.2 and the branch terminates.
Consequently, the branching rule meets all of the criteria stated in Section 2.5.

5.3.2. Branching Constraints in the Pricing Problem

The previous section described how branching constraints are added to the RMP in
order to restrict the solution space. These alterations do also affect the PP in different
ways. First of all, the PP must prevent the generation of clusters which have been
declared infeasible by the branching constraints. Therefore, suitable constraints are
added to the PP as well.

Partitioning and Packing

The branching is based on node pairs {vs, vt} ⊆ V. The same-branch ensures that a
cluster contains either both nodes together or none of them. For each same-branching
constraint (5.8) in the RMP, we add the following equation to the PP:

xs = xt (5.16)

The differ-branch derived from constraints (5.9) prevents clusters from containing both
nodes vs and vt. In the PP, this is achieved by requiring

xs + xt ≤ 1 . (5.17)

Covering

The two branches are based on node sets V ′ ⊆ V with |V ′| ≥ 2. The same-branch
requires the sum over the variables of all clusters that are supersets of V ′ to be at least
1. However, it does not force any variables to zero. Therefore, only the differ-branch
requires amendments to the PP. Here, the same sum is set to zero, excluding each

34

5.3. Branching

cluster that is a superset of V ′. For each differ-branching constraint (5.13) in the RMP,
we thus add the inequality

∑
v∈V′

xv ≤ |V ′| − 1 (5.18)

to the PP.

5.3.3. Objective Function Adjustments in the Pricing Problem

Recalling equation (5.5), we must additionally adapt the objective function of the PP
with respect to the dual variables of the branching constraints in the LPR of the RMP.
Let (πππ∗s)i be the value of the dual variable corresponding to some branching constraint
in the i-th row of the RMP. The term (πππ∗s)i((aaaN)C)i must then be subtracted from the
objective function, where C is the cluster computed by the PP.

Partitioning and Packing

Both the same-branching constraints (5.8) and the differ-branching constraints (5.9)
sum up all clusters containing a pair of nodes {vs, vt} ⊆ V.

Consider the differ-branching constraints first. Due to inequality (5.17), any feasible
cluster C of the PP contains at most one of the nodes vs and vt. Thus, it follows
((aaaN)C)i = 0 and the objective function of the PP remains unchanged.

This behavior is different for the same-branching constraints. According to equation
(5.16), the PP allows for clusters containing either both nodes or neither one of them. If
the computed cluster C does contain both nodes, it follows ((aaaN)C)i = 1. Otherwise, C
does not contain either node and it holds ((aaaN)C)i = 0. Consequently, one option is to
manipulate the PP’s objective function via a new binary variable which takes on value
1 iff

((aaaN)C)i = 1⇔ xs = 1∧ xt = 1 .

However, due to equation (5.16), it further holds xs = 1 ∧ xt = 1 ⇔ xs = 1. The
introduction of another variable is therefore unnecessary, since xs itself already satisfies
the required property. Thus, for the same-branch, the objective function is adjusted by
subtraction of the term (πππ∗s)ixs.

Covering

The branching constraints (5.12) and (5.13) in the RMP sum up all clusters that are a
superset of some node set V ′ ⊆ V with |V ′| ≥ 2.

The differ-branching constraints behave similarly as for the partitioning and packing
scenario. Constraint (5.18) prevents any feasible cluster C from containing all the nodes
in the set V ′. The objective function of the PP remains unchanged due to ((aaaN)C)i = 0.

In the same branch, a cluster remains feasible regardless of whether it does contain all
the nodes in V ′ or not. No clusters are declared infeasible by the MP’s same-branching
constraints and consequently no additional constraints have been added to the PP so
far. For each same-branching constraint we add a new binary variable xV′ with the

35

5. Method

following interpretation:

xV′ ∈ {0, 1} =
{

1 if V ′ ⊆ C

0 otherwise

Consequently, the term (πππ∗s)ixV′ is subtracted in the objective function. In order to
ensure that xV′ behaves as expected, additional constraints are added to the PP. If
(πππ∗s)i is positive, xV′ will assume the value 0 without further constraints due to the
maximization of the objective. Hence, it suffices to add the lower bound

∑
v∈V′

xv − |V ′|+ 1 ≤ xV′ (5.19)

which ensures xV′ = 1 for V ′ ⊆ C. If to the contrary (πππ∗s)i is negative, then xV′ will
take on the value 1 without additional restrictions. We add the constraint

∑
v∈V′

xv ≥ |V ′|xV′ (5.20)

to enforce xV′ = 0 for V ′ * C.

5.4. Branch-and-Price

After having discussed the aspects of pricing and branching, let us briefly summarize
the entire branch-and-price approach depicted in Figure 5.1. Given the original problem
or MP, we define the RMP on a small subset of the original variables that still render the
problem feasible. To solve the MP, we apply a branch-and-bound method complemented
with pricing (or column generation) to the RMP.

For each node of the branch-and-bound tree, we check if the LPR of the current RMP
is feasible. If not, the branch terminates as usual. Otherwise, the simplex method
is employed to compute an optimal solution. Based on the optimal solution’s dual
values, we next solve the PP to identify variables of positive reduced costs which are
not yet part of the RMP because their introduction may improve the objective function
value. If such a variable is detected, the LPR is resolved and the pricing loop continues.
Otherwise, the optimal solution of the current RMP’s LPR corresponds to an optimal
solution over all MP variables. If the solution is integral, it is also an optimal solution
for the RMP’s MIP and the branch terminates. Otherwise, we employ Ryan-Foster
branching and add two children to the current node in the branch-and-bound tree.
Each branch is based on either a same- or a differ-branching constraint. Since the active
branching constraints declare certain clusters infeasible and create new dual variables,
they also affect the PP. To prevent the generation of clusters that have become infeasible
due to branching, we add further constraints to the PP. Moreover, the objective function
of the PP is adapted to account for the new dual variables. Once a node has been
processed, another unprocessed node is selected and solved until none are left.

Based on this more detailed understanding, this section examines some additional
aspects of branch-and-price.

36

5.4. Branch-and-Price

5.4.1. Farkas Pricing

At the beginning of this chapter we mentioned that the RMP must contain sufficient
initial variables to be feasible. As already explained, these variables can be determined,
e.g., by some heuristic. However, there are two issues with this approach. First,
due to the custom constraints there is no general heuristic than can be applied to
arbitrary CVCP instances. Solving different variants of the CVCP would require
the implementation of problem-specific heuristics. Moreover, the RMP may result
infeasible also during the branch-and-price process due to the insertion of the branching
constraints. In this case, it is even more difficult for a heuristic to add suitable variables
that turn the RMP feasible again.

Instead, we employ Farkas pricing to determine such cluster variables. This technique
is based on Farkas’ lemma [23]:

Lemma 5.1. Let A ∈ Rm×n, bbb ∈ Rm. Then exactly one of the following two statements holds:

∃λλλ ∈ Rn : Aλλλ = bbb ∧λλλ ≥ 0 (5.21)

∃πππ ∈ Rm : ATπππ ≥ 0∧ bbbTπππ < 0 (5.22)

The slack form of the RMP is feasible iff statement (5.21) is satisfied for the included
variables. Thus, statement (5.22) must hold whenever the RMP is infeasible. The idea
is now to add variables in such a way that this statement becomes false. Therefore, we
first determine a vector πππ∗ that minimizes bbbTπππ while satisfying condition (5.22). Note
that this corresponds to solving the dual problem with modified coefficients for the
objective function. Thus, πππ∗ is computed through the simplex method as an optimal
solution of a feasible linear program. The vector πππ∗ is called a Farkas multiplier.

Each Farkas multiplier is a proof for the infeasibility of the RMP. To turn a given
proof π∗π∗π∗ infeasible, it suffices to add a single column aaaC to the RMP with aaaCπππ∗ < 0. To
determine a feasible column that optimizes a linear objective is precisely the task of the
PP. Thus, instead of maximizing the reduced costs, we adapt the objective of the PP
to minimize aaaCπππ∗ and compute the optimal cluster C∗. If aaaC∗πππ

∗ ≥ 0, then statement
(5.22) holds over all MP variables and the active branch is infeasible. Otherwise, C∗

is added to the RMP to invalidate the current Farkas multiplier. If the RMP is then
feasible, branch-and-price continues. Otherwise, we continue to iteratively process the
subsequent Farkas multipliers and add further variables to the RMP.

The advantage of this approach is that a solver for the PP can be reused to remove
infeasibility from the RMP. Thus, we can apply general purpose MIP solvers to handle
any variant of the CVCP.

5.4.2. Upper Bounds

Section 5.2.1 discussed the reduced costs. For a non-basic cluster variable (λλλN)C, the
corresponding reduced costs (cN)C state how the objective function value would change
if the variable became basic. Since the variable is non-basic, it currently has the value 0.
If it turns basic and increases its value by δ, the objective function value increases by
δ · (cN)C.

In the PP, we now determine a variable (λλλN)C∗ of maximal reduced costs. Conse-
quently, we obtain an upper bound on the reduced costs of all variables. If kmax is given,

37

5. Method

then we also have the upper bound (4.22) on the sum of the cluster variables. Let λλλ be
some solution of the current LPR. For the optimal solution λλλ∗ over all variables holds:

∑
C∈V

cCλC ≤ ∑
C∈V

cCλ∗C ≤ ∑
C∈V

cCλC + kmax(cN)C∗ (5.23)

Hence, we obtain an upper bound for the optimal objective function value of the current
node. The branch-and-bound method can then make use of this bound to speed up the
solving process. E.g., it may turn out that the current node can be terminated because
there are already primal solutions available that cannot be improved upon.

38

6. Implementation

This chapter deals with the implementation details of our CVC Framework. The
framework is implemented in C++ following the paradigm of object-orientation. Section
6.1 presents the tools and software libraries that were employed for the framework
development. The framework architecture is described in Section 6.2. Subsequently,
Section 6.3 highlights selected framework features. After presenting the implemented
pricers in Section 6.4, the chapter is finally closed with a brief introduction of the
concept of initializers in Section 6.5.

6.1. Tools and Libraries

For the development of our framework, we made use of numerous development tools
and libraries.

6.1.1. Libraries

For computing optimal clusterings through branch-and-price approaches we chose the
open source library SCIP1 (Solving Constraint Integer Programs). SCIP is a general
framework for both mixed integer (linear) programming and mixed integer nonlinear
programming (MINLP) that ships with variety of different solvers and even a custom
language named ZIMPL2 to facilitate the modeling of MIPs and MINLPs. It can be run
as a standalone command-line application but is also usable as library with interfaces
for many common programming languages. The library was chosen for different
technical and non-technical reasons. First of all, the Chair of Operations Research at
RWTH Aachen University is currently involved in the development of the SCIP library
and particularly GCG3, a SCIP-based generic branch-cut-and-price solver. While GCG
is not used within the CVC Framework, the use of SCIP will simplify the understanding,
use and extension of the framework for other users at the institute. More importantly,
the fact that SCIP is open source allows to manipulate the solving process at its core
and thus facilitates the implementation of customized branch-and-price methods. SCIP
is implemented in C with additional C++ wrapper classes for user plug-ins. Since
we must extend its functionalities for our purposes, we also opted for C++ as the
programming language for our framework.

Another major choice was that of an open source C++ graph library with two suitable
candidates, the Boost Graph Library4 on the one hand and the LEMON Graph Library5

1http://scip.zib.de/ (last accessed: 08/19/2018)
2http://zimpl.zib.de/ (last accessed: 08/19/2018)
3http://www.or.rwth-aachen.de/gcg/ (last accessed: 08/19/2018)
4http://www.boost.org/doc/libs/1_64_0/libs/graph (last accessed: 08/19/2018)
5http://lemon.cs.elte.hu/trac/lemon (last accessed: 08/19/2018)

39

http://scip.zib.de/
http://zimpl.zib.de/
http://www.or.rwth-aachen.de/gcg/
http://www.boost.org/doc/libs/1_64_0/libs/graph
http://lemon.cs.elte.hu/trac/lemon

6. Implementation

on the other hand. Boost is by far the more extensive and more powerful option of the
two. Nevertheless, we decided to take LEMON because it is a smaller dependency and
provides sufficient utilities for our needs.

Neither Boost nor LEMON contain advanced and customizable features for graph
visualization so that a further library was required for this purpose. One commonly
used and extensive visualization framework is gnuplot1. However, gnuplot focuses
primarily on the visualization of mathematical functions and data points and provides
no graph-specific functionalities. The so-called Open Graph Drawing Framework2

focuses particularly on graph visualization and provides, e.g., several layout algorithms
to automatically compute adequate node positions. We finally selected Graphviz3

whose features seem to exceed those of the Open Graph Drawing Framework. For
instance, Graphviz provides an interactive graph browser and allows to fill nodes
with multiple colors, thus making it perfect to illustrate nodes pertaining to multiple
subgraphs.

Some smaller libraries were included for specific purposes. We chose spdlog for fast
logging4. The library yaml-cpp5 was added to handle YAML files for the configuration
of the CVC Framework. Moreover, the framework employs JsonCpp6 for I/O operations
in JSON format.

6.1.2. Integrated Development Environment

To simplify cross platform development on both Windows and Unix systems, Eclipse
CDT (C/C++ Development Tooling)7 was chosen as an IDE.

Doxygen8 was selected as the standard tool for code documentation which allows
the generation of both HTML and LATEX documentation directly from the source code
annotations. Additionally, doxygen is easily integrable into Eclipse via the Eclox
plug-in.

Eclipse also contains a test runner which officially supports four different unit testing
frameworks, Qt Test9, Boost Test10, Google Test11 and TAP12 (Test Anything Protocol).
TAP was discarded because it was primarily developed for Perl and seems to provide
only limited functionalities where as the remaining three are more sophisticated xUnit
frameworks. Qt is actually an entire C++ software development framework and its
testing component thus targets primarily Qt-based applications. Boost Test and Google
Test both provide a wide range of features. We finally opted for the latter, partly
because there were some known minor issues with the integration of Boost Test into

1http://www.gnuplot.info/ (last accessed: 08/19/2018)
2http://www.ogdf.net (last accessed: 08/19/2018)
3http://www.graphviz.org (last accessed: 08/19/2018)
4https://github.com/gabime/spdlog (last accessed: 08/19/2018)
5https://github.com/jbeder/yaml-cpp (last accessed: 08/19/2018)
6https://github.com/open-source-parsers/jsoncpp (last accessed: 08/19/2018)
7https://eclipse.org/cdt/ (last accessed: 08/19/2018)
8http://www.doxygen.org (last accessed: 08/19/2018)
9http://doc.qt.io/qt-5/qtest-overview.html (last accessed: 08/19/2018)

10http://www.boost.org/doc/libs/1_46_1/libs/test (last accessed: 08/19/2018)
11https://github.com/google/googletest (last accessed: 08/19/2018)
12http://testanything.org/ (last accessed: 08/19/2018)

40

http://www.gnuplot.info/
http://www.ogdf.net
http://www.graphviz.org
https://github.com/gabime/spdlog
https://github.com/jbeder/yaml-cpp
https://github.com/open-source-parsers/jsoncpp
https://eclipse.org/cdt/
http://www.doxygen.org
http://doc.qt.io/qt-5/qtest-overview.html
http://www.boost.org/doc/libs/1_46_1/libs/test
https://github.com/google/googletest
http://testanything.org/

6.2. Framework Architecture

Eclipse.

6.2. Framework Architecture

With the background knowledge of the employed libraries, let us examine the architec-
ture of the CVC Framework.

6.2.1. Main Packages

The CVC Framework is divided into seven main packages which are illustrated by
figure 6.1.

cvcp

misc io

scipext visual

ocpp gpdp

Figure 6.1.: UML package diagram of the top-level packages of the CVC Framework. Only the principal
dependencies are shown.

The package cvcp contains all central data structures for representing a CVCP.
The package misc unites a variety of low-level functionalities like hash functions
and associative containers for LEMON objects, custom exceptions, general constants
and simple utility functions. The package io primarily provides input and output
functionalities for graphs, MIPs, CVCPs and CVCP solutions, but also access to loggers
and the framework configuration. SCIP extensions like a generalized version of the
Ryan-Foster branching rule as described in Section 5.3 and different solvers for the
pricing problem are contained in the package scipext. The package visual allows the
visualization of graphs and node clusterings. Finally, the packages ocpp and gpdp are
extensions to CVC Framework for handling the Odd Cycle Packing Problem and the
German Political Districting Problem, two special CVCP variants that are described in
Chapters 7 and 8.

6.2.2. Core Classes

Figure 6.2 displays the core classes involved in the solving process of a CVCP. Each
of these classes belongs to either the cvcp or the scipext package. Note that class
information may be incomplete and that certain types, attributes and functions were

41

6. Implementation

1 1

1

+

1

1
1

*

*

Cvcp

MasterProblem

scip : SCIP*
cType : ClusteringType
clusterNodes :

map<SCIP VAR*, vector<Node>>
clusteringConss :

map<Node,vector<SCIP CONS*>>
branchingConss :

map<vector<Node>,vector<SCIP CONS*>>

+ addOriginalClusterVar() : bool
+ addPricedClusterVar() : bool
+ branch() : void

PricingProblem

scip : SCIP*

+ getNodeVar() : SCIP VAR*
+ getEdgeVar() : SCIP VAR*

MetaPricer

- handlePricing() : double
- addMpVariables() : int

scip::ObjPricer

+ scip redcost() : SCIP RETCODE
+ scip farkas() : SCIP RETCODE

AbstractPricer

heuristicRedcost : bool
heuristicFarkas : bool

+ pricingRoutine() : vector<Cluster*>*

GenRyanFosterBranchrule

- selectBranchingNodes() :
vector<Node>*

scip::ObjBranchrule

+ scip execlp() : SCIP RETCODE

CvcpGraph

nodeLabels : map<Node,string>

lemon::ListGraph

lemon::Node

lemon::Edge

Figure 6.2.: UML class diagram of the core classes of the CVC Framework. Classes that form part of the
SCIP or LEMON library are prefixed by the scip:: or lemon:: corresponding namespace
identifier. Attributes are considered private.

renamed for compactness and illustration purposes. E.g., the names of smart pointers1,2

were replaced by the raw pointer symbol (asterisk). Moreover, attributes are considered
to be private and to have a corresponding getter-method.

Any problem instance is represented by an object of class Cvcp which is composed of
two attributes, a MasterProblem and a PricingProblem.

The PricingProblem contains a SCIP instance which models the PP as a MIP ac-
cording to Section 5.2.2. Only the connectivity constraints are left out. Instead, the
connectivity data is stored in a CvcpGraph object. This class inherits from the LEMON
class ListGraph, which represents an undirected graph comprising LEMON Node and
Edge attributes. For each node, a corresponding label is stored in the CvcpGraph. The
PricingProblem makes use of this label to map nodes and edges to their corresponding
variables. In SCIP, each variable is identified by a name. Thus, for a node with label
node1, the corresponding node variable in the SCIP instance of the PP is named x$node1.
Given an edge to a second node with label node2, the corresponding edge variable is
name y$node1$node2. The PricingProblem facilitates the access to these node and edge
variables through convenience getter-methods.

The aggregated extended formulation of the CVCP, i.e., the MP, is stored in the SCIP
instance of the MasterProblem. Additionally, this class contains an enum

1https://en.cppreference.com/w/cpp/memory/unique_ptr (last accessed: 08/19/2018)
2https://en.cppreference.com/w/cpp/memory/shared_ptr (last accessed: 08/19/2018)

42

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

6.2. Framework Architecture

ClusteringType which indicates if a packing, partitioning or covering must be com-
puted. A mapping assigns each node the corresponding clustering constraint.

The SCIP is solved by calling the SCIP method SCIPsolve() on the SCIP object of
the MasterProblem. The solving method executes the branch-and-price approach and
invokes the branching rule and pricers. Although SCIP is written in C, it provides C++
wrapper classes to facilitate the implementation of plug-ins. Such plug-ins can then be
registered with a SCIP instance and will be applied thereafter in the solving process via
callback methods.

For the CVC Framework, we implemented Ryan-Foster branching through the
GenRyanFosterBranchrule as a subclass of SCIP’s ObjBranchrule. To perform branch-
ing, the callback method scip_execlp() is invoked. The custom branching rule then de-
termines which nodes to branch on via the method selectBranchingNodes(). Through
the method branch(), the nodes are passed to the MasterProblem where the branch-
ing constraints are created and added to the branchingConss mapping. Finally, the
resulting subproblems are added to the branch-and-bound tree.

Similarly, the MetaPricer inherits from the abstract SCIP wrapper class ObjPricer
and is called upon in the pricing loop to solve the PP. The callback methods are
scip_redcost() and scip_farkas() for reduced cost pricing and Farkas pricing, re-
spectively. However, the PP is not solved by the MetaPricer itself, but by instances
of the abstract class AbstractPricer. The MetaPricer holds at least one instance of
this class. To solve the PP, its method handlePricing() is executed. Then, iteratively,
it calls for each AbstractPricer the abstract method pricingRoutine() to determine
suitable clusters for which a variable should be added to the MP. As soon as some
AbstractPricer returned a cluster, the MetaPricer discards the remaining ones for
this pricing round. The method addMpVariables() is executed and cluster variables
are added to the MasterProblem by calling addPricedClusterVar(). The nodes corre-
sponding to each cluster variable are stored in the mapping clusterNodes.

The utilization of AbstractPricer instances allows to apply different solvers to the
PP. Each pricer runs on a separate copy of the PricingProblem and has two boolean
attributes heuristicRedcost and heuristicFarkas. The attributes indicate whether
the pricer solves the corresponding type of PP heuristically or exactly. If a cluster
of positive reduced cost or Farkas value exists, then an exact pricer must always
return such a cluster. A heuristic pricer is not obligated to do so and may return an
empty vector instead. Consequently, even if an exact pricer returns no cluster, the
AbstractPricer discards the remaining pricers because there is no variable to add to
the MP. At least one exact pricer should be applied for each type of pricing. Note that it
is not necessary to add the optimal cluster as defined by equation (5.5) to the MP. Any
cluster of positive value works. Moreover, multiple such clusters may be added at once.

A concrete implementation of AbstractPricer may solve the PP in any arbitrary
way. One option is to use SCIP on the corresponding MIP formulation that is already
largely given by SCIP instance in the copy of the PricingProblem. Since the connectivity
constraints are not present in the original instance, it is then the pricer’s task to add
them. This can be accomplished, e.g., by following one of the approaches from Section
3.3. Different pricer implementations for general CVCP instances as well as certain
CVCP variants are introduced in Sections 6.4, 7.2 and 8.2.

43

6. Implementation

6.2.3. Plug-In Architecture

Although the CVC Framework is capable of solving arbitrary CVCP instances, it may
be desirable to extend its functionalities when dealing with variants of the problem. A
plug-in architecture facilitates the extension of certain framework components. This
concept is illustrated by Figure 6.3 on the example of pricer implementations. For
illustration purposes, we assume that some application extends the CVC Framework
with additional classes.

As already described in Section 6.2.2, any PP solver must inherit from the class
AbstractPricer. To ease the management of specific pricer implementations, the Gang
of Four’s factory method pattern was implemented [27].
BaseFactory is a factory class template used for creating not only pricers but also

other components. There are three template parameters. The parameter T states a
(typically abstract) type of objects to be created. The parameter K defines the type
of key by which a concrete implementation of T is identified. Finally, the parameter
P ... corresponds to an arbitrary amount of types of objects that are used for the
construction of an instance of type T. In a registry map, the template maps each key to
the function pointer of a builder function. The builder function is passed the arguments
P in order to create a suitable instance of the T implementation specified by the key and
return its pointer. To obtain an instance of T, the method getObject() is called with

�K → string, T → AbstractPricer, P . . . → Cvcp*�

�creates�

BaseFactory

registry : map<K, T* (*)(P . . .)>

+ registerBuilder() : void
+ getObject() : T*

K, T, P . . .

PricerFactory

- createSeparatorInequalitiesPricer() : AbstractPricer*

- createShortestPathSubtreePricer() : AbstractPricer*

project::MyPricerFactory

- createMyPricer() : AbstractPricer*

- createMyMipPricer() : AbstractPricer*

AbstractPricer

heuristicRedcost : bool
heuristicFarkas : bool

+ pricingRoutine() : vector<Cluster*>*

AbstractMipPricer

initPricingScip() : void
solvePricing() vector<SCIP SOL*>*
deriveClusters() : vector<Cluster*>*
resetPricingScip() : void
addBranchingConss() : void
excludeProfitableDuplicates() : void

ShortestPathSubtreesPricer

SeparatorInequalitiesPricer

project::MyMipPricer

project::MyPricer

Figure 6.3.: UML class diagram of the plug-in architecture of the CVC Framework. Extensions of the
framework are marked with the project:: namespace identifier.

44

6.3. Features

parameters of type P ... and K. This method then uses the registry to identify the
correct builder function and invoke it. Builder functions can be added to the factory
dynamically by passing their function pointer and the intended key to the method
registerBuilder(). This setup a common interface with flexible means of creating
suitable object instances for different application scenarios.

The right hand side of Figure 6.3 depicts different pricer implementations.
AbstractMipPricer is an abstract subclass of AbstractPricer that eases the imple-
mentation of MIP-based pricers. It provides different functionalities like initialization
and resetting methods for the SCIP instance of the PP, insertion of branching constraints,
a solving method and a method to derive the clusters corrsponding to a SCIP solution.
An inheriting class must essentially just insert the connectivity constraints into the
SCIP instance before calling the solving method. Two corresponding subclasses, the
ShortestPathSubstreesPricer and the SeparatorInequalitiesPricer are shipped
with the CVC Framework. They are based on the approaches from Section 3.3 and
described more in detail later in Section 6.4. The application adds two further imple-
mentations MyMipPricer and MyPricer. The first inherits from AbstractMipPricer, the
second from AbstractPricer directly.

The creation of a pricer is now delegated to a corresponding factory. Due to the
factory, the framework can create pricers without actually being aware of the existing
implementations. The class PricerFactory is a specialization of the BaseFactory
template for the creation of AbstractPricer instances. It employs string IDs and
Cvcp pointers as builder parameters. Two builder functions are already preregistered.
The application has now different options for including its own pricers into a factory.
First, a new class MyPricerFactory may be added that inherits from PricerFactory
and provides additional builder functions for the custom pricers. Alternatively, the
registerBuilder() method allows to add pricers to a factory dynamically at runtime.

The factory method pattern is not only applied for the creation of AbstractPricer
instances, but also for other classes like graph and MIP readers. This allows, e.g., to
add capabilities for handling new file formats without the necessity of changing any
existing code.

6.3. Features

In addition to the architectural aspects, let us present some features of the CVC
Framework.

The previous section already described the framework’s plug-in architecture and
mentioned that the plug-in concept extends, e.g, to file readers. Table 6.1 lists which
input and output formats are currently supported. The LEMON Graph Format (.lgf)

Table 6.1.: Supported I/O formats.
Data Type Input Formats Output Formats
graphs .lgf .lgf
MIPs .lp, .zpl
CVCP solutions .json

45

6. Implementation

consists of a node list and an edge list with the option to pass additional node, edge,
and graph attributes. The CPLEX LP file format (.lp) is a simple notation for linear
programs with separate sections for, e.g., the objective, constraints and bounds. ZIMPL
(.zpl) is a file format for linear and nonlinear mixed integer programs with more
language constructs for short and human-readable formulations. If required, further
formats can easily be added.

Aside from data input and output, the CVC Framework is also capable of visualizing
graphs and CVCP solutions, i.e., clusterings. Figure 6.4 depicts a clustering visualization
generated by the framework.

The clustering comprises 4 disjoint clusters, each one indicated by a different color.
For coverings, where nodes’ may belong to multiple clusters, each node is depicted as
a pie chart that represents all cluster affiliations. Visualizations of graphs and solutions
are stored as SVGs with tooltips for additional information such as objective function
coefficients.

To support users and developers in the analysis of the solving process, the framework
logs data on all algorithm executions. Python modules are provided to facilitate the
access to this data and to create a variety of corresponding plots. These plots are shown
in appendix A. Figure A.1 displays the change of the objective bounds over time. The
plot of Figure A.2 states for each pricing round the duration and how many variable
were added to the RMP. The subsequent Figure A.3 breaks this information down even
further to the level of each single pricer call. Figure A.4 provides a briefer overview on
which pricers succeeded in inserting variables into the RMP. The last plot in Figure A.5
indicates at which stages of the solving process the variables of the optimal root LP
and root IP solution were integrated into the RMP.

055620016016

055620008008
055620028028

055620024024

055620032032

055120000000

055620012012

055620020020

055620004004

055620014014

055130000000

055620036036

Figure 6.4.: Clustering visualization generated by the CVC Framework.

46

6.4. Pricers

Finally, the framework eases the implementation of additional pricers through dif-
ferent options for handling cluster regeneration. In reduced costs pricing, an optimal
solution of the PP provides the reduced costs (cN)C∗ of the cluster variable λC∗ to add
to the RMP. Since the values πππ∗s of the RMP’s dual variables are known, the correct
objective function coefficient (cN)C∗ for the MP is then derived through the equations in
(5.4). However, it is sufficient to add any variable of positive reduced costs to the RMP.
In practice, the PP is thus often not solved to optimality. Instead, the pricer stops, e.g.,
as soon as a variable of positive reduced cost was determined. For some CVCPs, the
encoding of a cluster in the PP is not unique, i.e., due to the custom variables multiple
feasible solutions may correspond to the same cluster. This is the case, e.g., for the
GPDP presented later in Chapter 8. In contrast to equation (4.19), the custom variables
yyy might then not maximize the objective function value for the cluster defined by xxx.
Deriving the MP coefficient as described above may then result in a value lower than
the true coefficient. One consequence a later pricer execution might recompute the
same cluster again with an improved objective function value and we obtain duplicate
variables in the MP. The CVC Framework implements four different strategies for
handling this issue.

For many problems, the encoding of the clusters is unique. In this case, the recompu-
tation of a cluster by a pricer indicates some error in the implementation. Thus, the
abort strategy causes a runtime error for any attempt to add a duplicate cluster variable
to the RMP. For partitioning and packing problems, duplicates cluster variables in the
RMP are not an issue because the clustering constraints prevent all feasible clusterings
from containing multiple equivalent clusters. Moreover, if any cluster with duplicate
variables occurs in an optimal solution, it will always be represented by the variable
with the highest objective function coefficient. Thus, the strategy allow duplicates accepts
the insertion of duplicate variables without taking any special measures. Similarly,
the replace duplicates strategy removes the old variable of lower coefficient from the
RMP and adds a new one instead. However, as explained in Section 5.2.2, cluster
regeneration may be explicitly prevented for covering problems through the exclusion
constraints (5.6). In this case, it must be ensured that all variables are directly added
with the correct coefficient. Therefore, the last strategy cluster evaluator allows to pass
an object to the solver that is capable of computing the true coefficient of any given
cluster. The strategy may be used for non-covering problems as well to speed up the
solution process.

6.4. Pricers

Section 6.2.3 already stated that the CVC Framework includes two different pricer
implementations. Both inherit from the class AbstractMipPricer and thus primarily
have the task of creating suitable connectivity constraints.

6.4.1. Shortest Path Subtrees Pricer

The Shortest Path Subtrees Pricer (SPSP) follows the approach from Section 3.3.3 to derive
connectivity constraints from shortest path subtrees. As already explained there, the

47

6. Implementation

PP is then not just a single MIP. Instead, for each node v ∈ V a different subproblem
must be solved where v is selected as the center node vc. In order to reduce execution
times, we generally do not solve a subproblem for all the nodes v ∈ V. Instead, we stop
pricing after the first subproblem that determined a cluster of positive reduced costs.
Although it may not be optimal, the corresponding variable is then added to the MP
and the pricing loop continues.

In order to ensure that the center node is part of the computed cluster, the corre-
sponding node variable is fixed to 1. The definition of the connectivity constraints then
requires the computation of the shortest path predecessors N<(v, vc) for each pair of
nodes (v, vc) ∈ V × V. For a given center vc, the predecessors of all other nodes are
computed in time O(n2) with a slightly modified Dijkstra algorithm. The use of a
suitable priority queue like a Fibonacci heap or Brodal queue would allow to reduce
the time complexity to O(n log(n) + m) [11, 26]. However, the C++ standard library
does not provide such a container and the quadratic runtime is not critical for the
branch-and-price approach as a whole.

Note that there are certain clusters which are connected but still infeasible due to the
constraints (3.13) of the SPSP. One example is illustrated by Figure 3.1. Consequently,
the SPSP is a heuristic pricer because it cannot compute arbitrary connected clusters.

6.4.2. Separator Inequalities Pricer

The Separator Inequalities Pricer (SIP) ensures connectivity through the separator inequal-
ities (3.11) introduced in Section 3.3.2. This requires one constraint for each minimal
va, vb-separator Ṽ of two non-adjacent nodes va, vb ∈ V. Adding all these inequalities

Algorithm 6.1 Node Separators

function computeSeparators(C)
separators = ∅
clusterComps ← computeConnectedComponents(G[C])
for ca ∈ clusterComps do

va ← ca[0]
complementComps ← computeConnectedComponents(G[V \ ca])
for complementComp ∈ complementComps do

for v ∈ complementComp do
reachable[v]← complementComp

separator = ∅
for cb ∈ clusterComps \ ca do

vb ← cb[0]
for v ∈ ca do

for {u, v} ∈ E do
if u /∈ ca ∧ reachable[u] = reachable[vb] then

seperator ← separator ∪ {u}
separators← separators ∪ {(va, vb, separator)}

return separators

48

6.5. Initializers

to the PP might result in a number of constraints that is exponential in n. This has
a significant impact on the efficiency of the pricer. To circumvent this issue, we opt
for a branch-and-cut approach, i.e., lazy constraint insertion. The PP is solved at first
without any connectivity constraints. As suggested by Fischetti et al., we check whether
the computed cluster is connected whenever an integral PP solution is determined [25].
Only if this is not the case, we turn the detected solution infeasible by adding separator
inequalities to the pricing problem. For a given unconnected cluster C, we employ
Algorithm 6.1 to compute suitable node pairs va, vb ∈ V and corresponding separators
Ṽ. One separator inequality is added for each pair of connected components ca, cb ⊆ C
of the solution cluster.

6.5. Initializers

Another type of CVC Framework plug-in is the initializer. Initializers have the task to
add variables to the RMP before the branch-and-price process starts. The idea is to
efficiently determine promising clusters and speed up the execution by reducing the
number of pricer calls later in the solving process. The framework does not provide
any general purpose initializers because a useful implementation is highly dependent
on the given problem. Some initializers for different CVCP variants are introduced in
the following two chapters.

49

7. Odd Cycle Packing Problem

For a graph G, the OCPP consist of finding a node packing of maximum cardinality
where each cluster forms a cycle of odd length [39]. The cardinality of an optimal
packing is also called odd cycle packing number (OCPN). One application of the OCPP
is the NP-hard Stable Set Problem (SSP), also known as the Independent Set Problem. The
SSP consists of finding a subset of nodes V ′ ⊆ V of maximum cardinality in a given
graph G which satisfies the condition that no pair of nodes vi, vj ∈ V ′ is adjacent.
For a graph with OCPN ∈ O(n/ log n), the SSP can be approximated with a constant
approximation factor in polynomial time [9].

1

2 3

4

5

6

7

Figure 7.1.: Non-induced odd cycle subgraph (marked blue).

Note that the clusters in the CVCP correspond to node-induced subgraphs, but a
cycle is not necessarily a node-induced subgraph. Consider, e.g., Figure 7.1 as an
example. The blue nodes V ′ = [5] and the blue edges form a cycle subgraph C of
odd length. However, the node-induced subgraph G[V ′] is not a cycle due to the extra
edge {1, 4}. For a cycle subgraph C of some graph G, such an edge that is not part of
E(C) but belongs to the node induced subgraph G[V(C)] is called a chord of C. A cycle
without chords is said to be chordless.

To model the OCPP as a CVCP, we could declare all clusters feasible that contain
a cycle of odd length, even if the node-induced subgraph itself is not a cycle. This
would compute the OCPN correctly, but would require further post-processing to
determine the odd cycles. Instead, we consider a cycle of odd length to be feasible iff it
is node-induced, i.e., chordless. Cycles with chords like the one from Figure 7.1 are
considered infeasible.

However, any odd cycle can be transformed into a chordless one by removing some
of its nodes. Assume that C is an odd cycle with nodes V ′ and edges E′ given by:

V ′ = {v1, . . . , vn′}
E′ = {{v1, v2}, . . . , {vn′−1, vn′}, {vn′ , v1}}

51

7. Odd Cycle Packing Problem

Let there be a chord {va, vb} ∈ E \ E′, {va, vb} ⊆ V ′. The nodes va and vb are not
adjacent in C because otherwise the edge {va, vb} would be part of the cycle and not
a chord. W.l.o.g., let a = 1 and therefore b ∈ [3, n′ − 1]. Thus, the node set {va, vb}
is a separator for C. More precisely, it separates the cycle into exactly two different
connected components with nodes V ′1 = {v2, . . . , vb−1} and V ′2 = {vb+1, . . . , vn′−1},
respectively. Both components consist of at least one node and one of them must be
of odd cardinality since exactly two nodes were removed from the odd cycle C. We
may assume w.l.o.g. that V ′1 has odd cardinality. Using the edges from C and the chord
{va, vb}, the nodes V ′′ = V ′1 ∪ {va, vb} form an odd cycle. V ′′ is a proper subset of V ′.
Consequently, we can transform any odd cycle C with a chord into a shorter odd cycle
whose nodes are a subset of V(C). Repeating the transformation as long as a chord is
present, one eventually obtains a chordless odd cycle.

To illustrate the transformation, let us have a second look at the highlighted odd cycle
from Figure 7.1. Removing the nodes 1 and 4 results in the two connected components
{5} and {2, 3} of which the first one has odd cardinality. Joining this component with
the nodes from the chord results in a shorter odd cycle with the nodes {1, 4, 5}.

Let now C∗ = {C1, . . . , Cn∗c } be an odd cycle packing of maximum cardinality that
potentially includes cycles with chords. We transform each cluster (or cycle) Ck ∈ (C∗
into a chordless cycle C′k with V(Ck) ⊆ V(Ck). Since the clusters in C∗ are pairwise
node-disjoint, so are the corresponding subsets C′k. Then C ′ = {C′1, . . . , C′n∗c } is also a
maximal odd cycle packing. Consequently, there always exists an optimal solution that
only consist of cycles which are chordless and therefore node-induced. Restricting the
feasible clusters to node-induced odd cycles may therefore reduce the space of feasible
solutions but will not alter the feasibility or optimal objective value of any instance.

Table 7.1.: CVCP configuration for the OCPP.
Input Value
o_type max
c_type packing
G input graph
cccx 0
kmin 0
kmax b n

3 c

The configuration of the CVCP for OCPP instances is stated in Table 7.1. The objective
function that we define later is to be maximized and is not directly affected by the
values of the node variables, i.e., it holds cccx = 0. Since we assume graphs to be simple,
there cannot be any loops and any odd cycle is of length at least 3. Moreover, each node
appears in at most one cycle. Consequently, we may define kmax as b n

3 c. The custom
variables with their costs and integer constraints together with the custom constraints
are defined in the following.

52

7.1. Pricing Problem

7.1. Pricing Problem

In addition to the node variables xi, we employ edge variables yij as defined in equation
(3.4). To ensure that the variables yij assume the correct values, we also add the
constraints (3.5) through (3.7). The computation of odd cycles requires further custom
constraints.

First, we define the following cycle constraints:

∑
{vi ,vj}∈E

yij = 2xi ∀vi ∈ V (7.1)

Let G′ = (V ′, E′) denote the computed subgraph with V ′ 6= ∅. It holds n′ = |V ′| ≥ 3
because any simple graph with fewer nodes contains at most one edge and thus cannot
not satisfy the constraints (7.1). The equations require each node of the subgraph to
be incident to exactly two edges. Since there are no loops and each edge is counted
once for each end node, the computed subgraph satisfies |E′| = n′. A connected simple
graph with n edges and n ≥ 3 contains exactly one cycle. This also applies to G′ and
moreover that cycle must be G′ itself. Otherwise, there exists a proper subgraph G′′

of G′ that forms a cycle. As G′′ is a cycle, each of its nodes is incident to two edges.
Moreover, there must be a node u ∈ V(G′′) that is adjacent to a note v ∈ V(G′) \V(G′′)
because G′ is connected. Consequently, u is incident to at least 3 edges in G′. Due to
constraint (7.1) this is not possible and so G′ itself is indeed a cycle.

For the argument to hold, we must ensure that V ′ 6= ∅. This is already implied if we
only allow odd cycles. To ensure that the computed cluster has odd cardinality, we add
an auxiliary variable zcard ∈N and the following constraint:

∑
vi∈V

xi = 2zcard + 1

Finally, we define the objective function. For the MP, the objective is to maximize the
size of the packing and determine the OCPN. Therefore, each cluster in the MP must
have coefficient 1. Hence, we add a constant zconst = 1 to the PP and define a constant
objective function:

max zconst

7.2. Framework Plug-Ins

In order to speed up solving for OCPP instances, we extended the CVC Framework
with two problem-specific plug-ins. Both are based on Algorithm 7.1 which computes
all cycles of length 3 for a given graph G = (V, E).

Section 6.5 already explained the concept of initializers. For the CVCP, we im-
plemented a Three-Cycle Initializer (TCI) that adds all cycles of length 3 to the RMP.
Additionally, we added a Three-Cycle Pricer (TCP) that is heuristic. Note that even
odd cycles may become locally infeasible due to the branching constraints. Upon
being called, the TCP thus determines all feasible three-cycles of positive reduced
costs. Then a fixed percentage of cycles with highest reduced costs is selected and the
corresponding variables are inserted into the RMP.

53

7. Odd Cycle Packing Problem

Algorithm 7.1 Three-Cycles

function computeThreeCycles(G)
cycles← ∅
for vi ∈ V do

for {vi, vj} ∈ E : j > i do
for {vi, vk} ∈ E : k > j do

if {vj, vk} ∈ E then
cycles← cycles ∪ {(vi, vj, vk)}

return cycles

54

8. German Political Districting Problem

As already stated in Section 1.2, the CVCP was originally motivated by the GPDP and
is a generalization thereof. Modeling and solving techniques for political districting
problems have been studied for decades [34, 35, 47, 60]. A lot of this research focuses
on the issue of Gerrymandering, as presented in Section 1.1. However, we focus on
the German federal elections where Gerrymandering is a less critical due to the voting
system. Instead, other aspects must be taken into account.

The aim of the GPDP is the computation of optimal constituencies for the German
federal elections. The Federal Elections Act (German: Bundeswahlgesetz, BWG) states
multiple guidelines for the definition of the constituencies [30, §3].

One requirement is that the constituencies must obey the federal states’ boundaries,
i.e., no constituency may be part of multiple states. This simplifies the districting process
because the number of each state’s constituencies depends on its population and is
known in advance. Consequently, districting may be performed for each federal state
individually, thus reducing the size of the overall problem. Additionally, the German
population of a constituency may not deviate by more than 25% from the constituencies’
average German population. Moreover, constituencies must be connected, i.e., for any
two arbitrary points A and B of a constituency it must be possible to reach B from A
without leaving the constituency.

Besides these hard constraints, the BWG states some more objectives for the attributes
of the constituencies. If possible, in addition to the population bound above, the
constituency population should not differ from the average by more than a tolerance
limit of 15%. Furthermore, constituency boundaries should match the administrative
boundaries of municipalities, districts and so-called district-free cities, an administrative
sub-division in Germany. Although not explicitly stated by law, further objectives are
being considered in practice. One goal is to balance the constituency population in order
to ensure that all voters have equal influence on the election outcome. Additionally, it is
inconvenient for both voters and the organization of the elections when a constituency
is altered from one election to the next. Consequently, the continuity of constituencies
is taken into account as well, i.e., it is attempted to leave constituencies unchanged.

Recent research has already examined the task of political districting for German
elections in particular [10, 31, 32]. Taking into account the previous requirements,
Goderbauer and Lübbecke formalized the GPDP in terms of a MIP [33]. Note that
in accordance with the previous considerations, the districting is performed for each
single state separately. For any given state, it is assumed that a set V = {v1, . . . , vn} of
indivisible base population units as well as a fixed target amount n∗c of constituencies
is given. Using V as a node set, we define the base unit graph G = (V, E) with edges

{vi, vj} ∈ E⇔ base units vi and vj share a common border . (8.1)

A connected constituency then corresponds to a connected cluster C ⊆ V.

55

8. German Political Districting Problem

This chapter describes the GPDP as a specialization of the CVCP. Just like for the
OCPP, we use GPDP instances to evaluate the implemented framework. As in the
previous chapter, we therefore first provide the original formulation of the GPDP and
proceed with the presentation of GPDP-specific initialization heuristics and pricers.

Table 8.1.: CVCP configuration for the GPDP.
Input Value
o_type max
c_type partitioning
G base unit graph
cccx 0
kmin n∗c
kmax n∗c

Table 8.1 shows how to configure the CVCP for GPDP instances. The GPDP is a
partitioning problem since each base unit should occur in exactly one constituency. As
for the OCPP, the objective function is to be maximized and is not directly affected
by the node variables. Since the number of constituencies is explicitly given, it holds
kmin = kmax = n∗c . The GPDP’s custom variables with corresponding costs and integer
constraints as well as the further custom constraints are defined in the following section.

8.1. Pricing Problem

Like for the OCPP in Section 7.1, we define edge variables yij with corresponding
constraints in addition to the node variables xi. The remaining custom variables and
constraints and the objective function are introduced in the subsequent subsections.

8.1.1. Objective Function

Defining the objective function requires quantifications of all optimization goals. There-
fore, metrics with value range 0 to 1 are employed to measure compliance with the
objectives. Corresponding metric variables are defined with respect to each of the
four goals and for each constituency. Essentially, the better an objective is fulfilled, the
higher is the corresponding metric value. The objective function is then just a weighted
sum of the metric variables which is to be maximized.

Population Tolerance

Whether a constituency meets the tolerance limit for the population is indicated through
the binary variable ztol ∈ {0, 1} that is subject to the following inequalities:

− 0.15− 0.1 · (1− ztol) ≤ ∑i xi pi

pconst − 1 ≤ 0.15 + 0.1 · (1− ztol) (8.2)

Here, parameter pi is the German population of base unit vi and pconst the average
German population of a constituency. Note that this average constituency population

56

8.1. Pricing Problem

is not computed separately for each state, but for Germany as a whole. Due to the
maximization of the objective function, ztol equals zero iff the German population of the
constituency deviates from the average by more than 15%, thus exceeding the tolerance
limit. Simultaneously, constraint (8.2) guarantees that the absolute deviation limit of
25% is obeyed.

Adherence to Administrative Boundaries

Variable zbound ∈ [0, 1] determines in how far the computed constituency obeys admin-
istrative boundaries. First, we define an auxiliary variable zp ∈ [0, 1] that states which
percentage of the constituency’s boundary is also a district boundary. The following
parameters are used for its definition:

bi = length of the boundary of base unit vi

bdist
i = length of the boundary of vi corresponding to the boundary of a district

or district-free city

bij = length of the shared boundary between base units vi and vj

bdist
ij = length of the shared boundary between base units vi and vj corresponding

to the boundary of a district or district-free city

Let us illustrate with Figure 8.1 how the boundary length of a constituency is derived
from the parameters given above. First, the boundaries of all contained base units are
summed up. Consider, e.g., the two northeastern base units of the depicted constituency.
Since they share a common boundary, this segment is counted twice when we add
up the total boundary lengths of all the constituency’s base units. However, the parts
of each base unit boundary that coincide with the outer constituency boundary are
counted only once. Consequently, we obtain the boundary length of the constituency
by subtracting each shared boundary twice from the previous sum. In the same
manner, we calculate which length of the constituency’s boundary corresponds to
district boundaries. In the figure, this is the segment of the dashed orange boundary
that is additionally marked blue. Dividing this by the constituency’s total boundary
length renders the district boundary percentage. The result for the example provided
by the figure is 0.78 due to the northwestern non-district boundary.

We now express zp in terms of the other variables as described above:

zp =

∑
i

bdist
i · xi − ∑

{vi ,vj}∈E
2 · bdist

ij · yij

∑
i

bi · xi − ∑
{vi ,vj}∈E

2 · bij · yij

⇔∑
i

bdist
i · xi − ∑

{vi ,vj}∈E
2 · bdist

ij · yij = zp

∑
i

bi · xi − ∑
{vi ,vj}∈E

2 · bij · yij

⇔∑

i
bdist

i · xi − ∑
{vi ,vj}∈E

2 · bdist
ij · yij = ∑

i
bi · xi · zp − ∑

{vi ,vj}∈E
2 · bij · yij · zp

The last equation still contains products of variables, i.e., xi · zp and yij · zp. This is not
allowed in a MIP, but since both products consist of one binary and one continuous

57

8. German Political Districting Problem

Figure 8.1.: Administrative boundaries of a constituency (yellow). Thick blue lines mark district
boundaries, thin gray ones base unit boundaries. The constituency boundary is the dashed
orange line. Source of geometric raw data: Senatsverwaltung für Stadtentwicklung und
Umwelt Berlin, CC BY 3.0 DE, https: // creativecommons. org/ licenses/ by/ 3.
0/ de/

variable they may be linearized through the introduction of new variables x̃i and ỹij:

x̃i ∈ [0, 1], x̃i = xi · zp ∀vi ∈ V

ỹij ∈ [0, 1], ỹij = yij · zp ∀{vi, vj} ∈ E

Employing these new variables the previous equation is linearized:

∑
i

bdist
i · xi − ∑

{vi ,vj}∈E
2 · bdist

ij · yij = ∑
i

bi · x̃i − ∑
{vi ,vj}∈E

2 · bij · ỹij

Additional constraints are added to ensure that the variables x̃i, ỹij and zp adopt
suitable values:

x̃i ≤ xi ∀vi ∈ V (8.3)

x̃i ≤ zp ∀vi ∈ V (8.4)

x̃i ≥ zp + xi − 1 ∀vi ∈ V (8.5)

x̃i ∈ [0, 1] ∀vi ∈ V

ỹij ≤ yij ∀{vi, vj} ∈ E

ỹij ≤ zp ∀{vi, vj} ∈ E

ỹij ≥ zp + yij − 1 ∀{vi, vj} ∈ E

ỹij ∈ [0, 1] ∀{vi, vj} ∈ E

Due to inequality (8.3), x̃i is set to zero if xi equals zero. Otherwise, x̃i equals zp because
of inequalities (8.4) and (8.5). Hence, x̃i behaves precisely like the product xi · zp and

58

https://creativecommons.org/licenses/by/3.0/de/
https://creativecommons.org/licenses/by/3.0/de/

8.1. Pricing Problem

controls the value of zp as intended. The same holds for ỹij, likewise. Consequently, zp

measures the adherence to administrative boundaries as a percentage.
In most cases, zp is exactly the value that zbound should assume. However, there

may be districts (or district-free cities) whose population exceeds the constituency
population bound, i.e., is greater than 1.25pconst. We call such a district large and any
other district small. A large district cannot be covered by a single constituency so that its
base units must be assigned to multiple constituencies. Therefore, the non-adherence to
administrative boundaries should not be penalized for a constituency that only consists
of base units of a single large district. To model this behavior, we first define a subset
of nodes Vaux and a subset of edges Eaux:

Vaux = {vi ∈ V | vi belongs to a small district}
Eaux = {{vi, vj} ∈ E | vi and vj belong to different districts}

Vaux comprises all nodes that pertain to a small district. Eaux contains all edges that
correspond to a district boundary. If Vaux = V, then no large district exists and we
define zbound = zp.

Otherwise we introduce a further auxiliary variable zaux as:

zaux ∈ {0, 1} with zaux =

1 if not all nodes of the constituency belong to a single

large district
0 otherwise

Additional constraints ensure that zaux assumes the value 1 if the constituency either
contains a node from a small district or an edge that corresponds to a district boundary:

zaux ≥ ∑
vi∈Vaux

1
|Vaux|

xi (8.6)

zaux ≥ yij ∀{vi, vj} ∈ Eaux (8.7)

Finally, we define
zbound = max{zp, (1− zaux)} . (8.8)

Due to the maximization of the objective function, equation (8.8) can be expressed via
the following inequality:

zbound ≤ zp + (1− zaux)

If the constituency is entirely contained within a large district, then zaux may assume
the value 0 and thus zbound equals 1. Otherwise, the constituency must contain a node
from a small district or nodes from different large districts. In both cases, zaux is forced
to 1 due to inequalities (8.6) and (8.7) and it holds zbound = zp.

Population Balance

The next objective is population balance. Variable zbal ∈ [0, 1] rewards constituencies
staying close to the mean population. The European Commission for Democracy
through Law (also known as the Venice Commission), an advisory board of the Council
of Europe in questions of constitutional law, provides additional guidelines for this

59

8. German Political Districting Problem

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.25

0.50

0.75

1.00

population deviation (dev)

p
o
p
u
la
ti
o
n
b
a
la
n
ce

(z
b
a
l)

Figure 8.2.: Piecewise linear function for modeling population balance. Here, the grid points are defined
as f (0) = 1, f (0.1) = 1, f (0.15) = 0.25, f (0.25) = 0. The function is therefore designed
to take into account the advice from the Venice Commission.

goal [58]. It recommends that “The permissible departure from the norm should not be
more than 10%, and should certainly not exceed 15% except in special circumstances
(protection of a concentrated minority, sparsely populated administrative entity).”

Let
dev =

∑i xi pi

pconst − 1 (8.9)

be the deviation from the mean population as in constraint (8.2). Figure 8.2 illustrates
how the population balance zbal is derived from the population deviation dev via a
piecewise linear function f :

zbal = f (dev)

The function f is defined through up to six grid points

ah ∈ {0%, 5%, 10%, 15%, 20%, 25%}

with corresponding monotonically decreasing function values f (ah), where f (0%) = 1
and f (25%) = 0. Denoting the number of segments as nseg, it holds h ∈ {0, . . . , nseg}.
The Venice Commission’s advice is then taken into consideration by choosing suitable
ah and f (ah). For this thesis, we assume that f corresponds to the function depicted in
Figure 8.2.

With the help of additional variables sseg
h and devseg

h , it is now possible to model zbal

through linear constraints:

zbal =
nseg

∑
h=1

sseg
h f (ah) + gradh(devseg

h − ahsseg
h) (8.10)

|dev| =
nseg

∑
h=1

devseg
h (8.11)

nseg

∑
h=1

sseg
h = 1 (8.12)

ah−1sseg
h ≤ devseg

h ≤ ahsseg
h ∀h ∈ [nseg] (8.13)

sseg
h ∈ {0, 1} ∀h ∈ [nseg] (8.14)

60

8.1. Pricing Problem

Due to equation (8.12) and the integer constraints (8.14), the variables sseg
h can be

interpreted to select a single segment. Since sseg
h equals zero for all but the selected

segment h′, equation (8.11) and the inequalities (8.13) guarantee that devseg
h′ corresponds

to the constituency’s absolute deviation. Let gradh be the gradient of segment h:

gradh =
f (ah)− f (ah−1)

ah − ah−1
∀h ∈ [nseg]

Equation (8.10) then ensures that zbal = f (devh′) = f (|dev|) holds by activating the
linear function of segment h′.

With zbal taking on the desired function value, the only remaining issue is that the
use of the absolute value function as in equation (8.11) is not permitted in a MIP. Since
zbal is maximized and function f monotonically decreasing, it follows that the sum

nseg

∑
h=1

devseg
h

will be minimized. Consequently, it suffices to replace equation (8.11) with the following
two inequalities, rendering |dev| as a lower bound for the sum:

dev ≤
nseg

∑
h=1

devseg
h

−dev ≤
nseg

∑
h=1

devseg
h

Continuity

The last objective is the continuity of constituencies over two successive elections
represented by variable zcont ∈ [0, 1]. Let the constituencies of the previous election
be given by Cold = {Cold

1 , . . . , Cold
nold

c
}. Continuous variables zshi f t

k are introduced to
determine the population shift of the computed constituency with respect to each
previous constituency Cold

k ∈ Cold. The population shift is the amount of population
that is removed or added to the constituency relative to the previous constituency’s
total population:

zshi f t
k =

∑vi∈Cold
k

pi(1− xi) + ∑vi /∈Cold
k

pixi

∑vi∈Cold
k

pi
∀k ∈ [nold

c]

Furthermore, we define

zshi f t
k = 1 +

1.25pconst

∑vi∈Cold
k

pi
.

Based on the constituencies’ population limit it follows zshi f t
k ∈ [0, zshi f t

k].
In order to select a previous constituency that minimizes population shift, decision

variables zsel
k are defined:

zsel
k ∈ {0, 1} with zsel

k =

1 if continuity is measured based on

previous constituency Cold
k

0 otherwise
∀k ∈ [nold

c]

61

8. German Political Districting Problem

A constraint ensures that exactly one of the previous constituencies is selected:

∑
k∈[nold

c]

zsel
k = 1

The selected population shift is then given by the term

∑
k∈[nold

c]

zsel
k zshi f t

k ∈ [0, max
k∈[nold

c]
{zshi f t

k }] (8.15)

and the continuity is defined as

zcont = max{0, 1− ∑
k∈[nold

c]

zsel
k zshi f t

k } . (8.16)

To transform equation (8.16) into a linear constraint, the function max must first be
replaced. Therefore, an auxiliary decision variable zmax ∈ {0, 1} is introduced to define
two bounds for zcont:

zcont ≤ (1− ∑
k∈[nold

c]

zsel
k zshi f t

k) + max
k∈[nold

c]
{zshi f t

k }(1− zmax) (8.17)

zcont ≤ zmax (8.18)

For zmax = 0 the second bound restricts zcont to 0. Additionally, the term

max
k∈[nold

c]
{zshi f t

k }(1− zmax)

ensures that upper bound (8.17) is non-negative and the problem remains feasible. If
zmax = 1, then the upper bound of zcont is

1− ∑
k∈[nold

c]

zsel
k zshi f t

k .

Due to the maximization of the objective zcont will always assume the largest possible
value and consequently the max function in equation (8.16) is remodeled correctly.

The only remaining task is to linearize the products zsel
k zshi f t

k . This is accomplished
via additional variables z̃shi f t

k ∈ [0, zshi f t
k] with the following constraints:

z̃shi f t
k ≤ zshi f t

k ∀k ∈ [nold
c] (8.19)

z̃shi f t
k ≤ zshi f t

k zsel
k ∀k ∈ [nold

c] (8.20)

z̃shi f t
k ≥ zshi f t

k zsel
k + zshi f t

k − zshi f t
k ∀k ∈ [nold

c]

Since the maximization of continuity corresponds to the minimization of population
shift it suffices to define lower bounds for the linearization variables z̃shi f t

k . Consequently,
the upper bounds (8.19) and (8.20) may be discarded. Using the linearization variables,
the selected population shift (8.15) can now be expressed as a linear constraint:

zshi f t = ∑
k∈[nold

c]

z̃shi f t
k

62

8.2. Framework Plug-Ins

Combined Objective

Since the fulfillment of each of the four different goals is measured by a different
variable, the objective function can be defined as the weighted sum of these metrics:

max ∑
o∈Obj

cozo

Here, Obj = {tol, bound, bal, cont} is the set of objectives and for each objective o holds
co ≥ 0. If there is some objective o ∈ Obj with co = 0, then all corresponding auxiliary
variables and constraints that are not employed elsewhere may be removed from the
model.

8.1.2. Custom Constraints

As already stated in the beginning of this chapter, constituencies must obey additional
constraints apart from the ones that are implicitly required for the definition of the
objective function.

Firstly, constituencies are not to cross state boundaries. As already described before,
the number of constituencies of a state can easily be precomputed given its population
so that districting can be performed separately for each state.

Secondly, the constituencies’ population is not allowed to deviate from the mean pop-
ulation by more than 25% which may be guaranteed through the following constraint:

− 0.25 ≤ ∑i xi pi

pconst − 1 ≤ 0.25 (8.21)

As mentioned in Section 8.1.1, this is already implicitly ensured by constraint (8.2).
However, if that constraint is excluded because population tolerance is not considered
as an objective, i.e., ctol = 0, then the population bounds (8.21) are required.

8.2. Framework Plug-Ins

We implemented two additional problem-specific plug-ins for solving GPDP instances,
an initializer and a heuristic pricer. Either plug-in employs the greedy approach of
Algorithm 8.1 to determine feasible clusters to add to the RMP.

First a root node is selected from some initialization cluster Cinit as the basis for a
new cluster C. Cluster C is then stepwise extended by adding a neighbor of some node
that already belongs to C. The best candidate node to add is selected according to a
cost function. As long as C does not yet contain all nodes from the initialization cluster,
only these missing nodes Cinit \ C may be added. When the population of cluster C
is larger than the minimum constituency population popmin derived from constraint
(8.21), a copy is inserted into the set of clusters to add to the RMP. When cluster C
can no longer be extended without exceeding the maximum constituency population
popmax, the algorithm terminates by returning the set of feasible clusters.

The difference between the initializer and the pricer plug-in is the definition of the
initial cluster Cinit, the root node selection and the cost function for the candidate nodes.
Note that Algorithm 8.1 is executed repeatedly for different initialization clusters.

63

8. German Political Districting Problem

Algorithm 8.1 Greedy Constituencies

function computeConstituencies(G, Cinit, pops, popmin, popmax)
constituencies← ∅
C ← ∅
popC ← 0
bestCandidate← null
root← computeRootNode(Cinit)
if pops[root] ≤ popmax then

bestCandidate← root
while bestCandidate 6= null do

C ← C ∪ {bestCandidate}
popC ← popC + pops[bestCandidate]
if popC ≥ popmin then

constituencies← constituencies ∪ {C}
bestCost← ∞
bestCandidate← null
for u ∈ C do

for {u, v} ∈ E do
if v /∈ C ∧ popC + pops[v] ≤ popmax then

if (|C| < |Cinit| ∧ v ∈ Cinit) ∨ |C| ≥ |Cinit| then
cost← computeCandidateCost(u, v, C)
if cost < bestCost then

bestCost← cost
bestCandidate← v

return constituencies

Moreover, the framework implementation is differs slightly by maintaining a map of
candidate nodes and costs for increased efficiency.

The Greedy Initializer (GI) is given a partitioning to perform the algorithm on each of
its clusters. This allows, e.g., to obtain clusters from the constituencies of the previous
election. Even if some constituencies are no longer feasible due to population changes,
it may be possible to derive similar constituencies that are somewhat smaller or larger.
The cost function for the candidate nodes takes int account three different factors:
whether u and v belonged to the same constituency in the previous election, whether
u and v belong to the same district and the population deviation of C ∪ {v} from
the mean constituency population. Note that these are determining factors for the
objective of the PP. Thus, the cost function attempts to create clusters with a high
objective function coefficient in the RMP. In order to select a root node, we first define
the root district droot as the district whose population is covered by Cinit to the largest
percentage:

droot = arg maxd∈D{
∑v∈Cinit∩d pop[v]

∑v∈d pop[v]
}

Here, D is a partitioning of V into administrative districts. If multiple districts maximize
the term, we choose one of maximal population. The root node is the node of maximum
population of the root district. The root district is chosen with the intention of reducing

64

8.2. Framework Plug-Ins

the need to cross administrative boundaries.
The heuristic Greedy Pricer (GP) executes Algorithm 8.1 once for each node v ∈ V

with {v} as the initial cluster. Consequently, v is also the root node. The candidate
costs are defined similar to the initializer. However, instead of the population deviation,
the pricer considers the dual value of u relative to the corresponding population. This
way, it heuristically maximizes the objective of the PP (5.5).

65

9. Computational Results

We evaluated the implemented framework by applying different combinations of pricers
and initializers to numerous OCPP and GPDP instances.

For the execution of our experiments we employed HTCondor1, a batch system for
the workload management of compute-intensive jobs. Although HTCondor allows
for parallel computation, we employed it only as a scheduler for running serial jobs
on a cluster of identical machines. The employed cluster called clustOR is maintained
by the Chair of Operations Research of RWTH Aachen University. Table 9.1 lists the
machines’ hardware specification. The operating system is a modified version of Debian
9 (Stretch).

Table 9.1.: Hardware specification of the clustOR machines.
Component Specification
Model HP ProLiant SE316M1
Processor (CPU) Xeon L5630 Quad Core 2.13 GHz
Memory (RAM) 16 GB DDR3 RAM
Hard Disk 2x 146 GB SAS 10K
Power Dual Redundant 400W Power Supplies (PSU)

In the following section, we introduce performance profiles as a tool for comparing
the performance of different solving algorithms. Additionally, we state the performance
metrics used in the evaluation. We then proceed by describing the datasets used for our
experiments and examining the computational results of different plug-in combinations.
Finally, we briefly summarize our most relevant findings.

9.1. Performance Metrics and Performance Profiles

Let P be a set of CVCP instances and A a set of solving algorithms. We measure the
performance of an algorithm a ∈ A on instance p ∈ P by different performance metrics.
Table 9.2 provides an overview over these metrics, which we describe in the following.

The first metric is the solving time t in seconds. Note that we set a time limit tmax, i.e.,
the execution of an algorithm is stopped at time tmax even if it has not yet determined
an optimal solution. Let t′a,p be the execution time of algorithm a on instance p. Then
we define:

ta,p =

{
t′a,p if a determined an optimal solution on p within time tmax

∞ otherwise

1http://htcondor.org/, (last accessed: 08/19/2018)

67

http://htcondor.org/

9. Computational Results

The pricing round (PR) time tPR indicates the average execution time of a single pricing
round:

tPR
a,p =

pricing time of a on p
number of pricing rounds of a on p

In each feasible node of the branch-and-bound tree, the pricing loop is executed as
long as cluster variables of positive reduced costs are found that can be added to the
RMP. Thus, the last PR of each pricing loop is the one where no such variables can be
determined and the computed solution of the LPR is optimal over all MP variables. The
unsuccessful PR time tUPR is the average execution time of all PRs where no variable is
inserted into the RMP:

tUPR
a,p =

sum of unsuccessful pricing round times of a on p
number of unsuccessful pricing rounds of a on p

Note that unsuccessful PRs do not exclusively occur at the end of the pricing loops, but
on rare occasions also due to pricer calls by heuristics of the SCIP framework.

The gap g measures the relative difference between primal bound pb and dual bound
db:

ga,p =

| pba,p−dba,p

pba,p
| if pba,p /∈ {0,−∞}

0 if pba,p = 0 and dba,p = 0

∞ otherwise

It holds ga,p = 0 iff an optimal solution is found within time tmax. Moreover, both pb
and db may be infinite.

Table 9.2.: Performance metrics.
Symbol Value Range Name
t (0, ∞) ∪ {∞} solving time
tPR (0, ∞) ∪ {∞} PR time
tUPR (0, ∞) ∪ {∞} unsuccessful PR time
g [0, ∞) ∪ {∞} gap

Based on the introduced performance metrics, we define performance profiles [21].
These are designed particularly to ease the comparison of the performance of different
solving algorithms on a set of problem instances. Let m ∈ (0, ∞) ∪ {∞} be some
performance metric where a lower score indicates a higher performance. A suitable
metric is, e.g., the solving time t. The corresponding performance ratio is defined as
the performance ma,p of a on p relative to the best performance ma′,p on p amongst all
algorithms a′ ∈ A:

rm
a,p =

∞ if mina′∈A{ma′,p} = ∞
ma,p

mina′∈A{ma′ ,p}
otherwise

∈ [1, ∞) ∪ {∞}

Based on the performance ratio, we define the performance ratio profile ρm
a of solver

a as the following function:

ρm
a : [1, ∞) ∪ {∞} → [0, 1], µ 7→ 1

|P| |{p ∈ P : rm
a,p ≤ µ}|

68

9.2. Odd Cycle Packing Problem

Hence, ρm
a (µ) is the probability that the performance of solver a is at most µ times

worse than the best performance. Moreover, ρm
a is the cumulative distribution function

of the performance ratio. The higher the values of ρm
a (µ), the better the algorithm

performs with regard to metric m.
The performance ratio profile requires all metric values to be greater than zero.

However, some metrics like the gap include values equal to or smaller than zero. In
analogy to the performance ratio profile, we define a performance delta profile for such
metrics. Hence, let m ∈ (−∞, ∞) ∪ {∞} again be a performance metric where lower
scores represent higher performance. We define the performance delta as the difference
between an algorithm’s performance ma,p and the best performance ma′,p amongst all
solvers:

δm
a,p =

{
∞ if mina′∈A{ma′,p} = ∞

ma,p −mina′∈A{ma′,p} otherwise
∈ [0, ∞) ∪ {∞}

In the same manner as before, we define the performance delta profile φm
a of solver a

as:
φm

a : [0, ∞) ∪ {∞} → [0, 1], ∆ 7→ 1
|P| |{p ∈ P : δm

a,p ≤ ∆}|

Thus, φm
a (∆) is the probability that the performance of solver a is worse than the best

performance by a difference of at most ∆.
To be suitable for a performance delta profile, the values of a metric should be

independent of the instance size. Otherwise, the comparison of the performance deltas
δm

a,p over different instances p ∈ P is not meaningful. The solving time is therefore
an unsuitable metric. In contrast, metrics that are bounded to a closed interval are
typically well suited.

For the comparison of different solvers on CVCP instances, we employ performance
ratio profiles ρt

a, ρtPR

a and ρtUPR

a as well as the performance delta profile φ
g
a .

9.2. Odd Cycle Packing Problem

In the following, we analyze the performance of the SIP, the SPSP and the OCPP-specific
plug-ins on numerous instances.

9.2.1. Dataset

To evaluate the CVC Framework on the OCPP, we used a collection of graph color-
ing instances1 related to the Implementation Challenges of the Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS)2. The collection comprises
diverse graphs of different origins in two different formats. We only used graphs of
the non-binary format .col and excluded three of them from the evaluation. The first
graph latin_square_10 was excluded because with 900 nodes and 307,350 edges it is by
far the largest. The second instance myciel2 was not formatted correctly. Finally, we did
not consider the graph david in the evaluation because the solving process resulted in a

1https://mat.gsia.cmu.edu/COLOR/instances.html (last accessed: 08/19/2018)
2http://dimacs.rutgers.edu/archive/Challenges/ (last accessed: 08/19/2018)

69

https://mat.gsia.cmu.edu/COLOR/instances.html
http://dimacs.rutgers.edu/archive/Challenges/

9. Computational Results

runtime error for one experimental setup due to a bug in the employed SCIP library.
Table B.1 states different characteristics like the number of nodes and edges of the
remaining 56 instances. Note that all loops were removed from the original graphs.

9.2.2. Evaluation

All OCPP instances were solved with a time limit of 2 hours. We evaluated four
different experimental setups: the SIP alone, the SPSP alone, the SIP combined with the
heuristic TCP and the SIP after initialization by the TCI. Section 6.4.1 already stated
that the SPSP is also a heuristic pricer because there are certain connected clusters
which it cannot compute. However, we treated it as an exact pricer here in order to
compare its efficiency and effectiveness to the SIP. I.e., if the SPSP did not find any
cluster of positive reduced costs, we assumed that such a cluster does not exist and
terminated the pricing loop. In consequence, a solution computed by the SPSP setup is
not necessarily optimal, even if the solver terminates with gap 0. However, we derived
from the raw data that all solutions where the SPSP setup reached gap 0 are indeed
optimal.

1 10 100 1,000 10,000

0

0.2

0.4

0.6

0.8

1

µ

ρ
t a

(a) solving time

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

∆

φ
g a

(b) gap

1 10

0

0.2

0.4

0.6

0.8

1

µ

ρ
tP

R

a

(c) PR time

1 10 100 1,000 10,000

0

0.2

0.4

0.6

0.8

1

µ

ρ
tU

P
R

a

(d) unsuccessful PR time

SIP SPSP SIP+TCP SIP+TCI

Figure 9.1.: OCPP performance profiles.

70

9.2. Odd Cycle Packing Problem

Figure 9.1 shows the resulting performance profiles of all solvers. The underlying
metric values are listed in Tables B.2–B.4 in the appendices. Note that the axis for µ

in the performance ratio plots is logarithmic. Moreover, we based the performance
profiles for PR time and unsuccessful PR time only on the single-pricer setups.

Let us begin by comparing the two single-pricer setups. The solving time performance
profile indicates that the SIP setup is more efficient than the SPSP setup. The PR time
performance profiles of the two pricers clearly show that the SPSP requires on average
significantly more time for solving a single PP. On 42.86% of the instances, an average
SPSP execution takes at least 10 times as long as an average SIP execution. Recall from
Section 6.4.1 that the SPSP solves multiple MIPs, each corresponding to some center
node vc ∈ V of the instance graph. In an unsuccessful PR, the SPSP has to solve a
subproblem for all the nodes vc ∈ V. The unsuccessful PR time performance profiles
show that this property has a particularly strong impact on the pricing efficiency. For
23.21% of the instances, the SPSP takes on average at least 100 times longer than the SIP
for solving a PP where no variable has positive reduced costs. Another aspect is that
the SPSP does not obtain an upper bound for the reduced costs when the subproblem
is not solved for all nodes vc ∈ V. Then it is not possible to derive the upper bound
(5.23) for the objective in the current node of the branch-and-bound tree. Consequently,
solving may additionally consume more time because of weaker local bounds. Due to
the long execution times, the SPSP setup managed to solve only 19.64% of the instances
to optimality within the time limit compared to 50.00% for the SIP setup. The higher
efficiency also results in a better gap performance by the SIP setup.

Based on the solving time and gap we see that the SIP+TCI setup performed best
overall and determined optimal solutions for the largest amount of instances (55.36%).
Note that the execution time of the TCI is nearly insignificant with respect to the total
solving time. The raw data shows that the highest initialization duration is 1.17s. For
78.57% of the instances, the initialization even lasted no more than 0.1s. The high
efficiency of the SIP+TCI setup indicates that three-cycles are often crucial for obtaining
LP solutions of high objective. Indeed, the cardinality of 54.84% of the optimal packings
computed by the setup SIP+TCI equals the upper bound kmax = b n

3 c from Chapter 7.
Thus, any optimal solution of these instances comprises three-cycles. We derive that
the initial insertion of three-cycles typically reduces the time required for pricing and
may even render pricing completely obsolete on some instances.

Finally, we examine the SIP+TCP setup. Section 7.2 explained that the heuristic TCP
inserts a fixed percentage of the three-cycles with positive reduced costs into the RMP.
Three-cycles are only computed once and cycles already inserted into the RMP do no
longer need to be checked. If now the percentage of inserted cycles is 100%, the TCP
inserts all three-cycles into the RMP on its first call and therefore behaves similar to
the TCI. If the percentage of inserted cycles is 0%, then the TCP does not insert any
variables and the SIP+TCP setup is equivalent to the SIP setup. We set the percentage
of inserted cycles to 10%. Assuming that the execution of the TCP is fast compared to
the SIP, it was to be expected that the SIP+TCP setup performs somewhere in between
the SIP+TCI and the SIP setup. With respect to the solving time, this is exactly the
case. Also regarding the number of instances solved to optimality, the SIP+TCP setup
ranks second with 53.57%. However, its gap performance is even nearly identical to the

71

9. Computational Results

SIP+TCI setup. With regard to solving time, the raw data shows that the SIP+TCI setup
outperforms the SIP+TCP setup the most on instances where the former never enters
the pricing loop. However, the TCP still inserts the most promising three cycles into the
RMP within only a few pricer calls. Since the number of variables in the RMP is larger
for the SIP+TCI setup, solving the RMP additionally requires more time. This provides
a trade-off for the repeated execution of the TCP. Consequently, the TCI thus loses its
advantage over the TCP on instances which take longer to solve. For all instances with
gap greater zero the solving process was executed for two hours. This explains why
there is no considerable difference between the two setups regarding gap performance.

9.3. German Political Districting Problem

As for the OCPP, we examine the performance of the CVC Framework’s general
puropose pricers as well as the problem-specific plug-ins.

9.3.1. Dataset

The GPDP instances are based on version 1.0 of the dataset GeoBevDE. This dataset is a
collection of German geometric and population data. It was created by S. Goderbauer
and M. Wicke in 2016 at the Chair of Operations Research at RWTH Aachen University.
The data is based on multiple sources including maps provided by the German Federal
Returning Officer, OpenStreetMap1 (Copyright by OpenStreetMap contributors), and
geometric and population data from the administrative offices of the largest German
cities. From the dataset we created one GPDP instance for each German federal state,
a total of 16. Table C.1 in the appendices lists each instance with the corresponding
number of nodes and edges.

9.3.2. Evaluation

For the GPDP instances, we set the time limit to 3 hours. The objective function
coefficients of the PP’s metric variables were defined as ctol = 0 for population tolerance,
cbound = 0.3 for boundary adherence, cbal = 0.1 for population balance and ccont = 0.6
for continuity. Similar to the OCPP, we evaluated four different setups: both the SIP
and the SPSP alone, the SIP with the GI and the SIP with the GP.

The behavior of the SIP and the SPSP were slightly modified in comparison to the
OCPP evaluation. To speed up the execution, the pricers terminate as soon as they have
found twice a new best solution. The corresponding cluster variables are then added
into the RMP as usual, even if neither one is optimal. In order to count only solutions
of positive reduced costs, we require all feasible clusters to have an objective value of at
least 0.001. Note that the solution process is therefore no longer exact because clusters
with smaller positive reduced are no longer considered. Let n∗c be the fixed number of
constituencies as in Chapter 8. If the solver terminates with gap 0, the upper bound
(5.23) still guarantees that the objective value of the computed solution is at most 0.001
n∗c lower than that of an optimal one. For simplicity, we thus still refer to the resulting

1www.openstreetmap.org/copyright (last accessed: 08/19/2018)

72

www.openstreetmap.org/copyright

9.3. German Political Districting Problem

1 10 100

0

0.2

0.4

0.6

0.8

1

µ

ρ
t a

(a) solving time

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

∆

φ
g a

(b) gap

1 10 100

0

0.2

0.4

0.6

0.8

1

µ

ρ
tP

R

a

(c) PR time

1 10 100

0

0.2

0.4

0.6

0.8

1

µ

ρ
tU

P
R

a

(d) unsuccessful PR time

SIP SPSP SIP+GI SIP+GP

Figure 9.2.: GPDP performance profiles.

solution as being optimal. As for the OCPP, we verified again that the objective values
of all solutions computed by the heuristic SPSP with gap 0 equal the objective values of
the corresponding solutions of the exact SIP.

Figure 9.2 shows the solvers’ performance profiles for the GPDP instances. The
corresponding metric values are given in Tables C.2–C.4 in the appendices. Due to the
smaller number of instances, the results are less clear than in the OCPP evaluation.
This holds particularly for the solving time and the gap because only a low percentage
of instances was solved to optimality and for many instances the solvers could not even
determine a feasible primal solution. Again, we based the PP time performance profiles
only on the single-pricer setups.

As before, we begin with a comparison of the SPSP and the SIP. Regarding the solving
time performance profiles, the SPSP setup slightly outperforms the SIP setup. However,
the difference is too small to draw a conclusion on such a small number of instances.
The same holds for the number of instances solved to optimality and gap performance.
Both setups computed optimal solutions for 18.75% of the instances. The SPSP setup is
again somewhat better regarding gap performance because it managed to determine a
feasible primal solution on a single instance where the SIP setup did not.

73

9. Computational Results

1 10 100

0

0.2

0.4

0.6

0.8

1

maximal subproblems / PR

in
st
a
n
ce
s
[%

]

OCPP instances
GPDP instances

Figure 9.3.: Average number of subproblems solved by the SPSP per PR.

In contrast to the OCPP, the SPSP clearly outperforms the SIP regarding PR time
performance. Figure 9.3 partially explains this contradictory result. Similar to a
performance profile, the x-axis of the diagram represents the average number of
subproblems that the SPSP solved per PR. The corresponding y-values indicate for
which percentage of instances the given average was not exceeded. The figure shows
that the pricer solved significantly less subproblems per PR for the GPDP instances
than for the OCPP instances.

Some explanations for this phenomenon can be derived from the raw data. For
75.00% of the instances, neither pricer manages to solve the root node LP within the
time limit. Consequently, the first pricing loop is never left. As stated in the previous
section, one reason for the inefficiency of the SPSP is having to solve a different MIP for
each center node vc ∈ V in the last PR of a pricing loop. Since the time limit prevents
the SPSP setup on numerous instances from ever reaching such a PR, the measured
performance increases. Furthermore, the instances where the setup does manage to
solve the root LP are the smallest ones. Hence, even then solving one MIP per node
impacts the execution time than usual.

However, the unsuccessful PR time performance profiles show that the SPSP still
outperforms the SIP when it has to solve subproblems for all nodes. Even under
consideration of the time limit’s favorable impact, the SPSP seems therefore more
suitable for the GPDP. Nevertheless, the pricer remains heuristic. If optimality must be
guaranteed, it may therefore be recommendable to combine the SPSP with the SIP or
another exact pricer.

Next, we examine the impact of the GI. Similar to the OCPP, the initializer improves
both the solving time and the gap performance. One reason for this is the definition of
the weights of the metric variables zo. The continuity objective measures in how far the
computed constituencies match those of the previous election. The GI uses exactly the
last elections’ constituencies to derive related ones that are still feasible with regard
to the new population data. Setting ccont = 0.6 prioritizes continuity as an objective
and therefore benefits the performance of the GI. We observed that the three optimal
solutions computed by the setup are entirely based on the variables created by the
initializer. Due to the early insertion of all relevant variables, the SIP+GI setup achieves

74

9.4. Summary

the shortest solving times amongst all solvers. Moreover, the gap performance indicates
that the variables created by the GI promote the derivation of feasible primal solutions
also when a problem is not solved to optimality. In contrast to the low percentages of
the single-pricer setups, the SIP+GI setup thus managed to determine a finite gap for
81.25% of the instances. The raw data shows additionally that a gap below 10% was
obtained for 68.75% of the instances.

The supplementary GP also enhanced the performance of the SIP. Like all other
setups, the SIP+GP setup solved 18.75% of the instances to optimality. Despite the
limited data available, it seems clear that the GP reduces solving time. Moreover, the
GP had a significant impact on the computation of feasible solutions. The SIP+GP
setup outperformed all others regarding gap performance by computing a finite gap
for 93.75% of the instances. A gap below 10% was accomplished for 87.50% of the
instances. In conclusion, the GP outperforms the GI on the larger instances. At least
when continuity is prioritized, the initializer is still faster on smaller instances.

9.4. Summary

Summing up the findings from the experiments, we can say first of all that the GPDP is
harder to solve than the OCPP. This may be partially due to the PP which comprises
more variables and constraints. However, the main reason is that the MP is a partitioning
problem. Therefore, the clustering constraints (4.21) are more restrictive and it is harder
to compute feasible solutions. While the GPDP requires nodes to be part of exactly
one cluster, they are not forced to belong to a cluster in the OCPP. The complexity of
finding feasible solutions for the GPDP is illustrated by the percentage of pricing time
that each pricer spends on Farkas pricing rather than reduced cost pricing. I.e., this
indicates how much of the execution time is spent on obtaining feasibility rather than
optimality. For the OCPP, the SIP spent less then 1% of its execution time on Farkas
pricing for 89.29% of the instances. For the SPSP, it was even 98.21%. In contrast for the
GPDP, the SIP spent all its execution time on Farkas pricing for 75.00% of the instances.
The SPSP performed Farkas pricing alone on 31.25% of the instances.

With regard to the general purpose pricers, we determined that the heuristic SPSP
setup computed optimal solutions whenever it terminated within the time limit. Never-
theless, the SIP is more efficient than the SPSP on OCPP instances. This behavior is
reversed for the GPDP where the SIP keeps only the advantage of being exact. Although
we identified certain aspects favoring the SPSP in the GPDP evaluation, we did not
completely resolve why either pricer is more fitting for one problem than the other.

The evaluation of additional problem-specific plug-ins showed that initializers and
supplementary heuristic pricers provide significant boosts in efficiency. Regarding the
OCPP, we determined that the behavior of the TCP can be tuned to be more like the
TCI or more passive. In the first case, lots of variables are added to the RMP early on in
the solving process. This may help to reduce the number of PRs, but can also increase
the solving time of the RMP. For the GPDP, we noted that the GI benefits from the
weighting of the continuity constraint. Nevertheless, the supplementary GP achieves
achieves higher efficiency on larger instances.

75

10. Conclusion and Outlook

Motivated by the definition of constituencies for the German federal elections, the
main goal of this thesis was the development of a solving approach for customizable
graph clustering problems. The computed clustering should be optimal with regard
to a user-defined objective and all clusters must be connected and satisfy further
application-specific constraints.

We formalized this problem as a MIP in Chapter 4. This so-called CVCP may be
employed to compute three different types of clusterings: packings, partitionings and
coverings. The problem’s NP-hardness was shown by reducing the Set Partitioning
Problem to the CVCP. In order to circumvent the issue of symmetry, we proceeded by
transforming the original problem formulation into an aggregated extended formulation
via discretization-based Dantzig-Wolfe decomposition.

Chapter 5 introduced the concept of branch-and-price for solving a MIP on only
a subset of its variables. From the duals of the RMP’s LPR, we derived the reduced
costs of arbitrary MP variables. This allowed to define the PP based on the CVCP’s
original formulation. The PP was then used to generate new RMP columns that
help to improve the objective function value. To obtain integer solutions, the column
generation procedure was integrated into a branch-and-bound approach. Additionally,
we explained how to employ Farkas pricing for coping with RMP infeasibility and how
dual bounds of the PP translate into upper bounds for the MP.

Aside from presenting the general notion of branch-and-price, we discussed why
standard variable branching is unsuitable for the CVCP and elaborated a more fitting
branching rule on the basis of Ryan-Foster branching. In particular, we generalized
the branching constraints of the aforementioned strategy for partitioning problems to
the packing and covering scenario of the CVCP. Additionally, we outlined how these
constraints impact the objective function and the space of feasible solutions of the PP.

On the foundation of the SCIP library for mixed integer programming and the
LEMON graph library, we implemented our method as a C++ framework for solving
arbitrary CVCP instances. Chapter 6 described implementation details like the CVC
Framework architecture and the core classes of the solving process. The framework
allows the integration of custom plug-ins, e.g., to add problem-specific pricers that
exploit special characteristics of some CVCP variant. For covering scenarios and the use
of pricers without a unique cluster encoding, the CVC framework implements multiple
strategies for handling the generation of duplicate variables. Furthermore, it offers
visualizations of graphs and graph clusterings as well as analytic features to examine
different aspects of the solving process.

In order to solve PPs, the CVC Framework features two general purpose pricers, the
SIP and the SPSP. Both pricers are MIP-based, but they follow different approaches
for modeling connectivity through linear constraints. The SIP derives connectivity
constraints from node separators and employs branch-and-cut, i.e., lazy constraint

77

10. Conclusion and Outlook

insertion, to omit unnecessary constraints in the PP. For the SPSP, the PP consists of
one subproblem for each center node vc ∈ V of the instance graph. The connectivity
constraints of a given subproblem are then based on shortest path trees with root vc.
In contrast to the SIP, the SPSP is heuristic because its connectivity constraints declare
certain connected clusters infeasible.

Chapters 7 and 8 introduced the OCPP and the GPDP as specializations of the
CVCP. The goal of the OCPP is the computation of the OCPN, i.e., the maximum
cardinality of a packing of odd cycles. We showed that it suffices to consider only
node-induced cycles for this purpose. The GPDP models the political districting for
the German federal elections under consideration of different objectives dictated by
German law and European guidelines. For both problems, we integrated combinatorial
application-specific plug-ins into the CVC Framework.

Chapter 9 finally presented the computational results of the application of the CVC
Framework to a variety of OCPP and GPDP instances. For each problem, we analyzed
different experimental setups using performance profiles. Traditional performance
(ratio) profiles were employed to evaluate solving time, PR time and unsuccessful PR
time. In addition, we defined performance delta profiles as a means of comparing the
gap performance of multiple solvers on a larger set of instances. To ensure comparability
of the execution times, we ran all experiments on a cluster of identical machines.

Despite it being heuristic, the SPSP was treated as an exact pricer to compare its
performance to the SIP. We established that the major weakness of the SPSP is having to
solve one subproblem for each center node. This drawback is mitigated by terminating
the pricer after the first subproblem that produced a variable of positive reduced
costs. However, in the last PR of a pricing loop no such variable exists and solving
all subproblems is unavoidable. The SIP clearly outperformed the SPSP in the OCPP
evaluation, but the latter proved faster for the GPDP. Partially, this was due to the SPSP
solving less subproblems per PR and the time limit favoring the SPSP in the GPDP
evaluation.

Finally, the supplementary combinatorial plug-ins were tested in combination with
the exact SIP. All of them had a strong positive impact on the solving time and gap
performance.

10.1. Outlook

From the results of this thesis we derive numerous subjects for future work and research.
Some are related directly to the CVC Framework. For others, the framework may be
used as an tool to facilitate further investigation.

First, there are still several open research questions regarding the SPSP. A deeper
analysis may help to characterize CVCP variants where the pricer is particularly efficient.
Even when the SPSP has to solve too many subproblems per PR to be efficient as an
exact pricer, it may additionally still be employed as a heuristic one. In this case it
suffices for the SPSP to solve a single subproblem. If no variable of positive reduced
costs is found, the PP will be solved by an exact pricer. Different strategies for selecting
a subproblem with a suitable center node vc can be tested. E.g., one can iterate over the
nodes, choose one at random or select nodes according to the duals of the clustering

78

10.1. Outlook

constraints. At last, the SPSP also poses some theoretical questions. We proved through
a counterexample that the pricer’s constraints are sufficient, but not necessary for
connectivity. It would be interesting to also investigate and characterize the class of
graphs where the connectivity constraints are both sufficient and necessary since the
pricer is then exact.

The SCIP library offers a plethora of parameters for controlling the behavior of the
branch-and-price process. Adjustments may have positive impact on certain CVCP
variants or even CVCPs in general. For the GPDP, we already adapted the MIP-based
pricers to only take into account clusters that exceed specified reduced costs and to
terminate pricing after two improving solutions have been determined. In addition,
one might, e.g., deactivate certain pricers after solving the root node LP or reaching
a certain depth in the branch-and-bound tree. The implemented GPDP and OCPP
plug-ins can further be fine-tuned by experimenting with different configurations of
the algorithms’ parameters. E.g., varying the insertion percentage of the TCI may yield
a better trade-off between redundant variables in the RMP and the number of PRs. The
GPDP-specific plug-ins can be adapted by redefining the candidate costs of the greedy
algorithm. For the GP in particular, it is also possible to employ different initialization
clusters. Other single-node clusters could be based on the strategies already suggested
for the center node selection of the SPSP.

Furthermore, the plug-in architecture of the CVC Framework simplifies the develop-
ment of new components and their integration into the framework. In particular for
the GPDP, the performance of the solving process may still be improved. Additional
combinatorial pricers and initializers may provide means for accomplishing better
results. On top of that, we did not employ any start heuristics so far. The implemented
initializers serve a similar purpose by adding variables into the RMP, but the provision
of feasible primal solutions may help to speed up the execution.

Aside from problem-specific plug-ins, one might also want to investigate other tech-
niques that are applicable to CVCPs in general. In Section 3.3.1 we already presented a
third approach based on node cuts for defining linear connectivity constraints. Since
the concept is not yet implemented, a corresponding pricer would be an ideal extension
of the CVC Framework. A completely different strategy is to reduce the size of the PPs
based on node coverings of the graph [40]. I.e., each PP only considers clusters that are
contained within a given subgraph. Consequently, all nodes and edges that are not in
the subgraph can be ignored and the number of variables and constraints decreases. A
new subgraph is selected to restrict the next PP.

Moreover, the CVC Framework eases the investigation of other CVCP variants. With
the OCPP and the GPDP, we have so far evaluated a packing and a partitioning problem.
A detailed analysis of the framework’s application to a covering problem is still missing.
Finally, some supplementary features of the CVC Framework can be developed further
to facilitate research even more. Compatibility with a wider range of file formats helps
to apply the framework to new problems and instances. Providing additional data
on the solving process and more advanced analytical tools assists the evaluation and
comparison of different solving approaches.

79

Bibliography

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules re-
visited. Operations Research Letters, 33(1):42–54, jan 2005. ISSN 01676377. doi:
10.1016/j.orl.2004.04.002. URL http://linkinghub.elsevier.com/retrieve/pii/
S0167637704000501. Accessed: 08/19/2018.

[2] Charu C. Aggarwal and Haixun Wang. A Survey of Clustering Algorithms for
Graph Data. In Managing and Mining Graph Data, pages 275–301. Springer, Boston,
MA, 2010. doi: 10.1007/978-1-4419-6045-0_9. URL http://link.springer.com/
10.1007/978-1-4419-6045-0_9. Accessed: 08/19/2018.

[3] Egon Balas and Manfred W. Padberg. Set Partitioning: A survey. SIAM Review,
18(4):710–760, oct 1976. ISSN 0036-1445. doi: 10.1137/1018115. URL http:
//epubs.siam.org/doi/10.1137/1018115. Accessed: 08/19/2018.

[4] Arindam Banerjee and Joydeep Ghosh. Scalable Clustering Algorithms with Bal-
ancing Constraints. Data Mining and Knowledge Discovery, 13(3):365–395, sep 2006.
ISSN 1384-5810. doi: 10.1007/s10618-006-0040-z. URL http://link.springer.
com/10.1007/s10618-006-0040-z. Accessed: 08/19/2018.

[5] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-Price: Column Generation for Solving Huge
Integer Programs. Operations Research, 46(3):316–329, jun 1998. ISSN 0030-364X.
doi: 10.1287/opre.46.3.316. URL http://pubsonline.informs.org/doi/abs/10.
1287/opre.46.3.316. Accessed: 08/19/2018.

[6] Sugato. Basu, Ian Davidson, and Kiri Lou. Wagstaff. Constrained clustering: advances
in algorithms, theory, and applications. CRC Press, 2009. ISBN 9781584889960.

[7] Joachim Behnke, Frank Decker, Florian Grotz, Robert Vehrkamp, Philipp Wein-
mann, and Verlag Bertelsmann Stiftung. Reform des Bundestagswahlsystems: Bewer-
tungskriterien und Reformoptionen. Bertelsmann Stiftung, 2017. ISBN 3867937508.

[8] Mitchell N. Berman. Managing Gerrymandering. Texas Law Review, 83,
2004. URL https://heinonline.org/HOL/Page?handle=hein.journals/tlr83&
id=799&div=&collection=. Accessed: 08/19/2018.

[9] Adrian Bock, Yuri Faenza, Carsten Moldenhauer, and Andres Jacinto Ruiz-Vargas.
Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number.
In Venkatesh Raman and S P Suresh, editors, 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014),
volume 29 of Leibniz International Proceedings in Informatics (LIPIcs), pages 187–198,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

81

http://linkinghub.elsevier.com/retrieve/pii/S0167637704000501
http://linkinghub.elsevier.com/retrieve/pii/S0167637704000501
http://link.springer.com/10.1007/978-1-4419-6045-0_9
http://link.springer.com/10.1007/978-1-4419-6045-0_9
http://epubs.siam.org/doi/10.1137/1018115
http://epubs.siam.org/doi/10.1137/1018115
http://link.springer.com/10.1007/s10618-006-0040-z
http://link.springer.com/10.1007/s10618-006-0040-z
http://pubsonline.informs.org/doi/abs/10.1287/opre.46.3.316
http://pubsonline.informs.org/doi/abs/10.1287/opre.46.3.316
https://heinonline.org/HOL/Page?handle=hein.journals/tlr83&id=799&div=&collection=
https://heinonline.org/HOL/Page?handle=hein.journals/tlr83&id=799&div=&collection=

Bibliography

ISBN 978-3-939897-77-4. doi: 10.4230/LIPIcs.FSTTCS.2014.187. URL http://
drops.dagstuhl.de/opus/volltexte/2014/4842. Accessed: 08/19/2018.

[10] Andreas Brieden, Peter Gritzmann, and Fabian Klemm. Constrained clustering via
diagrams: A unified theory and its application to electoral district design. European
Journal of Operational Research, 263(1):18–34, nov 2017. ISSN 03772217. doi: 10.
1016/j.ejor.2017.04.018. URL http://linkinghub.elsevier.com/retrieve/pii/
S037722171730351X. Accessed: 08/19/2018.

[11] Gerth Stølting Brodal. Worst-case efficient priority queues. In Proceedings of the
seventh annual ACM-SIAM symposium on Discrete algorithms, pages 52–58, 1996.
URL https://dl.acm.org/citation.cfm?id=313883. Accessed: 08/19/2018.

[12] Rodolfo Carvajal, Miguel Constantino, Marcos Goycoolea, Juan Pablo Vielma,
and Andrés Weintraub. Imposing Connectivity Constraints in Forest Planning
Models. Operations Research, 61(4), 2013. doi: 10.1287/opre.2013.1183. URL
https://doi.org/10.1287/opre.2013.1183. Accessed: 08/19/2018.

[13] Jowei Chen. Unintentional Gerrymandering: Political Geography and Electoral
Bias in Legislatures. Quarterly Journal of Political Science, 8(3):239–269, jun 2013.
ISSN 15540634. doi: 10.1561/100.00012033. URL http://www.nowpublishers.com/
article/Details/QJPS-12033. Accessed: 08/19/2018.

[14] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The
Computer Journal, 8(3):250–255, mar 1965. ISSN 0010-4620. doi: 10.1093/comjnl/8.
3.250. URL https://academic.oup.com/comjnl/article-lookup/doi/10.1093/
comjnl/8.3.250. Accessed: 08/19/2018.

[15] Dantzig and George B. Origins of the simplex method. A history of scientific
computing, pages 141–151, 1990. doi: 10.1145/87252.88081. URL https://dl.acm.
org/citation.cfm?id=88081. Accessed: 08/19/2018.

[16] George B. Dantzig and Philip Wolfe. Decomposition Principle for Linear Programs.
Operations Research, 8(1):101–111, feb 1960. ISSN 0030-364X. doi: 10.1287/opre.
8.1.101. URL http://pubsonline.informs.org/doi/abs/10.1287/opre.8.1.101.
Accessed: 08/19/2018.

[17] George B. Dantzig and Philip Wolfe. The Decomposition Algorithm for Lin-
ear Programs. Econometrica, 29(4):767, oct 1961. ISSN 00129682. doi: 10.2307/
1911818. URL http://www.jstor.org/stable/1911818?origin=crossref. Ac-
cessed: 08/19/2018.

[18] Jacques Desrosiers and Marco E. Lübbecke. A Primer in Column Genera-
tion. In Column Generation, chapter 1, pages 1–32. Springer-Verlag, New York,
2005. doi: 10.1007/0-387-25486-2_1. URL http://link.springer.com/10.1007/
0-387-25486-2_1. Accessed: 08/19/2018.

[19] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and François Soumis.
Time constrained routing and scheduling. In Handbooks in Operations Research and

82

http://drops.dagstuhl.de/opus/volltexte/2014/4842
http://drops.dagstuhl.de/opus/volltexte/2014/4842
http://linkinghub.elsevier.com/retrieve/pii/S037722171730351X
http://linkinghub.elsevier.com/retrieve/pii/S037722171730351X
https://dl.acm.org/citation.cfm?id=313883
https://doi.org/10.1287/opre.2013.1183
http://www.nowpublishers.com/article/Details/QJPS-12033
http://www.nowpublishers.com/article/Details/QJPS-12033
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/8.3.250
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/8.3.250
https://dl.acm.org/citation.cfm?id=88081
https://dl.acm.org/citation.cfm?id=88081
http://pubsonline.informs.org/doi/abs/10.1287/opre.8.1.101
http://www.jstor.org/stable/1911818?origin=crossref
http://link.springer.com/10.1007/0-387-25486-2_1
http://link.springer.com/10.1007/0-387-25486-2_1

Bibliography

Management Science, volume 8, chapter 2, pages 35–139. Elsevier, 1995. doi: 10.
1016/S0927-0507(05)80106-9. URL http://linkinghub.elsevier.com/retrieve/
pii/S0927050705801069. Accessed: 08/19/2018.

[20] Derya Dinler and Mustafa Kemal Tural. A Survey of Constrained Clustering. In
Unsupervised Learning Algorithms, pages 207–235. Springer International Publish-
ing, Cham, 2016. doi: 10.1007/978-3-319-24211-8_9. URL http://link.springer.
com/10.1007/978-3-319-24211-8_9. Accessed: 08/19/2018.

[21] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213, jan 2002. ISSN
0025-5610. doi: 10.1007/s101070100263. URL http://link.springer.com/10.
1007/s101070100263. Accessed: 08/19/2018.

[22] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y.
Zomaya, Sebti Foufou, and Abdelaziz Bouras. A Survey of Clustering Algorithms
for Big Data: Taxonomy and Empirical Analysis. IEEE Transactions on Emerging
Topics in Computing, 2(3):267–279, sep 2014. doi: 10.1109/TETC.2014.2330519. URL
http://ieeexplore.ieee.org/document/6832486/. Accessed: 08/19/2018.

[23] Julius Farkas. Über die Theorie der einfachen Ungleichungen. Journal
für die reine und angewandte Mathematik (Crelle’s Journal), 1902(124):1–27, 1902.
ISSN 0075-4102. doi: 10.1515/crll.1902.124.1. URL https://www.degruyter.
com/view/j/crll.1902.issue-124/crll.1902.124.1/crll.1902.124.1.xml. Ac-
cessed: 08/19/2018.

[24] Matteo Fischetti. Facets of two Steiner arborescence polyhedra. Mathematical
Programming, 51(1-3):401–419, jul 1991. ISSN 0025-5610. doi: 10.1007/BF01586946.
URL http://link.springer.com/10.1007/BF01586946. Accessed: 08/19/2018.

[25] Matteo Fischetti, Markus Leitner, Ivana Ljubi, Martin Luipersbeck, Michele Monaci,
Max Resch, Domenico Salvagnin, and Markus Sinnl. Thinning out Steiner trees : a
node-based model for uniform edge costs. Mathematical Programming Computation,
9(2):203–229, 2017. ISSN 1867-2949. doi: 10.1007/s12532-016-0111-0.

[26] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM, 34(3):596–615, jul
1987. ISSN 00045411. doi: 10.1145/28869.28874. URL http://portal.acm.org/
citation.cfm?doid=28869.28874. Accessed: 08/19/2018.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[28] Gerald Gamrath. Generic Branch-Cut-and-Price. PhD thesis, Technische Universität
Berlin, 2010. URL http://www.zib.de/gamrath/publications/gamrath2010_
genericBCP.pdf. Accessed: 08/19/2018.

83

http://linkinghub.elsevier.com/retrieve/pii/S0927050705801069
http://linkinghub.elsevier.com/retrieve/pii/S0927050705801069
http://link.springer.com/10.1007/978-3-319-24211-8_9
http://link.springer.com/10.1007/978-3-319-24211-8_9
http://link.springer.com/10.1007/s101070100263
http://link.springer.com/10.1007/s101070100263
http://ieeexplore.ieee.org/document/6832486/
https://www.degruyter.com/view/j/crll.1902.issue-124/crll.1902.124.1/crll.1902.124.1.xml
https://www.degruyter.com/view/j/crll.1902.issue-124/crll.1902.124.1/crll.1902.124.1.xml
http://link.springer.com/10.1007/BF01586946
http://portal.acm.org/citation.cfm?doid=28869.28874
http://portal.acm.org/citation.cfm?doid=28869.28874
http://www.zib.de/gamrath/publications/gamrath2010_genericBCP.pdf
http://www.zib.de/gamrath/publications/gamrath2010_genericBCP.pdf

Bibliography

[29] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in Con-
straint Programming. In Foundations of Artificial Intelligence, volume 2, chap-
ter 10, pages 329–376. Elsevier, 2006. doi: 10.1016/S1574-6526(06)80014-3.
URL http://linkinghub.elsevier.com/retrieve/pii/S1574652606800143. Ac-
cessed: 08/19/2018.

[30] German Bundestag. Federal Elections Act, 1993. URL https://bundeswahlleiter.
de/en/dam/jcr/4ff317c1-041f-4ba7-bbbf-1e5dc45097b3/bundeswahlgesetz_
engl.pdf. Accessed: 08/19/2018.

[31] Sebastian Goderbauer. Mathematische Optimierung der Wahlkreiseinteilung für die
Deutsche Bundestagswahl. Springer Fachmedien Wiesbaden, Wiesbaden, 2016. ISBN
978-3-658-15048-8. doi: 10.1007/978-3-658-15049-5. URL http://link.springer.
com/10.1007/978-3-658-15049-5. Accessed: 08/19/2018.

[32] Sebastian Goderbauer. Political Districting for Elections to the German Bun-
destag: An Optimization-Based Multi-stage Heuristic Respecting Administrative
Boundaries. pages 181–187. 2016. doi: 10.1007/978-3-319-28697-6_26. URL http:
//link.springer.com/10.1007/978-3-319-28697-6_26. Accessed: 08/19/2018.

[33] Sebastian Goderbauer and Marco Lübbecke. A Geovisual Decision Support System
for Optimal Political Districting. Working Paper, 2017.

[34] Sebastian Goderbauer and Jeff Winandy. Political Districting Problem: Literature
Review and Discussion with regard to Federal Elections in Germany. 2018. In
Revision.

[35] Pietro Grilli di Cortona, Cecilia Manzi, Aline Pennisi, Federica Ricca, and
Bruno Simeone. Evaluation and Optimization of Electoral Systems. Society for
Industrial and Applied Mathematics, jan 1999. ISBN 978-0-89871-422-7. doi:
10.1137/1.9780898719819. URL http://epubs.siam.org/doi/book/10.1137/1.
9780898719819. Accessed: 08/19/2018.

[36] Steve Harenberg, Gonzalo Bello, L. Gjeltema, Stephen Ranshous, Jitendra Harlalka,
Ramona Seay, Kanchana Padmanabhan, and Nagiza Samatova. Community
detection in large-scale networks: a survey and empirical evaluation. Wiley
Interdisciplinary Reviews: Computational Statistics, 6(6):426–439, nov 2014. ISSN
19395108. doi: 10.1002/wics.1319. URL http://doi.wiley.com/10.1002/wics.
1319. Accessed: 08/19/2018.

[37] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4-6):175–181, dec 2000. ISSN 0020-0190. doi:
10.1016/S0020-0190(00)00142-3. URL https://www.sciencedirect.com/science/
article/pii/S0020019000001423. Accessed: 08/19/2018.

[38] Karla Hoffman and Manfred Padberg. Set Covering, Packing and Partitioning
Problems. In Encyclopedia of Optimization, pages 3482–3486. Springer US, Boston,
MA, 2008. doi: 10.1007/978-0-387-74759-0_599. URL http://www.springerlink.
com/index/10.1007/978-0-387-74759-0_599. Accessed: 08/19/2018.

84

http://linkinghub.elsevier.com/retrieve/pii/S1574652606800143
https://bundeswahlleiter.de/en/dam/jcr/4ff317c1-041f-4ba7-bbbf-1e5dc45097b3/bundeswahlgesetz_engl.pdf
https://bundeswahlleiter.de/en/dam/jcr/4ff317c1-041f-4ba7-bbbf-1e5dc45097b3/bundeswahlgesetz_engl.pdf
https://bundeswahlleiter.de/en/dam/jcr/4ff317c1-041f-4ba7-bbbf-1e5dc45097b3/bundeswahlgesetz_engl.pdf
http://link.springer.com/10.1007/978-3-658-15049-5
http://link.springer.com/10.1007/978-3-658-15049-5
http://link.springer.com/10.1007/978-3-319-28697-6_26
http://link.springer.com/10.1007/978-3-319-28697-6_26
http://epubs.siam.org/doi/book/10.1137/1.9780898719819
http://epubs.siam.org/doi/book/10.1137/1.9780898719819
http://doi.wiley.com/10.1002/wics.1319
http://doi.wiley.com/10.1002/wics.1319
https://www.sciencedirect.com/science/article/pii/S0020019000001423
https://www.sciencedirect.com/science/article/pii/S0020019000001423
http://www.springerlink.com/index/10.1007/978-0-387-74759-0_599
http://www.springerlink.com/index/10.1007/978-0-387-74759-0_599

Bibliography

[39] Ken-ichi Kawarabayashi and Bruce Reed. Odd cycle packing. In Proceedings of
the 42nd ACM symposium on Theory of computing - STOC ’10, page 695, New York,
New York, USA, 2010. ACM Press. ISBN 9781450300506. doi: 10.1145/1806689.
1806785. URL http://dl.acm.org/citation.cfm?doid=1806689.1806785. Ac-
cessed: 08/19/2018.

[40] Nan Kong, Andrew J. Schaefer, Brady Hunsaker, and Mark S. Roberts. Maximizing
the Efficiency of the U.S. Liver Allocation System Through Region Design. Manage-
ment Science, 56(12):2111–2122, dec 2010. ISSN 0025-1909. doi: 10.1287/mnsc.1100.
1249. URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1100.1249.
Accessed: 08/19/2018.

[41] Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra Mutzel,
and Matteo Fischetti. An Algorithmic Framework for the Exact Solution of the
Prize-Collecting Steiner Tree Problem. Mathematical Programming, 105(2-3):427–
449, feb 2006. ISSN 0025-5610. doi: 10.1007/s10107-005-0660-x. URL http:
//link.springer.com/10.1007/s10107-005-0660-x. Accessed: 08/19/2018.

[42] Marco E. Lübbecke. Column generation. Wiley Encyclopedia of Operations Re-
search and Management Science, pages 1–19, 2011. ISSN 1550-2376. doi: 10.1002/
9780470400531.eorms0158. URL http://www.or.rwth-aachen.de/research/
publications/colgen.pdf. Accessed: 08/19/2018.

[43] Marco E Lübbecke and Jacques Desrosiers. Selected Topics in Column Generation.
Operations Research, 53(6):1007–1023, 2005. doi: 10.1287/opre.1050.0234. URL
https://doi.org/10.1287/opre.1050.0234. Accessed: 08/19/2018.

[44] François Margot. Symmetry in Integer Linear Programming. In 50 Years of Integer
Programming 1958-2008, pages 647–686. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010. doi: 10.1007/978-3-540-68279-0_17. URL http://link.springer.com/
10.1007/978-3-540-68279-0_17. Accessed: 08/19/2018.

[45] Anuj Mehrotra, Ellis L. Johnson, and George L. Nemhauser. An Optimization
Based Heuristic for Political Districting. Management Science, 44(8):1100–1114, 1998.
ISSN 0025-1909. doi: 10.1287/mnsc.44.8.1100.

[46] Friedrich Pukelsheim. 598 Sitze im Bundestag statt 709? 200 Wahlkreise statt
299! Deutsches Verwaltungsblatt, 133(3):153–160, feb 2018. ISSN 2366-0651. doi: 10.
1515/dvbl-2018-0306. URL http://www.degruyter.com/view/j/dvbl.2018.133.
issue-3/dvbl-2018-0306/dvbl-2018-0306.xml. Accessed: 08/19/2018.

[47] Federica Ricca, Andrea Scozzari, and Bruno Simeone. Political districting: from
classical models to recent approaches. 4OR, 9(3):223–254, sep 2011. ISSN 1619-
4500. doi: 10.1007/s10288-011-0177-5. URL http://link.springer.com/10.1007/
s10288-011-0177-5. Accessed: 08/19/2018.

[48] David Ryan and Brian A. Foster. An Integer Programming Approach to Scheduling.
Computer Scheduling of Public Transport, 1:269, aug 1981.

85

http://dl.acm.org/citation.cfm?doid=1806689.1806785
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1100.1249
http://link.springer.com/10.1007/s10107-005-0660-x
http://link.springer.com/10.1007/s10107-005-0660-x
http://www.or.rwth-aachen.de/research/publications/colgen.pdf
http://www.or.rwth-aachen.de/research/publications/colgen.pdf
https://doi.org/10.1287/opre.1050.0234
http://link.springer.com/10.1007/978-3-540-68279-0_17
http://link.springer.com/10.1007/978-3-540-68279-0_17
http://www.degruyter.com/view/j/dvbl.2018.133.issue-3/dvbl-2018-0306/dvbl-2018-0306.xml
http://www.degruyter.com/view/j/dvbl.2018.133.issue-3/dvbl-2018-0306/dvbl-2018-0306.xml
http://link.springer.com/10.1007/s10288-011-0177-5
http://link.springer.com/10.1007/s10288-011-0177-5

Bibliography

[49] Satu Elisa Schaeffer and Satu Elisa. Graph clustering. Computer Science Review, 1
(1):27–64, aug 2007. doi: 10.1016/j.cosrev.2007.05.001. URL http://linkinghub.
elsevier.com/retrieve/pii/S1574013707000020. Accessed: 08/19/2018.

[50] A. Schrijver and Alexander. Theory of linear and integer programming. Wiley, 1998.
ISBN 0471908541. URL https://dl.acm.org/citation.cfm?id=17634. Accessed:
08/19/2018.

[51] Nicholas O. Stephanopoulos and Eric M. McGhee. Partisan Gerryman-
dering and the Efficiency Gap. University of Chicago Law Review, 82,
2015. URL https://heinonline.org/HOL/Page?handle=hein.journals/uclr82&
id=843&div=&collection=. Accessed: 08/19/2018.

[52] Pamela H. Vance, Cynthia Barnhart, Ellis L. Johnson, and George L. Nemhauser.
Solving binary cutting stock problems by column generation and branch-and-
bound. Computational Optimization and Applications, 3(2):111–130, may 1994. ISSN
0926-6003. doi: 10.1007/BF01300970. URL http://link.springer.com/10.1007/
BF01300970. Accessed: 08/19/2018.

[53] François Vanderbeck. Decomposition and column generation for integer programs. PhD
thesis, Université Catholique de Louvain, 1994.

[54] François Vanderbeck. On Dantzig-Wolfe Decomposition in Integer Programming
and ways to Perform Branching in a Branch-and-Price Algorithm. Operations
Research, 48(1):111–128, feb 2000. ISSN 0030-364X. doi: 10.1287/opre.48.1.111.12453.
URL http://pubsonline.informs.org/doi/abs/10.1287/opre.48.1.111.12453.
Accessed: 08/19/2018.

[55] François Vanderbeck. Branching in branch-and-price: a generic scheme.
Mathematical Programming, 130(2):249–294, dec 2011. ISSN 0025-5610.
doi: 10.1007/s10107-009-0334-1. URL http://link.springer.com/10.1007/
s10107-009-0334-1. Accessed: 08/19/2018.

[56] François Vanderbeck and Martin W.P. Savelsbergh. A generic view of Dantzig-
Wolfe decomposition in mixed integer programming. Operations Research Let-
ters, 34(3):296–306, may 2006. ISSN 01676377. doi: 10.1016/j.orl.2005.05.009.
URL http://linkinghub.elsevier.com/retrieve/pii/S0167637705000659. Ac-
cessed: 08/19/2018.

[57] R. R. Vemuganti. Applications of Set Covering, Set Packing and Set Partitioning
Models: A Survey. In Handbook of Combinatorial Optimization, pages 573–746.
Springer US, Boston, MA, 1998. doi: 10.1007/978-1-4613-0303-9_9. URL http:
//link.springer.com/10.1007/978-1-4613-0303-9_9. Accessed: 08/19/2018.

[58] Venice Commission (European Commission for Democracy through Law). Code
of Good Practice in Electoral Matters, 2003. URL http://www.venice.coe.int/
webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev-e. Accessed:
08/19/2018.

86

http://linkinghub.elsevier.com/retrieve/pii/S1574013707000020
http://linkinghub.elsevier.com/retrieve/pii/S1574013707000020
https://dl.acm.org/citation.cfm?id=17634
https://heinonline.org/HOL/Page?handle=hein.journals/uclr82&id=843&div=&collection=
https://heinonline.org/HOL/Page?handle=hein.journals/uclr82&id=843&div=&collection=
http://link.springer.com/10.1007/BF01300970
http://link.springer.com/10.1007/BF01300970
http://pubsonline.informs.org/doi/abs/10.1287/opre.48.1.111.12453
http://link.springer.com/10.1007/s10107-009-0334-1
http://link.springer.com/10.1007/s10107-009-0334-1
http://linkinghub.elsevier.com/retrieve/pii/S0167637705000659
http://link.springer.com/10.1007/978-1-4613-0303-9_9
http://link.springer.com/10.1007/978-1-4613-0303-9_9
http://www.venice.coe.int/webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev-e
http://www.venice.coe.int/webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev-e

Bibliography

[59] Yiming Wang, Austin Buchanan, and Sergiy Butenko. On imposing connectivity
constraints in integer programs. Mathematical Programming, pages 1—-31, 2017.
ISSN 14364646. doi: 10.1007/s10107-017-1117-8.

[60] Justin C. Williams. Political Districting: A Review. Papers in Regional Science, 74(1):
13–40, 1995. ISSN 10568190. doi: 10.1111/j.1435-5597.1995.tb00626.x. URL http://
doi.wiley.com/10.1111/j.1435-5597.1995.tb00626.x. Accessed: 08/19/2018.

[61] Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of Clustering Al-
gorithms. Annals of Data Science, 2(2):165–193, jun 2015. ISSN 2198-5804.
doi: 10.1007/s40745-015-0040-1. URL http://link.springer.com/10.1007/
s40745-015-0040-1. Accessed: 08/19/2018.

87

http://doi.wiley.com/10.1111/j.1435-5597.1995.tb00626.x
http://doi.wiley.com/10.1111/j.1435-5597.1995.tb00626.x
http://link.springer.com/10.1007/s40745-015-0040-1
http://link.springer.com/10.1007/s40745-015-0040-1

Appendices

89

A. Solving Process Plots

91

A. Solving Process Plots

Figure
A

.1.:Prim
aland

dualbound
over

tim
e.

92

Fi
gu

re
A

.2
.:

D
ur

at
io

n
an

d
nu

m
be

r
of

va
ri

ab
le

s
ad

de
d

to
th

e
R

M
P

fo
r

ea
ch

PR
.T

he
ve

rt
ic

al
re

d
lin

e
in

di
ca

te
s

w
he

n
th

e
ro

ot
no

de
LP

R
w

as
so

lv
ed

to
op

tim
al

ity
.

93

A. Solving Process Plots

Figure
A

.3.:D
uration

and
num

ber
ofvariables

added
to

the
R

M
P

for
each

single
PP.

94

Fi
gu

re
A

.4
.:

Pr
ic

er
ca

lls
of

ea
ch

pr
ic

in
g

ro
un

d.
A

fil
le

d
ci

rc
le

in
di

ca
te

s
th

at
th

e
pr

ic
er

su
cc

ee
de

d
in

in
se

rt
in

g
va

ri
ab

le
s

in
to

th
e

R
M

P,
an

em
pt

y
ci

rc
le

th
at

it
di

d
no

t.
Th

e
ve

rt
ic

al
re

d
lin

e
in

di
ca

te
s

w
he

n
th

e
ro

ot
no

de
LP

R
w

as
so

lv
ed

to
op

tim
al

ity
.

95

A. Solving Process Plots

Figure
A

.5.:Percentage
ofvariables

ofthe
optim

alrootLP/IP
solution

thatare
contained

in
the

R
M

P.

96

B. OCPP Experiments Data

Table B.1.: OCPP instances.

State Nodes Edges Components
Nodes in
Max. Comp.

Edges in
Max. Comp.

anna 138 493 1 138 493
fpsol2.i.1 496 11654 228 269 11654
fpsol2.i.2 451 8691 89 363 8691
fpsol2.i.3 425 8688 63 363 8688
games120 120 638 1 120 638
homer 561 1629 12 542 1620
huck 74 301 3 69 297
inithx.i.1 864 18707 346 519 18707
inithx.i.2 645 13979 88 558 13979
inithx.i.3 621 13969 63 559 13969
jean 80 254 4 77 254
le450_15a 450 8168 1 450 8168
le450_15b 450 8169 1 450 8169
le450_15c 450 16680 1 450 16680
le450_15d 450 16750 1 450 16750
le450_25a 450 8260 1 450 8260
le450_25b 450 8263 1 450 8263
le450_25c 450 17343 1 450 17343
le450_25d 450 17425 1 450 17425
le450_5a 450 5714 1 450 5714
le450_5b 450 5734 1 450 5734
le450_5c 450 9803 1 450 9803
le450_5d 450 9757 1 450 9757
miles1000 128 3216 1 128 3216
miles1500 128 5198 1 128 5198
miles250 128 387 10 92 327
miles500 128 1170 1 128 1170
miles750 128 2113 1 128 2113
mulsol.i.1 197 3925 60 138 3925
mulsol.i.2 188 3885 16 173 3885
mulsol.i.3 184 3916 11 174 3916
mulsol.i.4 185 3946 11 175 3946
mulsol.i.5 186 3973 11 176 3973
myciel3 11 20 1 11 20

97

B. OCPP Experiments Data

myciel4 23 71 1 23 71
myciel5 47 236 1 47 236
myciel6 95 755 1 95 755
myciel7 191 2360 1 191 2360
queen10_10 100 1470 1 100 1470
queen11_11 121 1980 1 121 1980
queen12_12 144 2596 1 144 2596
queen13_13 169 3328 1 169 3328
queen14_14 196 4186 1 196 4186
queen15_15 225 5180 1 225 5180
queen16_16 256 6320 1 256 6320
queen5_5 25 160 1 25 160
queen6_6 36 290 1 36 290
queen7_7 49 476 1 49 476
queen8_12 96 1368 1 96 1368
queen8_8 64 728 1 64 728
queen9_9 81 1056 1 81 1056
school1 385 19095 5 377 19091
school1_nsh 352 14612 5 344 14608
zeroin.i.1 211 4100 86 126 4100
zeroin.i.2 211 3541 55 157 3541
zeroin.i.3 206 3540 50 157 3540

98

Table B.2.: OCPP solving time. Missing values indicate that the time limit was reached.
State tSIP,ptSIP,ptSIP,p tSPSP,ptSPSP,ptSPSP,p tSIP+TCI,ptSIP+TCI,ptSIP+TCI,p tSIP+TCP,ptSIP+TCP,ptSIP+TCP,p
anna 5.05 55.18 0.36 0.24
fpsol2.i.1
fpsol2.i.2 2,751.95
fpsol2.i.3
games120
homer
huck 21.17 44.46 19.15 62.58
inithx.i.1
inithx.i.2
inithx.i.3
jean 53.71 64.66 14.87 32.51
le450_15a
le450_15b
le450_15c
le450_15d
le450_25a
le450_25b
le450_25c
le450_25d
le450_5a
le450_5b
le450_5c
le450_5d
miles1000 776.76 40.73 0.43
miles1500 1,118.56 8.74 18.13
miles250 125.52 1,972.45 110.84 23.19
miles500 1,945.49 102.33
miles750 267.18 12.34 5.43
mulsol.i.1 4,796.57 198.93 241.42
mulsol.i.2
mulsol.i.3 2,846.47 931.85 2,402.16
mulsol.i.4
mulsol.i.5 1,658.86 1,451.35
myciel3 1.09 1.12 1.10 1.11
myciel4 3.28 11.27 3.29 3.25
myciel5 227.62 178.59 227.24 228.23
myciel6 4,905.58 4,902.04 4,905.38
myciel7
queen10_10 177.62 0.18 1.16
queen11_11 292.14 0.30 7.48
queen12_12 4,468.12 0.47 2,436.24
queen13_13 1,531.72 0.50 8.46
queen14_14 1,521.50 0.65 10.94

99

B. OCPP Experiments Data

queen15_15 0.83
queen16_16 2,499.03 1.15 200.88
queen5_5 0.77 2.80 0.05 0.02
queen6_6 28.94 128.34 0.08 4.22
queen7_7 26.67 240.62 0.04 0.07
queen8_12 668.21 0.17 785.64
queen8_8 41.79 1,342.47 0.21 0.07
queen9_9 492.97 0.13 374.17
school1
school1_nsh
zeroin.i.1 1,169.69 132.82
zeroin.i.2 2,139.37 1,084.63 4,741.41
zeroin.i.3 822.50 544.41 1,235.50

100

Table B.3.: OCPP gap.
State gSIP,pgSIP,pgSIP,p gSPSP,pgSPSP,pgSPSP,p gSIP+TCI,pgSIP+TCI,pgSIP+TCI,p gSIP+TCP,pgSIP+TCP,pgSIP+TCP,p
anna 0.0000 0.0000 0.0000 0.0000
fpsol2.i.1 31.5889 54.0000 0.0307 0.1070
fpsol2.i.2 0.0524 29.0000 0.0000 0.0407
fpsol2.i.3 0.0278 22.5000 0.0165 0.0165
games120 0.0526 0.0526 0.0256 0.0526
homer 0.0684 0.0965 0.0549 0.0396
huck 0.0000 0.0000 0.0000 0.0000
inithx.i.1 33.9013 71.0000 0.0321 0.0625
inithx.i.2 0.0794 25.8750 0.0226 0.0382
inithx.i.3 0.0560 50.7500 0.0144 0.0225
jean 0.0000 0.0000 0.0000 0.0000
le450_15a 0.0700 5.5217 0.1103 0.0700
le450_15b 0.1344 5.8182 0.1003 0.0920
le450_15c 1.0000 2.4091 0.0490 0.0714
le450_15d 4.5556 3.5455 0.0490 0.0714
le450_25a 0.1583 20.4286 0.0296 0.0692
le450_25b 0.1452 7.8235 0.1270 0.0597
le450_25c 2.6585 24.0000 0.0417 0.0638
le450_25d 5.2500 6.1429 0.0345 0.0791
le450_5a 0.0949 9.7143 0.0135 0.0274
le450_5b 0.1278 4.1724 0.0204 0.2195
le450_5c 0.1538 4.1724 0.0714 0.0791
le450_5d 0.1364 5.0000 0.0638 0.0714
miles1000 0.0000 1.3333 0.0000 0.0000
miles1500 0.0000 2.2308 0.0000 0.0000
miles250 0.0000 0.0000 0.0000 0.0000
miles500 0.0244 0.1351 0.0000 0.0000
miles750 0.0000 0.3548 0.0000 0.0000
mulsol.i.1 0.0000 0.9118 0.0000 0.0000
mulsol.i.2 0.0362 5.2000 0.0362 0.0362
mulsol.i.3 0.0000 2.3889 0.0000 0.0000
mulsol.i.4 0.0284 9.1667 0.0284 0.0248
mulsol.i.5 0.0000 1.2963 0.0399 0.0000
myciel3 0.0000 0.0000 0.0000 0.0000
myciel4 0.0000 0.0000 0.0000 0.0000
myciel5 0.0000 0.0000 0.0000 0.0000
myciel6 0.0000 0.6000 0.0000 0.0000
myciel7 0.3354 20.0000 0.3354 0.3354
queen10_10 0.0000 0.0645 0.0000 0.0000
queen11_11 0.0000 0.0811 0.0000 0.0000
queen12_12 0.0000 0.3333 0.0000 0.0000
queen13_13 0.0000 0.1429 0.0000 0.0000
queen14_14 0.0000 0.3265 0.0000 0.0000

101

B. OCPP Experiments Data

queen15_15 0.1719 0.3889 0.0000 0.0563
queen16_16 0.0000 0.1486 0.0000 0.0000
queen5_5 0.0000 0.0000 0.0000 0.0000
queen6_6 0.0000 0.0000 0.0000 0.0000
queen7_7 0.0000 0.0000 0.0000 0.0000
queen8_12 0.0000 0.0667 0.0000 0.0000
queen8_8 0.0000 0.0000 0.0000 0.0000
queen9_9 0.0000 0.0385 0.0000 0.0000
school1 20.3333 31.0000 0.0246 0.0331
school1_nsh 0.3256 15.7143 0.0179 0.0654
zeroin.i.1 0.0375 1.1875 0.0000 0.0000
zeroin.i.2 0.0000 4.8333 0.0000 0.0000
zeroin.i.3 0.0000 2.5789 0.0000 0.0000

102

Table B.4.: OCPP PR time and unsuccessful PR time. Missing values indicate that all pricing rounds
were successful.

State tPR
SIP,ptPR
SIP,ptPR
SIP,p tPR

SPSP,ptPR
SPSP,ptPR
SPSP,p tUPR

SIP,ptUPR
SIP,ptUPR
SIP,p tUPR

SPSP,ptUPR
SPSP,ptUPR
SPSP,p

anna 0.1141 0.8110 0.0300 24.7100
fpsol2.i.1 22.3587 1,827.6250 2,194.8900
fpsol2.i.2 21.6852 603.8458 143.4088 129.9900
fpsol2.i.3 20.5115 81.5763 154.3185 597.6200
games120 5.5707 13.7663 6.4330 41.2599
homer 8.1059 23.8886 11.3536 801.6650
huck 0.2859 0.5045 0.7313 4.1343
inithx.i.1 16.9004 27.7407 176.2700
inithx.i.2 16.9000 19.7425 229.1221 611.9900
inithx.i.3 16.4748 26.6758 103.6223 107.7700
jean 0.2563 0.6592 0.3154 2.8259
le450_15a 14.9619 172.2626 199.2572 36.7700
le450_15b 15.5774 164.5039 290.2400 126.0700
le450_15c 18.6026 63.5590 16.1000 518.0600
le450_15d 19.0963 102.2931 6.8400 343.2900
le450_25a 16.8561 249.7217 145.0913 129.3000
le450_25b 16.3951 249.4838 137.8713 56.4600
le450_25c 18.8462 292.0224 13.5000 390.0200
le450_25d 18.4588 244.3017 607.0100
le450_5a 9.5055 136.2983 19.9866 29.3800
le450_5b 11.9522 76.8552 141.3172 1,998.9400
le450_5c 14.8407 134.1219 330.7600 136.8400
le450_5d 14.3375 127.0181 325.1325 90.4800
miles1000 3.6106 59.5444 0.0752 730.1200
miles1500 6.8174 120.2312 0.1032 188.4200
miles250 0.7507 4.0490 1.4526 7.8066
miles500 0.7063 43.3775 0.7042 402.5063
miles750 1.3473 59.0196 0.0614 2,337.7350
mulsol.i.1 20.5841 47.6899 77.5788 2,563.0300
mulsol.i.2 15.8922 45.9111 25.1268 56.2600
mulsol.i.3 11.2938 60.5669 24.6427 679.0600
mulsol.i.4 9.9698 72.8167 13.1060 164.8500
mulsol.i.5 8.1308 75.8983 24.9193 41.7700
myciel3 0.0540 0.0379 0.0800 0.0864
myciel4 0.1924 0.2813 1.2000 1.2250
myciel5 2.3953 2.5149 4.2636 15.5020
myciel6 22.8131 67.9280 39.4966 391.6119
myciel7 39.9955 54.1465 372.1973 4,256.5800
queen10_10 0.9736 50.7044 0.0351 475.7221
queen11_11 1.1843 49.6692 0.3257 713.9111
queen12_12 8.5378 39.5735 15.2014 1,186.5980
queen13_13 2.6210 38.7124 0.0721 1,494.6950

103

B. OCPP Experiments Data

queen14_14 2.8910 30.5271 0.0797 1,656.3667
queen15_15 27.4780 27.7058 261.9013 2,168.0600
queen16_16 3.4991 23.6346 0.1220 1,729.9750
queen5_5 0.0317 0.1463 0.0050
queen6_6 0.4584 1.8868 0.7981 9.1033
queen7_7 0.3059 3.8802 0.0150 32.6083
queen8_12 2.5869 53.7367 3.6061 445.0800
queen8_8 0.4393 13.1605 0.0206 93.7323
queen9_9 2.7680 52.1733 6.2632 252.6941
school1 20.3373 1,240.8167 1,068.6300
school1_nsh 21.2987 615.5492 1,118.1500 749.2400
zeroin.i.1 27.6903 75.8875 75.0038 73.0300
zeroin.i.2 10.5897 101.5155 31.1250 15.1200
zeroin.i.3 6.0027 97.4039 34.0233 44.5900

104

C. GPDP Experiments Data

Table C.1.: GPDP instances.
State Nodes Edges
Baden-Wuerttemberg 612 1727
Bayern 1536 4494
Berlin 62 159
Brandenburg 200 511
Bremen 24 52
Hamburg 100 249
Hessen 474 1290
Mecklenburg-Vorpommern 118 273
Niedersachsen 490 1321
Nordrhein-Westfalen 689 1935
Rheinland-Pfalz 209 557
Saarland 52 128
Sachsen 439 1216
Sachsen-Anhalt 124 322
Schleswig-Holstein 171 417
Thueringen 219 574

105

C. GPDP Experiments Data

Table C.2.: GPDP solving time. Missing values indicate that the time limit was reached.
State tSIP,ptSIP,ptSIP,p tSPSP,ptSPSP,ptSPSP,p tSIP+GI,ptSIP+GI,ptSIP+GI,p tSIP+GP,ptSIP+GP,ptSIP+GP,p
Baden-Wuerttemberg
Bayern
Berlin 1,019.30 331.57 20.29 239.30
Brandenburg
Bremen 37.16 89.32 3.27 4.29
Hamburg
Hessen
Mecklenburg-Vorpommern
Niedersachsen
Nordrhein-Westfalen
Rheinland-Pfalz
Saarland 5,012.78 1,415.49 19.85 5,381.89
Sachsen
Sachsen-Anhalt
Schleswig-Holstein
Thueringen

Table C.3.: GPDP gap. Missing values indicate infinite gap.
State gSIP,pgSIP,pgSIP,p gSPSP,pgSPSP,pgSPSP,p gSIP+GI,pgSIP+GI,pgSIP+GI,p gSIP+GP,pgSIP+GP,pgSIP+GP,p
Baden-Wuerttemberg 0.0551 0.0552
Bayern 0.0719
Berlin 0.0000 0.0000 0.0000 0.0000
Brandenburg 0.1380
Bremen 0.0000 0.0000 0.0000 0.0000
Hamburg 0.0005 0.0181 0.0181
Hessen 0.0704 0.0704
Mecklenburg-Vorpommern 0.1255 0.1133
Niedersachsen 0.0510
Nordrhein-Westfalen 0.0716
Rheinland-Pfalz 0.0635 0.0635
Saarland 0.0000 0.0000 0.0000 0.0000
Sachsen 0.0442 0.0419
Sachsen-Anhalt 0.0711 0.0711
Schleswig-Holstein 0.0956 0.0903
Thueringen 0.0296 0.0296

106

Table C.4.: GPDP PR time and unsuccessful PR time. Missing values indicate that all pricing rounds
were successful.

State tPR
SIP,ptPR
SIP,ptPR
SIP,p tPR

SPSP,ptPR
SPSP,ptPR
SPSP,p tUPR

SIP,ptUPR
SIP,ptUPR
SIP,p tUPR

SPSP,ptUPR
SPSP,ptUPR
SPSP,p

Baden-Wuerttemberg 337.5894 25.7407 71.1100
Bayern 568.4353 75.0100 4,227.8800 402.6900
Berlin 2.8381 0.7373 25.5400 43.5800
Brandenburg 635.2965 3.0364
Bremen 0.1711 0.2892 1.5000 28.1100
Hamburg 17.6022 2.2859 10.3700 173.0200
Hessen 720.1893 11.6310 10,257.5800 31.7200
Mecklenburg-Vorpommern 24.5140 2.3077
Niedersachsen 490.9582 12.5182 36.4500
Nordrhein-Westfalen 220.4420 19.1132 154.5200
Rheinland-Pfalz 514.3029 4.5900 9.5200
Saarland 3.5999 1.1473 244.9900 87.8000
Sachsen 568.5095 9.5927 3,936.6600 21.9800
Sachsen-Anhalt 50.2157 2.5923 190.3100
Schleswig-Holstein 83.7137 3.1420 449.9100
Thueringen 136.7019 4.6767 2.6000

107

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Contribution
	Outline

	Preliminaries
	Common Math
	Graph Theory
	Cluster Analysis
	Linear Programming
	Mixed Integer Programming
	Set Covering, Packing and Partitioning
	Problem Definition
	Mixed Integer Program Formulation
	Related Problems

	Related Work
	Vertex Clustering
	Ryan-Foster Branching
	Connectivity
	Node Cuts
	Node Separators
	Shortest Path Subtrees

	Connected Vertex Clustering Problem
	Original Formulation
	Hardness
	Aggregated Extended Formulation

	Method
	Master Problem
	Pricing
	Reduced Costs
	Pricing Problem
	Pricing Loop

	Branching
	Branching in the Master Problem
	Branching Constraints in the Pricing Problem
	Objective Function Adjustments in the Pricing Problem

	Branch-and-Price
	Farkas Pricing
	Upper Bounds

	Implementation
	Tools and Libraries
	Libraries
	Integrated Development Environment

	Framework Architecture
	Main Packages
	Core Classes
	Plug-In Architecture

	Features
	Pricers
	Shortest Path Subtrees Pricer
	Separator Inequalities Pricer

	Initializers

	Odd Cycle Packing Problem
	Pricing Problem
	Framework Plug-Ins

	German Political Districting Problem
	Pricing Problem
	Objective Function
	Custom Constraints

	Framework Plug-Ins

	Computational Results
	Performance Metrics and Performance Profiles
	Odd Cycle Packing Problem
	Dataset
	Evaluation

	German Political Districting Problem
	Dataset
	Evaluation

	Summary

	Conclusion and Outlook
	Outlook

	Appendix Solving Process Plots
	Appendix OCPP Experiments Data
	Appendix GPDP Experiments Data

