
Master Thesis

The Seat Assignment Problem
for Aeroplane Boarding

Jens Doveren

First examiner: Priv.-Doz. Dr. Walter Unger
Second examiner: Prof. Dr. Marco Lübbecke

Contents

1 Introducion 1
1.1 Literature Survey . 1
1.2 Own Contributions . 3

2 Problem Formulation 5

3 NP-Hardness 8

4 MIP Formulation 13
4.1 Standard Formulation . 13
4.2 Alternative Formulation . 15

5 Heuristics 18

6 Computational Study 23
6.0.1 Instance Generation . 23
6.0.2 Test Description . 24
6.0.3 Software and Hardware used 25

6.1 Results . 25
6.1.1 Dual Gaps for MIPs . 26
6.1.2 Robustness of Solutions . 30
6.1.3 A non-optimal Hwtw Solution 30
6.1.4 Comparison to Boarding Sequence Optimisation 30

6.2 Conclusions . 33

7 Outlook and Future Research 34
7.1 Heuristics and Data . 34
7.2 Online Setting . 34

7.2.1 Possible Scenarios . 35
7.2.2 Consequences . 37

8 Conclusion 38

References 39

A Code Listings 42
A.1 Library . 42
A.2 Instance Generation . 72

B Statutory Declaration in Lieu of an Oath 73

Chapter 1

Introducion

In this thesis, we investigate possible optimisations of the aeroplane boarding pro-
cess. To accomplish this, we define and mathematically model the process, for-
mulate it as a minimisation problem, and propose a solution procedure. We show
that the problem is computationally hard in a theoretical sense and investigate
the quality of heuristic approaches as well as some of its online properties.

The boarding process is of particular interest for airlines to improve profit-
ability as well as customer satisfaction. Since boarding policy changes pose a
lower implementation barrier than buying new planes or making changes to exist-
ing infrastructure, advances in aeroplane boarding research have the potential to
positively impact customers and airlines relatively immediately.

1.1 Literature Survey

One effect of long passenger boarding times are flight delays, which are an ever-
present problem in air traffic. According to [Sch10], as many as 35.5 percent of
European flights were delayed by more than 15 minutes in 2007. Delays are by
no means merely a nuisance - according to a study of the economic impact of
flight delays in the United States by [Bal+10], delays in 2007 incurred cost of US$
31.2 bn, of which US$ 16.7 bn were borne by passengers in the form of missed
connections and working hours. In addition to reducing delays, speeding up the
boarding process can help reduce the time a plane spends at the gate, which has
direct financial implications for the airline. It has been estimated by [CTA04] that
reducing the strategic time buffer of an Airbus A320, one of the most widely used
passenger jets in the industry, by one minute saves the airline between AC11 and
AC48.

Due to the potential economic benefits, research into optimal boarding pro-
cedures has been conducted for some time. A general introduction into the topic

Page 1

1.1. Literature Survey

as well as an overview of many of the strategies explored so far can be found in
[JN15]. It is important to note that this overview paper, like the larger part of the
body of research, only considers procedures where passengers are assigned their
seats prior to boarding, as opposed to open seating, where passengers choose their
seats during boarding. This differentiates the scenario explored in this here thesis
from those most commonly studied - we aim to understand the problem of assign-
ing passengers their seat upon entering the plane, while the order in which they
arrive is out of our control.

In the context of the traditional scenario in which passengers are assigned their
seats prior to boarding and the sequence in which they board may be altered,
[JN15] cites Steffen’s method as the fastest procedure to board by seat. Ini-
tially proposed in [Ste08], it results from generalising a seating pattern that was
the result of a Markov chain Monte Carlo optimisation. Steffen’s method
primarily focusses on the time passengers spend stowing their luggage in overhead
compartments and garnered positive reception in both academic as well as main-
stream publications. The fact that the development of a boarding procedure gets
featured in mainstream media outlets such as [Mou11], [Str14] and [Sto14] points
to significant interest in the topic even by the general public. The development
of efficient boarding procedures may also be directly commissioned by airlines, as
was the case for [Bri+05], which was financed and tested at America West Air-
lines in 2003. By implementing the reverse pyramid boarding scheme suggested
in the paper, America West Airlines reportedly reduced their boarding times by
20 percent. The boarding methods mentioned here will be properly defined in
chapter 5 and examined in terms of their performance in chapter 6.

The methods to model, simulate and optimise the boarding process vary widely
from multi-agent based simulation using varying boarding policy compliance rates
where passengers move at individually different speeds in [AVB09] to using a cell-
based simulation where both walking and stowing speeds are chosen from a range
in the comparative study [JM17]. Since we will use mixed integer programming
(MIP) in this thesis, it shall be noted that this approach to boarding optimisation
was first explored in [Baz07] to assign passengers who already know their seats to
boarding groups. Additional work using this technique was done in [MS16], where
the authors used mixed integer programming to assign passengers to seats based on
the number of carry-on luggage items, while assuming a constant walking speed
and infinite overhead compartment size. Using this optimisation as a building
block, the same authors suggested a three stage process to yield more stable seat
assignments in [MSK18]. In this process, their previously developed MIP assigns
seats to passengers based on their carry-on items, then a second MIP aims to
stabilise the assignment without affecting the boarding time and as a final step,
the passenger boarding sequence is computed using Steffen’s method.

Page 2

1.2. Own Contributions

Steffen’s method also serves as the boarding sequence in the recently pub-
lished [SMK19], in which the authors model moving through the plane using a MIP
in order to assign passengers seats. It is assumed that moving speed is constant
and independent of the individual passenger and the stowing speed is determined
by the number of carry-on items, as is the case in [MSK18].

Recently, [WT19] has investigated the use of mixed integer programming to op-
timise boarding sequences, while imposing rules for passenger behaviour inside the
plane similar to the ones used in this thesis. Since we shall use the same passenger
behaviour regime, this work is essentially a variation of the aforementioned paper
in which we investigate the optimisation possibilities of assigning seats rather than
modifying the boarding sequence.

1.2 Own Contributions

In section 2, this thesis introduces and formalises a boarding scenario in which
passengers are assigned their seats upon entering the plane, while the order of the
passengers cannot be changed. We call this scenario the Boarding an Aeroplane
Problem (BAP). Such a scenario is different from - and in a certain sense sits in
between - the two classical approaches of open seating and assigning seats before
the boarding starts. The motivation to study this scenario is twofold - on one
hand it is interesting from a purely theoretical point of view to explore how the
properties of the aeroplane boarding problem change when instead of effectively
rearranging the queue given the seat assignments we are allowed to assign seats
but not change queueing order. On the other hand, practical implementations of a
boarding policy which allows passengers to first queue and then assign them seats
upon entering become feasible when using electronic ticketing systems and smart
devices that tell passengers their assigned seats. Avoiding rearranging passengers
or forming boarding groups this way has the potential to have lower requirements
in terms of personnel and infrastructure, while potential gains in boarding speed
are explored in this thesis. It is important to note that we only consider perfectly
rectangular seat layouts with a single aisle in the middle, as it is commonly found
in short and medium-haul flights.

In section 3, we show that BAP is NP-hard by reduction of 3-Partition. Since
it is hence unlikely that there can be an efficient algorithm for solving BAP, unless
P = NP , this finding motivates the study of heuristics and approximations. The
NP-hardness proof may also be of interest to readers with a background in machine
scheduling, as it is easy to imagine BAP as such a problem, but we have been
unable to find any literature about this specific setting.

In section 4, we present two mixed integer programming approaches to solve
BAP exactly. One of these MIPs is a compact formulation while the other utilises

Page 3

1.2. Own Contributions

a larger number of lazy constraints. Their computational performance is compared
in section 6.1.

In section 5, we formally define various heuristic approaches to the problem.
Some of these were created by ourselves, while others were taken from existing
literature, such as Steffen’s method and the reverse pyramid scheme. We char-
acterise a set of problem instances for which one of our heuristics is optimal in
theorem 2.

In section 6, we present a computational comparing the different approaches
on a set of problem instances in terms of their computation time, solution quality
and robustness when compared to the exact MIP solution. We shall see that in
many cases, heuristic solutions are of the same quality as the ones produced by
our exact approaches.

In section 7 we present a number of potentially interesting problems surround-
ing BAP that were out of scope for this thesis. These focus primarily around
the online properties of the problem, which are of particular interest, since they
directly relate to real-world scenarios. While all previous sections assume that
when computing a seat assignment one has knowledge of the entire passenger se-
quence, in section 7.2 we consider scenarios where that knowledge is limited. Such
a scenario might be that the passenger sequence only becomes known during the
seat assignment process, and every passenger must be assigned a seat before the
next one is presented. In reality, such a situation arises when passengers are not
forced into a proper queue but rather wait to enter the plane in a drove. While
they still enter the plane in a given order, the seat assigner cannot look ahead
past the passenger at the plane’s entrance. We show that all approaches that
ignore the distribution of walking and stowing speeds over all passengers, which
includes Steffen’s method and the reverse pyramid scheme, produce results that
are arbitrarily worse than the optimal seat assignment.

Page 4

Chapter 2

Problem Formulation

We consider the problem of assigning a queue of passengers seats in an aeroplane
upon entering, called the Boarding an Aeroplane Problem, or BAP for short.

Definition 1 (Boarding an Aeroplane Problem). An instance of BAP consists of
the following:

• a finite ordered set P = (p1, . . .) of passengers.

• a finite ordered set R = (r1, . . .) of rows.

• numbers of seats per row k1, k2 ∈ Z≥0 for each side of the plane. We define
k := k1 + k2 as the total number of seats per row.

• a finite set S :=
⊎
r∈R (S1

r]S2
r) of seats, where S1

r := ((r, 1), . . . , (r, k1))
and S2

r := ((r, k1 + 1), . . . , (r, k1 + k2)) are the seats in row r ∈ R on each
side of the plane. It holds that |P| ≤ |S|. To refer to the row a seat s ∈ S
is in, we write r(s).

• for each row r ∈ R, for each passenger p ∈ P the time the passenger p takes
to pass through the aisle section by row r is given by twp,r ∈ Q≥0.

• for each passenger p ∈ P, the time the passenger p occupies the aisle when
stowing away their luggage to take a seat in row r is given by tsp,r ∈ Q≥0.

For readers with a background in mixed integer programming, the details of the
problem are probably most easily understood by looking at the MIP formulation,
which can be found in section 4. Since this thesis presents the first formulation of
the problem, we invest the effort to define the problem in a formal manner.

For every passenger p ∈ P and time point t ∈ Q≥0, the position of p is given
by λ : P×Q≥0 → {q}]R]S. It can be the queueing position q, a row or a seat.

Page 5

The goal is to compute an injective seat assignment σ : P→ S : p 7→ ((r(p), s(p))
such that it minimises the total boarding time T (σ), which is defined as follows:

T : SP → Q≥0 : min
t∈Q≥0

{t | ∀p ∈ P : λ(p, t) = σ(p)}

Since we assign passengers their seats upon entering, situations where passengers
have to work their way past an already seated passenger within a row can always
be avoided by boarding window first. Hence we are often more interested in the
row that a passenger is assigned to, which we denote as follows:

ρ : P→ R : p 7→ r(σ(p))

Crucially for the minimisation process, the passenger position at any given point
of time is uniquely defined by the following constraints:

• Every passenger starts in the queue:

∀p ∈ P : λ(p, 0) = q

• Passengers enter the aeroplane in queueing order:

∀p ∈ P ∀p′ ∈ P≥p : (λ(p, t) = q =⇒ λ(p′, t) = q)

• At any given point of time, every position that is not the queue is occupied
by at most one passenger.

∀p, p′ ∈ P ∀t ∈ Q≥0 : (λ(p, t) = λ(p′, t) =⇒ p = p′ ∨ λ(p, t) = q)

• Passengers do not walk backwards. Once they have left the queue, they do
not enter it again. They do not walk back into past rows and do not leave
their seat:

∀p ∈ P ∀r ∈ R ∀r′ ∈ R≤r ∀t ∈ Q ∀t′ ∈ Q≥t :
λ(p, t) 6= q =⇒ λ(p, t′) 6= q

λ(p, t) = r =⇒ λ(p, t′) 6= r′

λ(p, t) = σ(p) =⇒ λ(p, t′) = σ(p)

• Passengers move on to the next position as early as possible:

∀p ∈ P ∀t ∈ Q≥0 ∀i ∈ [|R|] ∀t′ ∈ Q≥t+twp,ri :

λ(p, t) = ri =⇒


λ(p, t′) = σ(p) ∨
∃ p′ ∈ P<p : λ(p′, t′) = ri+1 ∨
∃ r′ ∈ R>ri : λ(p, t′) = r′

Page 6

• Passengers do not move faster than their movement speed allows. After
having stowed their luggage, passengers take their seat immediately.

∀ p ∈ P ∀r ∈ R<ρ(p) :

sup {t ∈ Q≥0 | λ(p, t) = r}− inf {t ∈ Q≥0 | λ(p, t) = r} ≥ twp,r

∀ p ∈ P :

sup {t ∈ Q≥0 | λ(p, t) = ρ(p)}− inf {t ∈ Q≥0 | λ(p, t) = ρ(p)} = tsp,ρ(p)

• Passengers cannot teleport, that is they must move from the queue to the
first row, from each row to the following row and from their row to their
seat:

∀p ∈ P ∀t ∈ Q≥0 ∀i ∈ [|R|] :

λ(p, t) = r1 =⇒ ∃t′ ∈ Q ∩ [0, t) : λ(p, t′) = q

λ(p, t) = ri =⇒ ∃t′ ∈ Q ∩ [0, t) : λ(p, t′) = ri−1

λ(p, t) = σ(p) =⇒ ∃t′ ∈ Q ∩ [0, t) : λ(p, t′) = r(p)

Page 7

Chapter 3

NP-Hardness

In this chapter we show that the aeroplane boarding problem as defined in 1 is
strongly NP-hard. This will be done via reduction of the 3-Partition problem,
which is known to be strongly NP-hard (see [GJ75]).

Definition 2 (3-Partition). An instance I of 3-Partition is defined by the integers
B,m ∈ N>0, A := (a1, . . . , a3m) ∈ Z3m

>0 , such that B
4
< ai <

B
2

for all i ∈ [3m] and∑3m
i=1 ai = mB.
The decision problem is whether there exists a series of multisets (A1, . . . Am)

such that Aj ⊆ A and
∑

a∈Aj
a = B for all j ∈ [m] and for each i ∈ [3m] there

exists exactly one j ∈ [m] such that ai ∈ Aj. For instances for which these
conditions hold, we write I ∈ 3-Partition.

Theorem 1. BAP is strongly NP-hard.

Proof. Consider an instance I of 3-Partition, which is defined as follows:

• m,B ∈ Z>0

• A := (a1, . . . , a3m) ∈ Z3m
>0 : B

4
< ai <

B
2
∀i ∈ [3m] ,

∑3m
i=1 ai = mB

We implicitly define a transformation f from instances of 3-Partition to instances
of BAP by defining f(I) as follows:

• P := [5m]

• R := [2m2 −m]

• k := 5

• twp,r := 0 ∀p ∈ P ∀r ∈ R

Page 8

For convenience, we introduce the following notation for indicator rows, that is
the rows in the plane from which we will be able to read a 3-partition of the ai,
should one exist:

I :=

{
Ij := j +

j−1∑
i=1

4(m− i)

∣∣∣∣∣ j ∈ [m]

}

The passengers will be partitioned into three sets that serve distinct functions in
the reduction, namely the two sets of synchronisation passengers S1 and S2 as well
as the partition passengers P. These are defined as follows:

S1 := [m] , P := {m+ 1, . . . , 4m}, S2 := {4m+ 1, . . . , 5m}

Using this notation, we define the stowing times for each passenger p ∈ P and
r ∈ R as follows:

tsp,r :=


(m− p)B if p ∈ S1 and r = Im+1−p

ap−m if p ∈ P and r ∈ I
(p− (4m+ 1))B if p ∈ S2 and r = I5m−p+1

(mB)2 otherwise

An optimal assignment on such an instance can be seen in figure (3.1). In order
to proof the correctness of this reduction, we first proof the following lemma:

Lemma 1. Let I be an instance of 3-Partition with notation as defined in (2). It
holds that cost(opt(f(I))) ≥ mB.

Proof. Let I be an instance of 3-Partition. Consider an optimal seat assignment
σ for the BAP instance f(I). Note that if σ(p̂) /∈ I for any p̂ ∈ P we have
cost(σ) ≥ (mB)2 ≥ mB. In order to see the same for the remaining case where
σ(p) ∈ I for all p ∈ P we consider the minimum stowing time µp for any passenger
regardless of their seat:

µp := min
r∈R

tsp,r

This yields the accumulated stowing time accs for all passengers as follows:

Page 9

accs :=
∑
p∈P

µp

= B
∑
p∈S1

(m− p) +B
∑
p∈P

ap−m +B
∑
p∈S2

(p− (4m+ 1))

= B

(
m(m− 1)

2

)
+mB +B

(
m(m− 1)

2

)
= m2B

Since σ(p) ∈ I for all p ∈ P it holds that:

cost(σ) ≥ accs

|I|
=
m2B

m
= mB

We show that any positive instance I of 3-Partition satisfies cost(opt(I)) = mB.
Let I be a positive instance of 3-Partition, that is one for which there exists a
partition (A1, . . . , Am) fulfilling the requirements defined in (2). Since mB is a
lower bound on the makespan induced by any seat assignment, as shown in (1),
any assignment σ with cost(σ) = mB is optimal. One such optimal assignment σ
is given as follows:

σ(p) :=


Im+1−p if p ∈ S1

Ij if p ∈ P and ap−m ∈ Aj
I5m+1−p if p ∈ S2

Page 10

...

...
...

...

0B

B

(m− 2)B

(m− 1)B

(m− 1)B

(m− 2)B

B

0B

sync partition sync aisle

4m− 4

4m− 8

4

Figure 3.1: An optimal assignment in a BAP instance generated in reduction.

In order see that σ results in a boarding schedule with a makespan of mB, it is
advised to look at figure 3.1 and simulate the boarding process in m phases of
length B.

During the first phase, all passengers from S1 enter the plane and all indicator
rows except I1 are blocked by a stowing passenger from S1. All passengers from
P enter the plane and those p ∈ P for which σ(p) = I1 take their seat. This
process takes exactly B seconds since this is the accumulated stowing time of
these passengers by construction of f(I) and σ. Since there is aisle space for
4m − 4 passengers between I1 and the obstruction by the passenger stowing in
I2, passengers who are not assigned a seat in I1 do not obstruct those who are.

Page 11

The last passengers to enter are the synchronisation passengers from S2, for all of
whom there is space in the aisle between I1 and I2, except for the final one p5m,
for whom σ(p5) = I1 holds and who will finish stowing at mB.

During the second phase, that is after B time has passed, the synchronisation
passenger in I2 has finished and the remaining passengers behave in a similar
fashion as they did in the first phase. The aisle space between I1 and I2 is four
rows shorter to account for the four passengers from P and S2 seated in I1. The
stowing time for the synchronisation passenger from S2 in I2 is shortened by B to
account for the later start of the phase so they will finish stowing at mB.

All following phases follow the same pattern, all having the synchronisation
passenger from S2 finish stowing at mB. Hence it holds that cost(σ) = mB,
proofing that cost(opt(f(I))) = mB for any positive 3-Partition instance I.

Conversely we show that for any negative instance I of 3-Partition it holds
that cost(opt(I)) > mB. Let I be a negative instance of 3-Partition as defined in
2, that is one for which for all partitions (A1, . . . , Am) there exists a j ∈ [m] such
that

∑
a∈Aj

a > B. Consider the BAP instance f(I) and assume that there exists

an optimal seat assignment σ such that cost(σ) = mB.
By construction of the stowing times, only the indicator rows I can be used

to achieve that makespan. Also by construction, exactly one passenger from each
of the synchronisation sets S1 and S2 is seated in each indicator row and their
respective stowing times add up to (m− 1)B. For the overall makespan of σ to be
no larger than mB, the remaining stowing time budget for each indicator row is
B. Since there are as many remaining indicator row seats as there are passengers
in P, all three remaining seats per indicator row must be utilised. This implies
a partition (A1, . . . , Am) on P and the associated A from the original 3-Partition
instance. Since there exists a j ∈ [m] such that

∑
a∈Aj

a > B by assumption,
there must be an indicator row that has an accumulated stowing time larger than
mB using the assignment σ. This is contradicts cost(σ) = mB. Hence such an
assignment cannot exist and since mB is a lower bound on the makespan as per
lemma (1) any negative instance I of 3-Partition must imply an optimal makespan
of f(I) larger than mB.

Page 12

Chapter 4

MIP Formulation

In a mixed integer programming setting we optimise boarding time by minimising
a makespan variable Cmax that is required to be greater or equal to the individual
time that every passenger is seated. What makes such a formulation of BAP non-
trivial is the fact that on one hand, we need to model arrival times for passengers
at every row to be able to enforce minimum stay durations (i. e. walking and
stowing times), and on the other hand the seat assignment is a variable. In com-
bination, those two factors mean that at modelling time, for a given passenger, we
do not know the specific row from which leaving means having taken a seat.

4.1 Standard Formulation

The solution we present here uses the big M method to deactivate certain con-
straints for passengers that have already taken their seat to effectively allow them
to pass through other passengers, to no longer obstruct other passengers and to
rush to the end of the plane in zero time.

In order to solve a given instance of BAP, with notation as defined in 1, we
solve the following mixed integer program, where we define R∗ := R] {|R|+ 1}:

Page 13

4.1. Standard Formulation

min Cmax

s. t. Cmax ≥ tarr
p,|R|+1 ∀p ∈ P (4.1)∑

r∈R

xp,r = 1 ∀p ∈ P (4.2)∑
p∈P

xp,r ≤ k ∀r ∈ R (4.3)

tarr
p,r+1 ≥ tarr

p,r + tsp,rxp,r + twp,r

|R|∑
r′=r+1

xp,r′
∀p ∈ P
∀r ∈ R

(4.4)

tarr
p,r ≥ tarr

p′,r+1 −M(1−
|R|∑

r′=r+1

xp,r′)
∀p ∈ P ∀p′ ∈ P<p

∀r ∈ R
(4.5)

tarr
p,r+1 ≥ xp,r(

r−1∑
r′=1

twp,r′ + tsp,r)
∀p ∈ P
∀r ∈ R

(4.6)

xp,r ∈ {0, 1} ∀p ∈ P∀r ∈ R (4.7)

tarr
p,r ∈ Q≥0 ∀p ∈ P∀r ∈ R∗ (4.8)

Cmax ∈ Q≥0 (4.9)

The solution of the BAP instance is a seat assignment σ, which is encoded in
binary decision variables xp,r, defined in (4.7) for every passenger p ∈ P and row
r ∈ R. The makespan variable Cmax in (4.9) is chosen to be continuous although
it is guaranteed to be integral by the definition of BAP. The reasoning behind
this is to not needlessly restrict the solver and to avoid branching on variables
that are not decision variables. For the same reason, the variables tarr

p,r defined in
(4.8), encoding the time that a given passenger p ∈ P arrives at a row r ∈ R∗,
are continuous as well. Since arriving in one row is considered to be the same as
leaving the previous one, we add a virtual row |R|+1 after the last row to indicate
leaving the last row and call the set of rows including this virtual row R∗.

To ensure that the valuation of the decision variables xp,r encodes a valid seat
assignment, every passenger p ∈ P must be assigned exactly one row r ∈ R,
which is required in (4.2). Since we assign passengers to rows rather than seats
we need to make sure that we cannot assign more passengers to a row than the
plane has seats per row, which is enforced in (4.3). The reason that we assign to
rows rather than seats is that in our definition of BAP there is no difference in
stowing time for seats within the same row, as well as no penalty for moving past
seated passengers in a row. Assigning to seats under these conditions introduces
symmetry into the model, since all passengers in a row can be permuted without

Page 14

4.2. Alternative Formulation

affecting the makespan. Since symmetry is computationally disadvantageous in
mixed integer programs we chose to assign to rows and interpret the result as a
seat assignment from the window to aisle.

The makespan condition (4.1) defines boarding as complete once all passengers
have left the last row. This definition requires a loosening of constraints once
a passenger has taken their seat such that their virtual way to the end of the
plane does not interfere with actual passengers walking or stowing. The remaining
constraints concern the relation between arrival and departure times of passengers
in rows.

A passenger p ∈ P can only leave a row r ∈ R after their arrival. Should p
be seated in r they must spend stowing time tsp,r , should they be seated in a row
behind r, that is some r′ ∈ R>r they must spend walking time twp,r. All of these
constraints are encoded in (4.4).

Row usage is exclusive, i. e. passengers block other passengers from entering
the row they are occupying, hence each passenger can only enter a given row once
all previous passengers have left that row. This condition uses the order on the
passenger set P and is encoded in (4.5). To avoid passengers that have already
taken their seat obstructing other passengers, they are allowed to enter occupied
rows once they have taken their seat, which is encoded as a big M condition. The
M can be chosen as the maximum amount of time that a passenger might spend
in any row.

In an attempt to improve the dual bound during the branch-and-bound process,
we add a lower bound on the arrival times of any given combination of passenger
and row in (4.6). This bound is easily computed as the sum of walking times for all
rows before the given one and the stowing time for the given row. The effect that
adding these constraints has on the solution process will be evaluated empirically
in section 6.1.

4.2 Alternative Formulation

One weakness of the previous model is that since passengers only get assigned to
seats during the optimisation, it is unknown where a passenger sits at modelling
time. As a consequence, passengers must walk to the end of the plane after having
taken their seat as ghosts.

The desire to overcome this weakness motivates the alternative MIP formu-
lation presented here. Instead of passengers, we imagine seats moving to their
predetermined position in the plane, which has the advantage that we know at
modelling time where a seat will go and can hence hard-code where the assigned
passenger will stow their luggage. The obvious downside of such a formulation is
that the order of the passengers given in the instance must be transferred onto the

Page 15

4.2. Alternative Formulation

seats, which have no inherent order. This is accomplished using a big M condition,
again resulting in computational difficulties.

min Cmax

s. t. Cmax ≥ tleave
r,(r,s) ∀(r, s) ∈ S (4.10)∑

(r,s)∈S

xp(r,s) = 1 ∀p ∈ P (4.11)

∑
p∈P

xp(r,s) ≤ 1 ∀(r, s) ∈ S (4.12)

tarr
q,(r,s) = tleave

q−1,(r,s)

∀(r, s) ∈ S
∀q ∈ R1<q≤r

(4.13)

tleave
q,(r,s) ≥ tarr

q,(r,s) +
∑
p∈P

xp(r,s)t
w
p,r

∀(r, s) ∈ S
∀q ∈ R<r

(4.14)

tleave
r,(r,s) = tarr

r,(r,s) +
∑
p∈P

xp(r,s)t
s
p,r ∀(r, s) ∈ S (4.15)

tarr
q,(r,s) ≥ tleave

q,(r′,s′) −M

2− xp(r,s) −
∑

p′∈P<p

xp
′

(r′,s′)

 ∀(r, s) ∈ S
∀(r′, s′) ∈ S
∀p ∈ P

∀q ∈ R≤min(r,r′)

(4.16)

1− xp(r,s) ≥
∑

p′∈P>p

xp
′

(r,s′)

∀p ∈ P∀r ∈ R
∀s ∈ [k]
∀s′ ∈ [k]<s

(4.17)

xp(r,s) ∈ {0, 1} ∀p ∈ P
∀(r, s) ∈ S

(4.18)

tarr
q,(r,s) ∈ Q≥0

∀(r, s) ∈ S
∀q ∈ R≤r

(4.19)

tleave
q,(r,s) ∈ Q≥0

∀(r, s) ∈ S
∀q ∈ R≤r

(4.20)

Cmax ∈ Q≥0 (4.21)

The optimal seat assignment σ is encoded using binary indicator variables xp(r,s)
for all passengers p ∈ P and seats (r, s) ∈ S, as defined in (4.18). This is different
from the previous formulation, where passengers were merely assigned to rows,
since in this formulation we need a way to tell the seats within a row apart as they
represent different entities passing through the plane.

Page 16

4.2. Alternative Formulation

Arrival and leave times for each row q ∈ R and seat (r, s) ∈ S are defined
in (4.19) and (4.20) as continuous, although they are guaranteed to be integral,
in order to not constraint the solver. The same is true for the makespan variable
defined in (4.21). Arrival and leave times are coupled in (4.13).

To ensure a valid assignment, we require that every passenger is assigned ex-
actly one seat in (4.11) and that no seat is assigned to two passengers in (4.12). The
makespan condition only needs to take the leave times of each seats predetermined
row into account, hence resulting in the formulation in (4.10).

The minimum walking and stowing times defined for each passenger in the
instance must be transferred to the seats they are assigned to. This happens in
(4.14) for walking and in (4.15) for stowing. Note that only the constraint for rows
that must be walked through is an inequality in order to allow staying in a row
should the next one still be occupied. The stowing constraint can be an equality
since the seat is no longer an obstruction once it has arrived in its position.

Since the passengers from the instance have a defined order and the virtual
seats we send through the plane do not, we use constraint (4.16) to transfer the
passenger order to the seats and enforce exclusive use of each row at any given
time by requiring all seats assigned to previous passengers to have left a row before
entering it. As there potentially is a very large number of these constraints, they
are added lazily in the actual implementation.

To improve computational performance, we require passengers to occupy rows
from one side of the plane to the other according to passenger order in (4.17).
This removes the issue caused by the fact that every permutation of passengers
within a row results in the same makespan and hence for every solution there are
a number of solutions of identical quality, which is disadvantageous for the branch
and bound process used to solve the MIP.

Page 17

Chapter 5

Heuristics

Since the seat assignment problem in aeroplane boarding is NP-hard, as shown in
chapter 3, we can expect difficulties computing optimal solutions for reasonably-
sized instances. It is hence interesting to look at heuristic methods of producing
high-quality solutions quickly. Short computation times are especially important
when imagining real-world applications where seat assignment can only happen
once passengers have formed a queue and wait to be seated. This chapter will
focus on describing existing heuristics from the literature on similar problems,
as well as our own heuristics. The results of a computational study comparing
computation times and objective values of different heuristics and exact methods
will be presented in chapter 6.

Heuristic 1 (Back to front). Boarding passengers back-to-front is an intuitive
heuristic. It involves sending each passenger to the unassigned seat that is the
furthest to the back of the plane. Since our model does not take passenger inter-
ference within rows and outside of the aisle into account, the order in which seats
within a row are assigned to passengers is irrelevant. We refer to this heuristic by
Hbtf .

Heuristic 2 (Window-to-Window). Given a plane layout with k seats, we split
passengers into k groups. The first group gets assigned the first seat in each row
back-to-front. This process is repeated k times in total. We refer to this heuristic
by Hwtw.

Theorem 2. Consider a BAP instance as defined in 1. If the plane is full and
there exist m, s ∈ Q≥0 such that twp,r = m and tsp,r = s for all passengers p ∈ P
and rows r ∈ R, then Hwtw is an optimal boarding strategy.

Proof. We compute the makespan of Hwtw on such an instance. The boarding
process can be split into k phases, each consisting of |R| passengers walking to

Page 18

49 51 53 · 54 52 50

43 45 47 48 46 44
37 39 41 42 40 38
31 33 35 36 34 32
25 27 29 30 28 26
19 21 23 24 22 20
13 15 17 18 16 14
7 9 11 12 10 8
1 3 5 6 4 2

Figure 5.1: A schematic representation of Hbtf . The dot (·) indicates the front.

9 27 45 · 54 36 18

8 26 44 53 35 17
7 25 43 52 34 16
6 24 42 51 33 15
5 23 41 50 32 14
4 22 40 49 31 13
3 21 39 48 30 12
2 20 38 47 29 11
1 19 37 46 28 10

Figure 5.2: A schematic representation of Hwtw. The dot (·) indicates the front.

their seats and stowing. Since all passengers have the same walking speeds, they
never obstruct each other while walking and since seats within a group are assigned
back-to-front no passenger can be obstructed by a stowing passenger from their
own boarding group. Since there are |R| − 1 rows that need to be walked through
by the first passenger of each boarding group and all passengers from one group
finish boarding at the same time we get the following total boarding time:

k((|R| − 1) ·m+ s) (5.1)

To prove that Hwtw is optimal in the scenario at hand, we show that its makespan
is equal to a lower bound to the makespan of any boarding strategy. As boarding
cannot be finished while there is still a passenger in the aisle by the first row, we
find a lower bound on how long this aisle space has to be occupied in any seat
assignment. Since k passengers have to be assigned seats in the first row and
another k · (|R| − 1) have to past it to their seats further back in the plane, the

Page 19

aisle space is occupied for at least the following amount of time:

k · s+ k · (|R| − 1) ·m (5.2)

Heuristic 3 (Reverse Pyramid). The idea of boarding passengers in a reverse pyr-
amid scheme was developed in [Bri+05] in an attempt to speed up the boarding
process for America West Airlines. It is the result of using mixed integer program-
ming to minimise the number of interferences between passengers during boarding
on a series of test instances and manually inferring a general pattern in the results.
The resulting pattern is described as a reverse pyramid due to its visual appear-
ance and in [Bri+05] is only documented in terms of a boarding sequence graph
for a specific plane layout.

Our implementation of the scheme is inferred from this graph and is applicable
to different plane layouts and passenger numbers. Like the original author, we split
passengers into six equal-sized boarding groups. The first group is boarded back-
to-front in the outermost columns of the seat layout. All other boarding groups
are split into two groups in a four to six ratio with the first group again being
boarded in the outermost available column back-to-front, and the second group
being boarded one column closer to the aisle. Should there not be an available seat
in the desired column at any point, the passenger is shifted one column towards
the aisle. We refer to this heuristic by Hrev.

16 43 48 · 54 49 23

15 31 47 53 38 22
7 30 46 52 37 14
6 29 45 51 36 13
5 21 44 50 28 12
4 20 35 42 27 11
3 19 34 41 26 10
2 18 33 40 25 9
1 17 32 39 24 8

Figure 5.3: A schematic representation of Hrev. The dot (·) indicates the front.

Heuristic 4 (Steffens method). This method was presented in [Ste08] and results
from running a Markov Chain Monte Carlo optimisation algorithm on a set of
instances and interpreting the results to manually extract a pattern. The resulting
suggested boarding strategy was presented in the form of a figure representing a
boarding sequence for a given instance, as was the case for heuristic 3.

Page 20

Our implementation is inferred from the graphical representation in the paper
to be applicable to different size planes. We first assign the leftmost seat in the last
row and continue assigning the leftmost seat in every other row back-to-front. The
same process is repeated with the rightmost column in the seat layout. Following
this, the gaps left in the leftmost column during the first pass are filled back-to-
front. Again, the same process is repeated for the rightmost column. Once the
outermost columns are filled, we apply the entire procedure to the two columns
one seat closer to the aisle. This entire process is repeated iteratively until all
seats are filled. We refer to this heuristic by HSteff .

5 23 41 · 46 28 10

14 32 50 54 36 18
4 22 40 45 27 9
13 31 49 53 35 17
3 21 39 44 26 8
12 30 48 52 34 16
2 20 38 43 25 7
11 29 47 51 33 15
1 19 37 42 24 6

Figure 5.4: A schematic representation of HSteff . The dot (·) indicates the front.

Heuristic 5 (Local 2-opt search). Given an existing solution to the seat assign-
ment problem, we can attempt to improve it by locally transforming it into a
locally 2-optimal solution. We call a solution 2-optimal if its makespan cannot
be improved by swapping two passengers’ seat assignments. We also refer to this
heuristic by Hloc.

In our implementation, we check for every passenger whether swapping seats
with any preceding passenger would result in a better makespan. If so, the swap
is immediately committed without starting the search from the beginning. The
purpose of this strategy is to make as many swaps as possible in any given sweep
of the passengers with the goal of improving solutions quickly. The search finishes
once no more makespan-improving seat assignment swaps can be found.

In order to perform a local 2-opt search, one needs to repeatedly compute the
makespan of a given solution. Since the repeated makespan computation is per-
formance critical, rather than formulating it as a mixed integer program, it is
computed directly using the following algorithm:

Page 21

1 def simulate_seating(self) -> SeatingSimulation:

2 """

3 Computes a seating simulation for this aeroplane boarding

solution.

4 This includes computation of the makespan.

5 """

6 bap = self.problem

7 passenger_seated_times = [0 for _ in range(bap.

num_passengers)]

8 passenger_enters_row = []

9 row_blockage = [0 for _ in range(bap.num_rows)]

10

11 for passenger in range(bap.num_passengers):

12 assigned_row = self.assignment[passenger]

13 passenger_enters_row.append ([0 for _ in range(

assigned_row + 1)])

14

15 for row in range(assigned_row + 1):

16 passenger_enters_row[passenger][row] = (

17 row_blockage [0]

18 if row == 0

19 else max(

20 passenger_enters_row[passenger][row - 1]

21 + bap.walking_speeds[passenger][row - 1],

22 row_blockage[row],

23)

24)

25

26 if not row == 0:

27 row_blockage[row - 1] = passenger_enters_row[

passenger][row]

28

29 if row == assigned_row:

30 passenger_seated_time = (

31 passenger_enters_row[passenger][row]

32 + bap.stowing_speeds[passenger][row]

33)

34

35 row_blockage[row] = passenger_seated_time

36 passenger_seated_times[passenger] =

passenger_seated_time

37

38 makespan = max(passenger_seated_times , default =0)

39 seating_simulation = SeatingSimulation(

40 passenger_seated_times , passenger_enters_row , makespan

, solution=self

41)

42 return seating_simulation

Page 22

Chapter 6

Computational Study

In order to conduct a computational study on the performance of the MIP formu-
lations discussed in section 4, we need a set of sample instances. As this thesis
discusses a variation of the boarding problem presented in [WT19], we deemed it
fitting to adapt the dataset used in that paper for our purposes and generate an ad-
ditional set using a similar method. This allows us to compare the computational
performance of the two problems on the same instances.

6.0.1 Instance Generation

Instances are generated to agree with the choices made in [WT19]. That means
that walking times are independently sampled from {1, 2, 3} with respective prob-
abilities {1

4
, 1

2
, 1

4
} and stowing times are obtained by sampling a z ∼ N (60, 20) from

a Gaussian distribution and computing the stowing time as max{{minbze, 120}, 1}.
The given instances consider the four different plane configurations (10, 2),

(20, 2), (20, 4) and (30, 6), where the components correspond to the number of
rows and the number of seats per row respectively. While passenger times do not
vary per row in these instances sets, they vary per passenger - the set m p s has
individual walking times, m s p has individual stowing times and m p s p has both.

Since our problem requires walking and stowing times for each combination of
passengers and rows, while the problem instances from [WT19] only require these
times up to the assigned row, we enhanced the instances by repeating the last
provided value for any given passenger where possible and choosing new ones using
the procedure previously described when needed. As the instances from [WT19]
do not vary walking or loading times between rows, enhancing the instances in
this manner maintains their structure.

Since our problem formulation allows for different walking and stowing times
for every combination of passengers and rows, and the given instances do not make
use of this feature, we generated another set of instances called own of ten instances

Page 23

for each of the four configurations with variable passenger times per row.

6.0.2 Test Description

For each instance, we run three computations - a local search test, the heuristic
methods as defined in chapter 5 and four different mixed integer programs. Every
time a method has generated a solution, we run a local improvement on it and
perform a stability test. The best heuristically computed seat assignment is used
as a start solution for those MIPs that have a warm start.

The first computational test consists of generating 100 random solutions and
using each of these solutions as a start point for a local search as defined in 5 to
find a 2-optimal solution. The intention is to compare the quality of these easily
obtained solutions to the optimum or the best bound and to investigate whether
generating this many start solutions has any substantial advantage over generating
just a few. We refer to this strategy by H100

loc .
The second set of computations comprises the four heuristic strategies Back-to-

Front (1), Window-to-Window (2), Reverse Pyramid (3) and Steffen’s Method
(4). The intention here is to compare the solution quality of these heuristics,
as they are computationally inexpensive and can be used in real world applica-
tions with little effort. We denote these strategies by Hbtf , Hwtw, Hrev and HSteff

respectively, as defined in chapter 5.
The final set of computations consists of running four MIPs in an attempt to

find an exact solution for each instance. The first three MIPs are variations of
the standard formulation presented in 4.1. The first MIP test simply uses the
standard MIP with the best heuristic solution for warm starting. We refer to this
strategy by Mstd. The second MIP test is similar but uses the additional cuts
defined in constraint 4.6. The intention here is to investigate whether these ad-
ditional cuts help the solver with finding better dual bounds or whether on the
contrary, the larger number of constraints in the model leads to inferior solution
behaviour. We refer to this strategy by Mcuts

std . In the third MIP test we attempt
to solve the instances using the standard MIP from 4.1 without any precomputed
initial solutions. We refer to this test by Mcold

std . The intention is to compare
the performance of warm-started and cold-started MIPs to investigate whether
providing an initial solution aids the branch and bound process by allowing the
solver to prune branches early or whether on the contrary our way of generating
locally 2-optimal solutions produces seat assignments that hinder the exact solu-
tion process by having a structure that leads the solver to search the branch and
bound tree in a disadvantageous manner. The final MIP is a warm started version
of the alternative formulation as presented in 4.2. We refer to this strategy by
Malt. The intention of these computations is to compare the performance of the
individual MIPs with respect to the achieved solution quality, the duality gap and

Page 24

6.1. Results

computation time.
Regardless the method, every solution was subjected to the local improvement

procedure and stability tests once it was generated. This gives us the opportunity
to compare how much room for easy improvement the different solution methods
leave. The stability tests were comprised of four individual tests, each performed
for every passenger in the instance. The first test Sdel delays the selected passenger,
that is pushes them to the back of the queue, the second Sswap swaps the queue
position of the selected passenger and a randomly selected passenger, the third
Scng changes the walking and stowing speeds of a passenger by choosing them
according to the procedure described in 6.0.1 and the final test Sall does all of
these things. We call these tests disturbance strategies.

6.0.3 Software and Hardware used

Instance generation, parsing, formatted output as well as heuristics were imple-
mented in Python 3.6 and run in CPython. All mixed integer program solving
was done using the commercial solver Gurobi 8.1.0, using the provided Python
interface. The experiments were run on 64 cluster nodes, all of which were HP
ProLiant SE316M1 machines equipped with an Intel Xeon L5630 Quad Core 2.13
GHz processor. All but eight of these machines were outfitted with 16 GB of RAM
and were used for all but the large (60, 3) instances, which ran on machines with
128 GB of RAM. In order to get results within a reasonable amount of time and
to investigate possible real world usage, we configured the MIP solver to time out
after two hours.

6.1 Results

The tables 6.1 through 6.4 show the results of our computational experiments for
each of the sets of instances described in section 6.0.1. Each of these sets consists
of 40 instances, ten for each of the four seat layout configurations. The values
presented here are the average values over all 40 instances in a set.

For each strategy (with the exception of the alternative MIP), we present the
average makespan of the solutions generated by the strategy as well as the average
makespan of these solutions after being used as a starting point for the local
improvement strategy Hloc in the column labeled 2-opt. The average improvement
between these two seat assignments is expressed as a percentage in the column
labeled % imp.

For the MIP-based strategies, we present the average best gap and the number
of instances that could be solved optimally within a time frame of two hours. Since
the heuristic strategies cannot be used to prove optimality, these data points are

Page 25

6.1. Results

not provided there. Similarly, the solve time for the heuristic methods is so short
that it is dominated by factors like loading the instances from disk and starting
the Python runtime.

The alternative MIP as defined in section 4.2 turned out to be very resource-
intensive in the solving process. For all but the small (10, 2) seat layout config-
urations, the solver crashed due to insufficient RAM. Hence, the average values
for the makespan cannot be compared to the ones for the other strategies and no
local optimisation results are given since the local improvement did not run after
running out of memory.
Since the alternative MIP formulation proved to be infeasible due to memory con-
straints, we will disregard it for most of the discussion. The most striking result
is how well the heuristic Hwtw performs - not only is it the best of all heuristic ap-
proaches and appears to produce locally optimal solutions, but the exact methods
can barely improve over these results. Among the three variations of the stand-
ard MIP formulation, Mcold

std is significantly outperformed by the other variety.
Between the warm-started plain variety Mstd and the warm-started version with
extra cuts Mcuts

std , there is a small difference depending on the instance set - for
m p s instances, Mstd is slightly better with regard to all performance paramet-
ers, while for the other instance sets, Mcuts

std trades a longer average solve time for
slightly better average makespans and gaps.

6.1.1 Dual Gaps for MIPs

The figures 6.1 and 6.2 show the development of the best integer solution and the
best dual bounds for the three varieties of the standard MIP over time. Since
the alternative MIP formulation ran out of memory on most of the instances and
timed out on all, it was omitted from these visualisations.

The figures show values for the strategiesMstd in red,Mcuts
std in blue andMcold

std

in green, with integer incumbents shown as squares and dual bounds as diamonds.
The solve time in seconds is on the x-axis and objective values in seconds are on
the y-axis.

The solve behaviour for the instance own 10 2 0.abp shown in figure 6.1 is
representative for most instances that have an optimal solution that is different
from theHwtw solution. Here, the warm started MIPs seem to be at a disadvantage
compared toMcold

std , especially at finding good solutions and even manages to raise
the dual bound slightly faster than Mstd and Mcuts

std , which seems to be slower on
these kinds of instances.

Since the Hwtw solution used for warm starting was already optimal for the
instance m p s p 10 2 0.abp, there is no development of the best integer solution
in figure 6.2 forMstd andMcuts

std . On this instance, the vanilla standard formulation
Mstd manages to close the duality gap the fastest, followed by Mcuts

std and Mcold
std .

Page 26

6.1. Results

Table 6.1: Computation results for m p s instances (mean over 40 instances of all
configurations)

strategy makespan (s) 2-opt (s) % imp % gap # opt time (s)

H100
loc 662.0 662.0 0.0 - - -

Hbtf 3523.3 760.78 70.53 - - -

Hwtw 423.53 423.53 0.0 - - -

Hrev 2170.88 750.23 63.78 - - -

HSteff 632.35 621.0 2.11 - - -

Mstd 423.53 423.53 0.0 6.82 20 4565.98

Mcuts
std 423.53 423.53 0.0 7.31 19 4694.7

Mcold
std 1110.45 672.28 16.66 38.92 10 5419.35

M∗
alt 208.85 - - 41.50 0 7200.0

Table 6.2: Computation results for m s p instances (mean over 40 instances of all
configurations)

strategy makespan (s) 2-opt (s) % imp % gap # opt time (s)

H100
loc 659.08 659.08 0.0 - - -

Hbtf 3694.35 750.5 71.64 - - -

Hwtw 481.73 481.5 0.043 - - -

Hrev 2279.8 757.6 64.16 - - -

HSteff 752.25 711.1 6.33 - - -

Mstd 481.0 481.0 0.0 25.87 13 5193.36

Mcuts
std 480.13 480.13 0.0 25.70 12 5346.08

Mcold
std 1179.08 702.25 19.32 49.02 10 5414.7

M∗
alt 235.8 - - 52.51 0 7200.0

Page 27

6.1. Results

Table 6.3: Computation results for m p s p instances (mean over 40 instances of
all configurations)

strategy makespan (s) 2-opt (s) % imp % gap # opt time (s)

H100
loc 681.98 681.98 0.0 - - -

Hbtf 3693.15 768.65 71.17 - - -

Hwtw 516.58 514.7 0.20 - - -

Hrev 2261.55 756.73 63.92 - - -

HSteff 778.85 726.83 7.64 - - -

Mstd 512.98 512.98 0.0 25.79 12 5212.83

Mcuts
std 512.93 512.93 0.0 25.54 12 5237.45

Mcold
std 1240.95 740.18 20.13 49.35 10 5424.23

M∗
alt 251.7 - - 56.93 0 7200.0

Table 6.4: Computation results for own instances (mean over 40 instances of all
configurations)

strategy makespan (s) 2-opt (s) % imp % gap # opt time (s)

H100
loc 546.55 546.55 0.0 - - -

Hbtf 3693.83 623.23 75.46 - - -

Hwtw 496.23 485.38 1.97 - - -

Hrev 2247.4 617.43 69.75 - - -

HSteff 766.7 597.48 22.20 - - -

Mstd 480.55 480.33 0.08 27.92 10 5420.75

Mcuts
std 480.15 479.98 0.06 27.77 10 5424.8

Mcold
std 857.53 561.15 17.79 43.88 10 5434.05

M∗
alt 238.1 - - 64.94 0 7200.0

Page 28

6.1. Results

Figure 6.1: Best integer solutions (squares) and best dual bounds (diamonds)
for own 10 2 0.abp using Mstd (red), Mcuts

std (blue) and Mcold
std (green). Time in

seconds on x-axis, objective value in seconds on y-axis.

Figure 6.2: Best integer solutions (squares) and best dual bounds (diamonds) for
m p s p 10 2 0.abp using Mstd (red), Mcuts

std (blue) and Mcold
std (green). Time in

seconds on x-axis, objective value in seconds on y-axis.

Page 29

6.1. Results

6.1.2 Robustness of Solutions

Tables 6.5 and 6.6 show the results of the stability tests as defined in section 6.0.2
on the sets own and m p s p, respectively. The starting point for every strategy
is a 2-opt solution generated using the given strategy and Hloc and all values are
means over 40 instances from the given instance set. Every one of the disturbance
strategies Sdel, Sswap, Scng and Sall is run once with every passenger as the affected
of the disturbance and the individual resulting makespans are averaged.

The results for both instance sets are consistent in that disturbing the seat
assignments generated by different strategies maintains their order in terms of
quality, that is better start solutions remain better after disturbance. Regardless
of the strategy that generated the start solution, the amount of negative impact
the disturbance strategies have is least for Scng, followed by Sdel and Sswap with
Sall having the biggest negative impact.

6.1.3 A non-optimal Hwtw Solution

As was shown in theorem 2, the Hwtw heuristic generates optimal seat assign-
ments when all passengers have equal walking and stowing times. Since stowing
times are much bigger than walking times in our instances, the instance set m p s

where stowing times are the same for all passengers exhibits the same behaviour.
For those instances where stowing times are individual to each passenger, it still
appears to be an excellent heuristic to pretend they are all the same.

There are however a handful of instances in our test sets for which a Hwtw solu-
tion is not optimal. Figures 6.3 and 6.4 respectively visualise the boarding process
for a Hwtw andMstd solution for the instance own 10 2 0.abp. In these visualisa-
tions, the x-axis corresponds to the rows in the plane and the y-axis corresponds
to time in seconds. Each coloured line represents a passenger making their way
through the plane. As one can see, the reduction in makespan by the optimal
solution compared to the heuristic one was not achieved by merely swapping two
passengers, but by a more complex reordering.

6.1.4 Comparison to Boarding Sequence Optimisation

Since [WT19] investigated a related problem where they got to chose boarding
order rather than seat assignment and tested their implementations on the same
set of instances, it is worth comparing the results of their computational study to
ours.

The makespans for the solutions generated by exact MIP methods were gener-
ally slightly better in the scenario from [WT19] - for m p s they got 395.6 seconds
on average versus our 423.53 seconds, for m s p it was 429.1 seconds versus 480.13

Page 30

6.1. Results

Table 6.5: Stability tests as defined in section 6.0.2 on own instances (mean over
40 instances of all configurations)

strategy makespan (s) Sdel Sswap Scng Sall

H100
loc 546.55 574.29 593.45 561.28 630.54

Hbtf +Hloc 623.23 656.32 670.47 635.24 705.88

Hwtw +Hloc 485.38 533.6 567.83 486.71 609.06

Hrev +Hloc 617.43 650.23 663.06 629.37 699.87

HSteff +Hloc 597.48 632.28 652.56 606.25 686.82

Mstd +Hloc 480.33 524.07 551.26 485.18 597.38

Table 6.6: Stability tests as defined in section 6.0.2 on m p s p instances (mean
over 40 instances of all configurations)

strategy makespan (s) Sdel Sswap Scng Sall

H100
loc 681.98 725.52 756.28 687.05 795.56

Hbtf +Hloc 768.65 812.58 831.32 774.3 872.27

Hwtw +Hloc 514.7 563.88 594.28 514.85 637.98

Hrev +Hloc 756.73 801.32 822.48 761.51 863.91

HSteff +Hloc 726.83 768.21 790.2 729.3 823.66

Mstd +Hloc 512.96 561.47 593.13 514.34 633.94

Page 31

6.1. Results

Figure 6.3: An Hwtw solution for own 10 2 0.abp. Plane rows on x-axis, time in
seconds on y-axis.

Figure 6.4: A Mstd solution for own 10 2 0.abp. Plane rows on x-axis, time in
seconds on y-axis.

Page 32

6.2. Conclusions

seconds and for m p s p it was 452.1 seconds versus 512.93 seconds. Not only did
out MIP approaches produce higher makespans, they were also more expensive
computationally, taking longer to solve on average and finishing fewer instances
optimally within the two hour time limit. However it should be mentioned that
the benchmark instances were constructed in such a way that the stowing time
was identical for all seats for any given passenger, reducing the potential for op-
timisation in out approach.

The behaviour the solutions exhibit when disturbed are similar for both ap-
proaches, which should be expected, since the makespan is defined in the same
way. Another common finding for both approaches is that the work invested in
finding optimal solutions using mixed integer programming only results in solu-
tions that are barely superior to those found using a simple heuristic, which for us
is Hwtw and for [WT19] is their max-settle-row strategy.

6.2 Conclusions

The first observation is that the alternative MIP formulation from section 4.2 is
not functional in its current form and might profit from improved heuristics to
find better constraints to lazily add to the model when a new MIP incumbent is
found.

More importantly, the difference in terms of makespan between the solutions
produced by the best performing exact strategy Mcuts

std and the best performing
heuristic Hwtw is miniscule on almost all instances that were tested. What that
means in practice is that investing multiple hours of computation time into op-
timisation using mixed integer programs only results in boarding times that are a
few seconds shorter than those produced by Hwtw almost instantly. The difference
between exact and heuristic solutions is generally much smaller than the poten-
tial changes in makespan that might result from disturbances such as a delayed
passenger, which further diminishes the value of using MIP approaches at this
point.

Page 33

Chapter 7

Outlook and Future Research

This chapter lays out a few pointers and research opportunities that have become
apparent during the creation of this thesis but were unfortunately out of scope for
various reasons.

7.1 Heuristics and Data

As was shown in theorem 2, Hwtw is an optimal seat assignment strategy if all
passengers have the same walking and stowing times for all rows. Since the results
of the computational study in section 6.1 indicate that the heuristic is actually
optimal for a broader set of instances, it might be of interest to establish a more
solid theory of the characterisation of instances for which Hwtw is optimal.

Whether Hwtw is an optimal strategy most likely depends on the distribution
of individual passenger times, especially how similar they are to one another and
how big the difference between walking and stowing times is. It might therefore
be of special interest to find a reliable source of representative real world data for
these times.

One aspect of such data that has the potential of determining whether HSteff

or Hwtw is superior is the behaviour of passengers when standing in neighbouring
aisle spaces and stowing. In our model, we assume that such a situation does not
slow down the stowing process while [Ste08] assumed the opposite.

7.2 Online Setting

In real-life scenarios, passengers will probably not form a perfect queue before
entering the plane. Rather, they might crowd in front of the entrance and enter one
by one, which in mathematical terms, we can consider a queue that we only learn

Page 34

7.2. Online Setting

one passenger at a time. This observation naturally motivates a more thorough
study of online variants of BAP, which was outside the scope of this thesis. What
we present here are a few online scenarios that are interesting and yet easy to
analyse.

7.2.1 Possible Scenarios

We consider a modified version online BAP-1 of the problem, in which the online
procedure does not know the number of passengers and only has access to the
movement and stowing speed of the frontmost passenger. It is easy to see that for
any j ∈ N>0, there cannot be a j-competitive online algorithm for this modified
problem.

Proof. Let j ∈ N>0. Consider the following family of instances of online BAP-1 :
R = (r1, r2), k1 = 1, k2 = 0. The adversary presents the first passenger p1 with
tsp1,r = 0 for all r ∈ R and twp1,1 = 1. Any online algorithm A for online BAP-1
falls into one of the following two cases:

1. A assigns σ(p1) = (r1, 1). The adversary presents a second passenger p2

with tsp2,r = 0 for all r ∈ R and twp2,1 = j + 1. Since A can only assign
σ(p2) = (r2, 1), it generates cost(A) = j + 1 while cost(opt) = 1.

2. A assigns σ(p1) = (r2, 1). The adversary does not present a second passenger.
Hence cost(A) = 1 while cost(opt) = 0.

In the proof above, the adversary used the fact that any online algorithm for
online BAP-1 needs to guess the number of passengers. We now consider another
modified problem online BAP-2, in which the online algorithm does know the
total number of passengers. Again we show that for any j ∈ N>0 there can be no
j-competitive algorithm for online BAP-2.

Proof. Let j ∈ N>0. Consider the following family of instances of online BAP-2 :
R = (r1, r2), k1 = 1, k2 = 0 and |P| = 2. The adversary presents the first passenger
p1 with tsp1,r = 0 for all r ∈ R and twp1,1 = 1. Any online algorithm A for online
BAP-2 falls into one of the following two cases:

1. A assigns σ(p1) = (r1, 1). The adversary presents a second passenger p2

with tsp2,r = 0 for all r ∈ R and twp2,1 = j + 1. Since A can only assign
σ(p2) = (r2, 1), it generates cost(A) = j + 1 while cost(opt) = 1.

Page 35

7.2. Online Setting

2. A assigns σ(p1) = (r2, 1). The adversary presents a second passenger p2 with
tsp2,r = 0 for all r ∈ R and twp2,1 = 0. Since A can only assign σ(p2) = (r2, 1),
it generates cost(A) = 1 while cost(opt) = 0.

In the proof above, we used the fact that the adversary for online BAP-2 is
not committed to any bounds on the movement speed of the passengers and can
present arbitrarily fast or slow passengers. We therefore now consider yet another
modified problem online BAP-3, in which the online algorithm does know both
the total number of passengers and tight bounds tsL,R, t

s
U,R on stowing speeds and

twL,R, t
w
U,R on movement speeds. Once again, we show that for any j ∈ N>0 there

can be no j-competitive algorithm for online BAP-3.

Proof. Let j ∈ N>0. Consider the following family of instances for online BAP-3 :
R = (r1, r2), k1 = k2 = 1, |P| = 4, tsL,R = tsU,R = twL,R = 0 and twU,R = j + 1. The
adversary presents the first passenger p1 with tsp1,r = 0 for all r ∈ R and twp1,1 = 0.
Any online algorithm A for online BAP-3 falls into one of the following two cases:

1. A assigns σ(p1) ∈ {(r1, 1), (r1, 2)}. The adversary continues to present p2

with tsp2,r = twp2,1 = 0 for all r ∈ R and p3, p4 with tsp3,r = tsp4,r = 0 for all
r ∈ R and twp3,1 = twp4,1 = j + 1. No matter the strategy, A cannot assign p3

and p4 to seats in r1, hence cost(A) ≥ j + 1 while cost(opt) = 0.

2. A assigns σ(p1) ∈ {(r2, 1), (r2, 2)}. The adversary presents p2 with tsp2,r = 0
for all r ∈ R and twp2,1 = j + 1. Again, any online algorithm A falls into one
of the following two cases:

(a) A assigns σ(p2) ∈ {(r2, 1), (r2, 2)}. The adversary presents p3 and p4

with tsp3,r = tsp4,r = twp3,1 = twp4,1 = 0 for all r ∈ R, yielding cost(A) = j+1
while cost(opt) = 0.

(b) A assigns σ(p2) ∈ {(r1, 1), (r1, 2)}. This leaves one seat in the front row
and on in the back. No cost has occurred so far. Continue the proof as
for online BAP-2.

Modifying the problem formulation such that movement times must be strictly
positive, replacing 0 with a positive twL,R yields that the competitive ratio of any

online algorithm for the problem cannot be better than
twU,R

3twL,R
.

Page 36

7.2. Online Setting

7.2.2 Consequences

Theorem 3. For any instance I of online-BAP with finite, non-zero movement
and stowing times, i.e. there exist tL, tU ∈ R>0 such that tL ≤ t ≤ tU for all
t ∈ {tsp,r | p ∈ P, r ∈ R}] {twp,r | p ∈ P, r ∈ R} and |P| = |S|, any online seat
assignment algorithm A is competitive with the following ratio:

cost(A)

cost(opt)
≤ tU
tL

Proof. Since every seat needs to be utilised, a lower bound on the optimal cost is
as follows:

cost(opt) ≥ ktL|R|(|R| − 1)

2

On the other hand, regardless of the seat assignment, no passenger ever spends
longer than tU in any given row. If any passenger did so, they would be forced to
wait after having already spent tU in a row. That would indicate that the passenger
in front of them already spent longer than tU in that row. Inductively, the first
passenger to pass through the row would have to have spent longer than tU in that
row, which contradicts the definition of tU. Hence an upper bound on the cost
incurred by any seat assignment algorithm A can be given as follows:

cost(A) ≤ ktU|R|(|R| − 1)

2

The remark follows immediately.

Remark 7.2.1. All heuristics from chapter 5, including the often-cited HSteff and
the high-performing Hwtw achieve no better competitive ratio than in theorem 3.

Proof. None of the algorithms from chapter 5 takes the walking and stowing times
of the passengers into consideration. Hence they have no more information about
the problem instance than any algorithm solving online BAP-3 and the same proof
applies.

Page 37

Chapter 8

Conclusion

In this thesis, we have formalised a version of the seat assignment problem in
aeroplane boarding in chapter 2. As part of this formulation, we assumed that
different passengers can have individually different walking and stowing times,
which to the best of our knowledge is unique to this thesis and the work in [WT19].

As is the case with the related problem where one may rearrange passengers,
the problem of assigning seats to minimise boarding time is NP-hard, which we
have shown in chapter 3. To achieve this, we reduced 3-Partition to our problem,
only utilising differences in stowing times.

Knowing that the problem is hard in theory, we presented various heuristic
approaches in chapter 5, including a strategy we call window-to-window, which we
have shown to be optimal for instances with identical walking and stowing times
for all passengers. In addition to heuristic approaches we presented two MIP
formulations in chapter 4 that can be used to solve optimally or as approximation
schemes.

Our computational study in chapter 6 indicated that the window-to-window
heuristic produces excellent results that can barely be improved upon using the
MIPs in practice. The differences in makespan between the best heuristic solutions
and MIP solutions that can be computed within two hours are overshadowed by
the increase in makespan that can be caused by a delayed passenger or faulty input
data, as indicated by our robustness study in section 6.1.2.

In addition to recommending further research into the characterisation of in-
stances for which window-to-window is optimal, in chapter 7 we looked at proper-
ties of simple online variations of the seat assignment problem. We showed that
any algorithm that does not take the distribution of walking and stowing times into
account cannot be competitive in theory, which includes the very well performing
window-to-window heuristic.

Page 38

References

[AVB09] Jan Audenaert, Katja Verbeeck and Greet Vanden Berghe. ‘Multi-agent
based simulation for boarding’. In: The 21st Belgian-Netherlands Con-
ference on Artificial Intelligence. 2009, pp. 3–10.

[Bal+10] Michael Ball et al. ‘Total delay impact study’. In: NEXTOR Research
Symposium, Washington DC. http://www. nextor. org. 2010.

[Baz07] Massoud Bazargan. ‘A linear programming approach for aircraft board-
ing strategy’. In: European Journal of Operational Research 183.1 (2007),
pp. 394–411. issn: 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2006.09.071. url: http://www.sciencedirect.com/science/
article/pii/S0377221706010137.

[Bri+05] Menkes H. L. van den Briel et al. ‘America West Airlines Develops Effi-
cient Boarding Strategies’. In: INFORMS Journal on Applied Analytics
35.3 (2005), pp. 191–201. doi: 10.1287/inte.1050.0135. url: https:
//pubsonline.informs.org/doi/abs/10.1287/inte.1050.0135.

[CTA04] Andrew J Cook, Graham Tanner and Stephen Anderson. Evaluating
the true cost to airlines of one minute of airborne or ground delay.
Tech. rep. University of Westminster, 2004.

[GJ75] M. Garey and D. Johnson. ‘Complexity Results for Multiprocessor
Scheduling under Resource Constraints’. In: SIAM Journal on Com-
puting 4.4 (1975), pp. 397–411. doi: 10.1137/0204035. url: https:
//doi.org/10.1137/0204035.

[JM17] Shafagh Jafer and Wei Mi. ‘Comparative study of aircraft boarding
strategies using cellular discrete event simulation’. In: Aerospace 4.4
(2017), p. 57.

[JN15] Florian Jaehn and Simone Neumann. ‘Airplane boarding’. In: European
Journal of Operational Research 244.2 (2015), pp. 339–359. issn: 0377-
2217. doi: https : / / doi . org / 10 . 1016 / j . ejor . 2014 . 12 . 008.
url: http : / / www . sciencedirect . com / science / article / pii /

S0377221714009904.

Page 39

https://doi.org/https://doi.org/10.1016/j.ejor.2006.09.071
https://doi.org/https://doi.org/10.1016/j.ejor.2006.09.071
http://www.sciencedirect.com/science/article/pii/S0377221706010137
http://www.sciencedirect.com/science/article/pii/S0377221706010137
https://doi.org/10.1287/inte.1050.0135
https://pubsonline.informs.org/doi/abs/10.1287/inte.1050.0135
https://pubsonline.informs.org/doi/abs/10.1287/inte.1050.0135
https://doi.org/10.1137/0204035
https://doi.org/10.1137/0204035
https://doi.org/10.1137/0204035
https://doi.org/https://doi.org/10.1016/j.ejor.2014.12.008
http://www.sciencedirect.com/science/article/pii/S0377221714009904
http://www.sciencedirect.com/science/article/pii/S0377221714009904

References

[Mou11] Jad Mouawad. Most Annoying Airline Delays Might Just Be in the
Boarding. 2011. url: https : / / www . nytimes . com / 2011 / 11 / 01 /

business/airlines- are- trying- to- cut- boarding- times- on-

planes.html.

[MS16] R. John Milne and Mostafa Salari. ‘Optimization of assigning passen-
gers to seats on airplanes based on their carry-on luggage’. In: Journal
of Air Transport Management 54 (2016), pp. 104–110. issn: 0969-6997.
doi: https://doi.org/10.1016/j.jairtraman.2016.03.022.
url: http : / / www . sciencedirect . com / science / article / pii /

S0969699715300235.

[MSK18] R. John Milne, Mostafa Salari and Lina Kattan. ‘Robust Optimization
of Airplane Passenger Seating Assignments’. In: Aerospace 5.3 (2018).
issn: 2226-4310. doi: 10.3390/aerospace5030080. url: http://www.
mdpi.com/2226-4310/5/3/80.

[Sch10] Andreas Schlegel. Bodenabfertigungsprozesse im Luftverkehr: Eine stat-
istische Analyse am Beispiel der Deutschen Lufthansa AG am Flughafen
Frankfurt/Main. 1st ed. Gabler Verlag, 2010. isbn: 978-3-8349-2399-
8,978-3-8349-8691-7. url: http://gen.lib.rus.ec/book/index.
php?md5=894e514572bc804321359b16e9f2b76e.

[SMK19] Mostafa Salari, R. John Milne and Lina Kattan. ‘Airplane boarding
optimization considering reserved seats and passengers’ carry-on bags’.
In: OPSEARCH 56.3 (Sept. 2019), pp. 806–823. issn: 0975-0320. doi:
10.1007/s12597-019-00405-z. url: https://doi.org/10.1007/
s12597-019-00405-z.

[Ste08] Jason H. Steffen. ‘Optimal boarding method for airline passengers’. In:
Journal of Air Transport Management 14.3 (2008), pp. 146–150. issn:
0969-6997. doi: https://doi.org/10.1016/j.jairtraman.2008.03.
003. url: http://www.sciencedirect.com/science/article/pii/
S0969699708000239.

[Sto14] Nick Stockton. What’s up with that: Boarding Airplanes takes forever.
2014. url: https://www.wired.com/2014/11/whats-boarding-
airplanes-takes-forever/.

[Str14] Joseph Stromberg. The way we board airplanes makes absolutely no
sense. Apr. 2014. url: https://www.vox.com/2014/4/25/5647696/
the-way-we-board-airplanes-makes-absolutely-no-sense.

Page 40

https://www.nytimes.com/2011/11/01/business/airlines-are-trying-to-cut-boarding-times-on-planes.html
https://www.nytimes.com/2011/11/01/business/airlines-are-trying-to-cut-boarding-times-on-planes.html
https://www.nytimes.com/2011/11/01/business/airlines-are-trying-to-cut-boarding-times-on-planes.html
https://doi.org/https://doi.org/10.1016/j.jairtraman.2016.03.022
http://www.sciencedirect.com/science/article/pii/S0969699715300235
http://www.sciencedirect.com/science/article/pii/S0969699715300235
https://doi.org/10.3390/aerospace5030080
http://www.mdpi.com/2226-4310/5/3/80
http://www.mdpi.com/2226-4310/5/3/80
http://gen.lib.rus.ec/book/index.php?md5=894e514572bc804321359b16e9f2b76e
http://gen.lib.rus.ec/book/index.php?md5=894e514572bc804321359b16e9f2b76e
https://doi.org/10.1007/s12597-019-00405-z
https://doi.org/10.1007/s12597-019-00405-z
https://doi.org/10.1007/s12597-019-00405-z
https://doi.org/https://doi.org/10.1016/j.jairtraman.2008.03.003
https://doi.org/https://doi.org/10.1016/j.jairtraman.2008.03.003
http://www.sciencedirect.com/science/article/pii/S0969699708000239
http://www.sciencedirect.com/science/article/pii/S0969699708000239
https://www.wired.com/2014/11/whats-boarding-airplanes-takes-forever/
https://www.wired.com/2014/11/whats-boarding-airplanes-takes-forever/
https://www.vox.com/2014/4/25/5647696/the-way-we-board-airplanes-makes-absolutely-no-sense
https://www.vox.com/2014/4/25/5647696/the-way-we-board-airplanes-makes-absolutely-no-sense

References

[WT19] F.J.L. Willamowski and A.M. Tillmann. Minimizing Airplane Board-
ing Time. repORt 2019–56. Lehrstuhl für Operations Research, RWTH
Aachen University, Nov. 2019. url: https://www.or.rwth-aachen.
de/files/research/repORt/2019_Minimizing_Airplane_Boarding_

Time_Willamowski_Tillmann.pdf.

Page 41

https://www.or.rwth-aachen.de/files/research/repORt/2019_Minimizing_Airplane_Boarding_Time_Willamowski_Tillmann.pdf
https://www.or.rwth-aachen.de/files/research/repORt/2019_Minimizing_Airplane_Boarding_Time_Willamowski_Tillmann.pdf
https://www.or.rwth-aachen.de/files/research/repORt/2019_Minimizing_Airplane_Boarding_Time_Willamowski_Tillmann.pdf

Appendix A

Code Listings

A.1 Library

1 import math

2 import os

3 import pickle

4 import random

5 import sys

6 from abc import ABC

7 from contextlib import contextmanager

8 from copy import deepcopy

9 from datetime import datetime , timedelta

10 from itertools import chain , product , repeat , islice , cycle

11 from pickle import UnpicklingError

12 from tempfile import NamedTemporaryFile

13 from typing import Dict , List , Optional , Tuple

14

15 import gurobipy

16 import matplotlib.pyplot as plt

17 import numpy.random as np_rand

18 from gurobipy.gurobipy import quicksum

19 from matplotlib.patches import Rectangle

20

21

22 # utility to suppress gurobi terminal output

23 @contextmanager

24 def suppress_stdout ():

25 with open(os.devnull , "w") as devnull:

26 old_stdout = sys.stdout

27 sys.stdout = devnull

28 try:

29 yield

30 finally:

Page 42

A.1. Library

31 sys.stdout = old_stdout

32

33

34 GUROBI_LOG_NAME = "bap_mips.log"

35

36

37 class SeatingSimulation:

38 """

39 Stores simulated seating for a given solution for an aeroplane

boarding problem.

40 """

41

42 def __init__(

43 self ,

44 passenger_seated_times: List[int],

45 passenger_enters_row: List[List[int]],

46 makespan: int ,

47 solution: "BapSolution",

48):

49 self.passenger_seated_times = passenger_seated_times

50 self.passenger_enters_row = passenger_enters_row

51 self.makespan = makespan

52 self.solution = solution

53

54 def __str__(self):

55 s = f"makespan: {self.makespan}"

56 for passenger in range(len(self.passenger_seated_times)):

57 s += "\n"

58 s += f"p{passenger} seated at {self.

passenger_seated_times[passenger]}: {self.passenger_enters_row[

passenger]}"

59 return s

60

61 def generate_plot(self):

62 num_passengers = len(self.passenger_seated_times)

63

64 fig = plt.figure ()

65 if self.solution.solver_description is not None and self.

solution.computation_time is not None:

66 fig.suptitle(

67 f"Generated by {self.solution.solver_description}

in {self.solution.computation_time}"

68)

69 ax = fig.add_axes ([0.1, 0.1, 0.8, 0.8])

70 ax.set_title(

71 f"{self.solution.problem.num_passengers} passengers , {

self.solution.problem.num_rows} rows , {self.solution.problem.

seats_per_row} wide , {self.makespan} makespan"

72)

Page 43

A.1. Library

73 for p in range(num_passengers):

74 assigned_row = len(self.passenger_enters_row[p]) - 1

75 x = list(range(assigned_row + 1)) + [assigned_row]

76 y = self.passenger_enters_row[p].copy() + [self.

passenger_seated_times[p]]

77 ax.plot(x, y)

78

79 return fig

80

81

82 class BapSolution:

83 """

84 Contains a seat assignment and the makespan.

85 """

86

87 def __init__(

88 self ,

89 problem: "AeroplaneBoardingProblem",

90 assignment: List[int],

91 computation_time: Optional[timedelta] = None ,

92 solver_description: Optional[str] = None ,

93 makespan: Optional[float] = None ,

94 seating_simulation: Optional[SeatingSimulation] = None ,

95 solver_output: Optional[str] = None ,

96):

97 self.assignment = assignment

98 self.problem = problem

99 self.computer = os.uname()

100 self.computation_time = computation_time

101 self._makespan = makespan

102 self._seating_simulation = seating_simulation

103 self.solver_description = solver_description

104 self.solver_output = solver_output

105

106 def __eq__(self , other):

107 return self.problem == other.problem and self.assignment

== other.assignment

108

109 @property

110 def seating_simulation(self):

111 if self._seating_simulation:

112 return self._seating_simulation

113 else:

114 self._seating_simulation = self.simulate_seating ()

115 return self._seating_simulation

116

117 @property

118 def makespan(self):

119 if self._makespan:

Page 44

A.1. Library

120 return self._makespan

121 else:

122 return self.seating_simulation.makespan

123

124 def delay_passenger(self , passenger: int) -> "BapSolution":

125 """

126 :return: the same solution on an instance where the given

passenger enters last

127 """

128 if passenger >= self.problem.num_passengers:

129 raise ValueError(

130 f"Passenger cannot be larger than {self.problem.

num_passengers}"

131)

132

133 new_problem = deepcopy(self.problem)

134

135 p_stowing_speeds = new_problem.stowing_speeds[passenger]

136 del new_problem.stowing_speeds[passenger]

137 new_stowing_speeds = [p_stowing_speeds]

138 new_stowing_speeds.extend(new_problem.stowing_speeds)

139 new_problem.stowing_speeds = new_stowing_speeds

140

141 p_walking_speeds = new_problem.walking_speeds[passenger]

142 del new_problem.walking_speeds[passenger]

143 new_walking_speeds = [p_walking_speeds]

144 new_walking_speeds.extend(new_problem.walking_speeds)

145 new_problem.walking_speeds = new_walking_speeds

146

147 p_assignment = self.assignment[passenger]

148 new_assignment = [p_assignment]

149 new_assignment.extend(self.assignment)

150 del new_assignment[passenger + 1]

151

152 return BapSolution(new_problem , new_assignment)

153

154 def swap_passengers(self , p_1: int , p_2: int) -> "BapSolution"

:

155 """

156 :return: the same solution on an instance where the two

given passengers swap queueing positions

157 """

158 if any(p >= self.problem.num_passengers for p in (p_1 , p_2

)):

159 raise ValueError(

160 f"Passenger cannot be larger than {self.problem.

num_passengers}"

161)

162

Page 45

A.1. Library

163 new_problem = deepcopy(self.problem)

164

165 p_1_stowing_speeds = new_problem.stowing_speeds[p_1]

166 new_problem.stowing_speeds[p_1] = new_problem.

stowing_speeds[p_2]

167 new_problem.stowing_speeds[p_2] = p_1_stowing_speeds

168

169 p_1_walking_speeds = new_problem.walking_speeds[p_1]

170 new_problem.walking_speeds[p_1] = new_problem.

walking_speeds[p_2]

171 new_problem.walking_speeds[p_2] = p_1_walking_speeds

172

173 new_assignment = deepcopy(self.assignment)

174 p_1_pos = new_assignment[p_1]

175 new_assignment[p_1] = new_assignment[p_2]

176 new_assignment[p_2] = p_1_pos

177

178 return BapSolution(new_problem , new_assignment)

179

180 def change_speeds(self , passenger: int) -> "BapSolution":

181 """

182 :return: the same solution on an instance where speeds for

the given passenger are changed

183 """

184 if passenger >= self.problem.num_passengers:

185 raise ValueError(

186 f"Passenger cannot be larger than {self.problem.

num_passengers}"

187)

188

189 new_problem = deepcopy(self.problem)

190 new_times = AeroplaneBoardingProblem(

191 num_passengers =1,

192 num_rows=self.problem.num_rows ,

193 seats_per_row=self.problem.seats_per_row ,

194)

195 new_problem.walking_speeds[passenger], new_problem.

stowing_speeds[passenger] = (

196 new_times.walking_speeds [0],

197 new_times.stowing_speeds [0],

198)

199

200 return BapSolution(new_problem , self.assignment)

201

202 def combined_disturbance(self) -> "BapSolution":

203 """

204 :return: the same solution on an instance where all

available disturbances have been applied once

205 """

Page 46

A.1. Library

206 p = [random.randint(0, self.problem.num_passengers - 1)

for _ in range (4)]

207 return (

208 self.delay_passenger(p[0]).swap_passengers(p[1], p[2])

.change_speeds(p[3])

209)

210

211 def simulate_seating(self) -> SeatingSimulation:

212 """

213 Computes a seating simulation for this aeroplane boarding

solution.

214 This includes computation of the makespan.

215 """

216 bap = self.problem

217 passenger_seated_times = [0 for _ in range(bap.

num_passengers)]

218 passenger_enters_row = []

219 row_blockage = [0 for _ in range(bap.num_rows)]

220

221 for passenger in range(bap.num_passengers):

222 assigned_row = self.assignment[passenger]

223 passenger_enters_row.append ([0 for _ in range(

assigned_row + 1)])

224

225 for row in range(assigned_row + 1):

226 passenger_enters_row[passenger][row] = (

227 row_blockage [0]

228 if row == 0

229 else max(

230 passenger_enters_row[passenger][row - 1]

231 + bap.walking_speeds[passenger][row - 1],

232 row_blockage[row],

233)

234)

235

236 if not row == 0:

237 row_blockage[row - 1] = passenger_enters_row[

passenger][row]

238

239 if row == assigned_row:

240 passenger_seated_time = (

241 passenger_enters_row[passenger][row]

242 + bap.stowing_speeds[passenger][row]

243)

244

245 row_blockage[row] = passenger_seated_time

246 passenger_seated_times[passenger] =

passenger_seated_time

247

Page 47

A.1. Library

248 makespan = max(passenger_seated_times , default =0)

249 seating_simulation = SeatingSimulation(

250 passenger_seated_times , passenger_enters_row , makespan

, solution=self

251)

252 return seating_simulation

253

254

255 class SeatAssigner(ABC):

256 """

257 Abstract base class for SeatAssigner objects. Used to define a

common interface.

258 """

259

260 def solve(self , bap: "AeroplaneBoardingProblem", ** kwargs) ->

BapSolution:

261 """

262 Calls the solve implementation , adds timing information

and the solver description.

263 """

264 start_time = datetime.now()

265 solution = self.solve_implementation(bap , ** kwargs)

266 solution.computation_time = datetime.now() - start_time

267 solution.solver_description = type(self).__name__

268 return solution

269

270 def solve_implementation(self , bap: "AeroplaneBoardingProblem"

) -> BapSolution:

271 """

272 Returns a seat assignment for a given Aeroplane Boarding

Problem and the makespan.

273 """

274 raise NotImplementedError

275

276

277 class AeroplaneBoardingProblem:

278 """

279 Any object of this class is an instance of the boarding an

aeroplane problem.

280 For a description of the problem , see the thesis.

281 """

282

283 @staticmethod

284 def generate_common_bap_instance(rows: int , seats_per_row: int

) -> dict:

285 """

286 Generates a dictionary encoding a benchmarking instance

for the both

287 the seat assignment problem and the passenger reordering

Page 48

A.1. Library

problem in aeroplane boarding.

288 """

289 if any(v <= 0 for v in [rows , seats_per_row]):

290 raise ValueError("All input parameters must be

strictly positive.")

291

292 passengers = seats_per_row * rows

293

294 abp = AeroplaneBoardingProblem(

295 num_rows=rows , num_passengers=passengers ,

seats_per_row=seats_per_row

296)

297

298 walking_speeds = abp.walking_speeds

299 stowing_speeds = abp.stowing_speeds

300

301 seat_assignment = [

302 (r, s) for r, s in product(range(1, rows + 1), range

(1, seats_per_row + 1))

303]

304 random.shuffle(seat_assignment)

305

306 instance = {

307 "rows": rows ,

308 "seats_per_row": seats_per_row ,

309 "walking_speeds": walking_speeds ,

310 "stowing_speeds": stowing_speeds ,

311 "seat_assignment": seat_assignment ,

312 }

313 return instance

314

315 @staticmethod

316 def write_common_instance_to_disk(instance: dict , file_name):

317 def stringify_passenger(p: int):

318 seat = instance["seat_assignment"][p]

319 settle_times = " ".join(str(n) for n in instance["

stowing_speeds"][p])

320 travel_times = " ".join(str(n) for n in instance["

walking_speeds"][p])

321 return f"row {seat [0]}\ ncolumn {seat [1]}\ nsettle_times

{settle_times }\ ntravel_times {travel_times}"

322

323 rows = instance["rows"]

324 seats_per_row = instance["seats_per_row"]

325 passengers = rows * seats_per_row

326 s = f"n_rows {rows}\ nn_columns {seats_per_row }\

nn_passengers {passengers }\n"

327 s += "\n".join(stringify_passenger(p) for p in range(

passengers))

Page 49

A.1. Library

328 s += "\n"

329

330 with open(file_name , "w") as f:

331 f.write(s)

332

333 @classmethod

334 def load_common_instance_from_disk(cls , file_name) -> "

AeroplaneBoardingProblem":

335 with open(file_name , "r") as f:

336 lines = f.readlines ()

337

338 # parse size parameters

339 for par_line in lines [:3]:

340 if par_line.startswith("n_rows"):

341 rows = int(par_line.split()[-1])

342 elif par_line.startswith("n_columns"):

343 seats_per_row = int(par_line.split ()[-1])

344 elif par_line.startswith("n_passengers"):

345 passengers = int(par_line.split ()[-1])

346

347 # parse passenger parameters

348 walking_speeds = [None for _ in range(passengers)]

349 stowing_speeds = [None for _ in range(passengers)]

350

351 for p in range(passengers):

352 s = 3 + p * 4

353 e = s + 4

354 for par_line in lines[s:e]:

355 if par_line.startswith("settle"):

356 stowing_speeds[p] = [int(float(i)) for i in

par_line.split ()[1:]]

357 elif par_line.startswith("travel"):

358 walking_speeds[p] = [int(float(i)) for i in

par_line.split ()[1:]]

359

360 return cls(

361 num_rows=rows ,

362 num_passengers=passengers ,

363 seats_per_row=seats_per_row ,

364 stowing_speeds=stowing_speeds ,

365 walking_speeds=walking_speeds ,

366)

367

368 @staticmethod

369 def write_to_disk(problems: List["AeroplaneBoardingProblem"],

file_name):

370 with open(file_name , "wb") as file:

371 pickle.Pickler(file).dump(problems)

372

Page 50

A.1. Library

373 @staticmethod

374 def load_from_disk(file_name) -> List["

AeroplaneBoardingProblem"]:

375 try:

376 with open(file_name , "rb") as file:

377 return pickle.Unpickler(file).load()

378 except UnpicklingError as ue:

379 return [AeroplaneBoardingProblem.

load_common_instance_from_disk(file_name)]

380

381 def __init__(

382 self ,

383 num_rows: int = None ,

384 num_passengers: int = None ,

385 seats_per_row: int = None ,

386 stowing_speeds: List[List[int]] = None ,

387 walking_speeds: List[List[int]] = None ,

388 classes: int = None ,

389):

390 """

391 When arguments are omitted , this initializer acts as a

generator for a randomised instance.

392 The walking and stowing speed lists is indexed by

passenger and by row , in that order , both starting at 0.

393 If a number of classes is specified ,

394 all passengers are from a pool with that number of

different passenger types.

395 """

396 self.seats_per_row = (

397 seats_per_row if seats_per_row is not None else random

.randint(1, 7)

398)

399 self.num_passengers = (

400 num_passengers if num_passengers is not None else

random.randint(0, 50)

401)

402 required_num_rows = math.ceil(self.num_passengers / self.

seats_per_row)

403 self.num_rows = (

404 num_rows

405 if num_rows is not None

406 else random.randint(required_num_rows ,

required_num_rows + 10)

407)

408

409 if self.num_rows * self.seats_per_row == 0:

410 raise ValueError("Plane does not have any seats.")

411

412 if self.num_rows * self.seats_per_row < self.

Page 51

A.1. Library

num_passengers:

413 raise ValueError("Plane does not have enough seats for

all passengers.")

414

415 num_templates = classes if classes else self.

num_passengers

416

417 def generate_walking_value ():

418 return random.choices ([1, 2, 3], weights =[1, 2, 1]) [0]

419

420 def generate_stowing_value ():

421 z = np_rand.normal (60, 20)

422 return max(min(int(z), 120), 1)

423

424 def generate_template(generator):

425 return [

426 [generator () for _ in range(self.num_rows)]

427 for _ in range(num_templates)

428]

429

430 if classes and (walking_speeds or stowing_speeds):

431 raise ValueError(

432 "Using classes with custom defined speeds is not

supported at the moment."

433)

434

435 stowing_templates = generate_template(

generate_stowing_value)

436 walking_templates = generate_template(

generate_walking_value)

437

438 if classes:

439 # draw from templates and initialise properly

440 self.stowing_speeds: List[List[int]] = []

441 self.walking_speeds: List[List[int]] = []

442 for passenger in range(self.num_passengers):

443 template_index = random.randint(0, classes - 1)

444 self.stowing_speeds.append(stowing_templates[

template_index])

445 self.walking_speeds.append(walking_templates[

template_index])

446

447 else:

448 self.stowing_speeds = (

449 stowing_speeds if stowing_speeds else

stowing_templates

450)

451 self.walking_speeds = (

452 walking_speeds if walking_speeds else

Page 52

A.1. Library

walking_templates

453)

454

455 if len(self.stowing_speeds) != self.num_passengers:

456 raise ValueError(

457 f"The length of the stowing speed list ({len(self.

stowing_speeds)}) does not match the number of passengers ({

self.num_passengers })."

458)

459

460 if len(self.walking_speeds) != self.num_passengers:

461 raise ValueError(

462 f"The length of the walking speed list ({len(self.

walking_speeds)}) does not match the number of passengers ({

self.num_passengers })."

463)

464

465 # extend walking speed lists if needed

466 for l in self.walking_speeds:

467 if len(l) > self.num_rows:

468 raise ValueError(

469 f"At least one walking speed list is too long ,

the maximum length is {self.num_rows}"

470)

471 else:

472 try:

473 filler = l[-1]

474 except IndexError:

475 filler = generate_walking_value ()

476 l.extend(repeat(filler , self.num_rows - len(l)))

477

478 # extend stowing speed lists if needed

479 for l in self.stowing_speeds:

480 if len(l) > self.num_rows:

481 raise ValueError(

482 f"At least one stowing speed list is too long ,

the maximum length is {self.num_rows}"

483)

484 else:

485 try:

486 filler = l[-1]

487 except IndexError:

488 filler = generate_stowing_value ()

489 l.extend(repeat(filler , self.num_rows - len(l)))

490

491 self.solutions: List[BapSolution] = list()

492 self.classes = classes

493

494 def __str__(self):

Page 53

A.1. Library

495 s = "Aeroplane Boarding Problem"

496 s += f"classes: {self.classes if self.classes else ’freely

chosen ’}"

497 s += f"\npassengers: {self.num_passengers }\nrows: {self.

num_rows }\ nseats per row: {self.seats_per_row }\ nwalking and

stowing speeds: ---------"

498 for p in self.passengers:

499 s += f"\npassenger {p}:\ nwalking: {self.walking_speeds

[p]}\ nstowing: {self.stowing_speeds[p]}"

500 return s

501

502 @property

503 def passengers(self):

504 return range(self.num_passengers)

505

506 @property

507 def rows(self):

508 return range(self.num_rows)

509

510 def compute_makespan(self , assignment: Dict) -> float:

511 """

512 Computes the makespan for a given seat assignment.

513 """

514 raise NotImplementedError

515

516 def solve(self , assigner: SeatAssigner , ** kwargs):

517 """

518 Compute a seat assignment using the given assigner.

519 """

520 solution = assigner.solve(bap=self , ** kwargs)

521 self.solutions.append(solution)

522 return solution

523

524

525 class RandomAssigner(SeatAssigner):

526 """

527 Assigns seats at random

528 """

529

530 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

531 row_tickets = list(

532 chain.from_iterable(repeat(r, bap.seats_per_row) for r

in bap.rows)

533)

534 random.shuffle(row_tickets)

535 assignment = row_tickets [: bap.num_passengers]

536 return BapSolution(assignment=assignment , problem=bap)

537

Page 54

A.1. Library

538

539 class DirectionalAssigner(SeatAssigner):

540 """

541 Assigns seats in one direction , either back to front or front

to back.

542 """

543

544 def __init__(self , reverse: bool):

545 self.reverse = reverse

546

547 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

548 assignment = [0 for _ in bap.passengers]

549 usable_rows = int(

550 math.ceil(float(bap.num_passengers) / float(bap.

seats_per_row))

551)

552 front_rows = list(bap.rows)[: usable_rows]

553 row_iterator = reversed(front_rows) if self.reverse else

front_rows

554 for passenger , row in zip(

555 bap.passengers ,

556 chain.from_iterable(repeat(row , bap.seats_per_row) for

row in row_iterator),

557):

558 assignment[passenger] = row

559 return BapSolution(assignment=assignment , problem=bap)

560

561

562 class FrontToBackAssigner(DirectionalAssigner):

563 """

564 Assigns seats front to back. Can be used as a starting

solution for an improvement heuristics.

565 """

566

567 def __init__(self):

568 super().__init__(reverse=False)

569

570

571 class BackToFrontAssigner(DirectionalAssigner):

572 """

573 Assigns seats back to front. Useful as starting point for

improvement heuristics.

574 """

575

576 def __init__(self):

577 super().__init__(reverse=True)

578

579

Page 55

A.1. Library

580 class WindowToWindowAssigner(SeatAssigner):

581 """

582 Assigns seats window to window

583 """

584

585 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

586 btf = list(reversed(list(bap.rows)))

587 assignment = list(chain.from_iterable(repeat(btf , bap.

seats_per_row)))[

588 : bap.num_passengers

589]

590 return BapSolution(bap , assignment)

591

592

593 class ReversePyramidAssigner(SeatAssigner):

594 """

595 Assigns seats in a reverse pyramid scheme

596 """

597

598 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

599 if not bap.seats_per_row % 2 == 0:

600 raise ValueError(

601 f"Layout has {bap.seats_per_row} seats per row ,

which is not even , as is required for the reverse pyramid

assigner."

602)

603

604 # only assign to half of the columns and copy assignment

605 first_row_in_column = {c: 0 for c in range(int(bap.

seats_per_row / 2))}

606

607 def push_into_column(c: int) -> Optional[int]:

608 """

609 :param c: The column to push into

610 :return: The row pushed into if successful , None

otherwise

611 """

612 first_row = first_row_in_column[c]

613 if first_row >= bap.num_rows:

614 return None

615 else:

616 first_row_in_column[c] += 1

617 return first_row

618

619 def push_into_lowest () -> Tuple[int , int]:

620 """

621 :return: the row and column pushed into

Page 56

A.1. Library

622 """

623 column = 0

624 row = push_into_column(column)

625 while row is None:

626 column += 1

627 row = push_into_column(column)

628 return row , column

629

630 num_groups = 6

631 split = 0.6

632 passengers = list(bap.passengers)[: int(math.ceil(bap.

num_passengers / 2))]

633 group_size = max(int(math.floor(len(passengers) /

num_groups)), 1)

634

635 passenger_groups = []

636 for i in range(num_groups - 1):

637 passenger_groups.append(passengers[i * group_size : (i

+ 1) * group_size])

638 passenger_groups.append(passengers[group_size * (

num_groups - 1) :])

639

640 assignment = dict()

641

642 # handle first group

643 for p in passenger_groups [0]:

644 assignment[p] = push_into_lowest ()

645

646 # handle other groups

647 last_column = 0

648 for group in passenger_groups [1:]:

649 # push first chunk into lowest

650 split_index = int(math.floor(len(group) * split))

651 for p in group[: split_index]:

652 assignment[p] = push_into_lowest ()

653 _, last_column = assignment[p]

654

655 # push second chunk higher

656 if last_column < int(bap.seats_per_row / 2) - 1:

657 last_column += 1

658

659 for p in group[split_index :]:

660 row = push_into_column(last_column)

661 while row is None:

662 last_column += 1

663 row = push_into_column(last_column)

664 assignment[p] = row , last_column

665

666 row_assignment = list(

Page 57

A.1. Library

667 chain.from_iterable(

668 [

669 bap.num_rows - 1 - assignment[p][0],

670 bap.num_rows - 1 - assignment[p][0],

671]

672 for p in passengers

673)

674)[: bap.num_passengers]

675

676 return BapSolution(bap , row_assignment)

677

678

679 class SteffenMethodAssigner(SeatAssigner):

680 """

681 Implements the method invented by Jason H. Steffen

682 """

683

684 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

685 if not bap.seats_per_row % 2 == 0:

686 raise ValueError(

687 f"Layout has {bap.seats_per_row} seats per row ,

which is not even , as is required for the Steffen ’s Method

assigner."

688)

689

690 # generate column filling pattern

691 interleaved = zip(range(bap.seats_per_row), reversed(range

(bap.seats_per_row)))

692 interleaved_doubled = chain.from_iterable(repeat(i, 2) for

i in interleaved)

693 groups_with_offset = zip(interleaved_doubled , cycle ([False

, True]))

694 columns_with_offset = (

695 ((t[0], offset), (t[1], offset)) for t, offset in

groups_with_offset

696)

697 column_sequence = islice(

698 chain.from_iterable(columns_with_offset), 2 * bap.

seats_per_row

699)

700

701 assignment = list()

702

703 for column , use_offset in column_sequence:

704 initial_row = bap.num_rows - 2 if use_offset else bap.

num_rows - 1

705 for row in range(initial_row , -1, -2):

706 assignment.append(row)

Page 58

A.1. Library

707

708 return BapSolution(bap , assignment [: bap.num_passengers])

709

710

711 class LocalSearchAssigner(SeatAssigner):

712 """

713 Improve an initial seat assignment using local search.

714 """

715

716 def __init__(

717 self ,

718 initializer: Optional[SeatAssigner] = None ,

719 initial_solution: Optional[BapSolution] = None ,

720 **kwargs ,

721):

722 self.initializer = initializer

723 self.initial_solution = initial_solution

724

725 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

726 if self.initial_solution is not None:

727 current_solution = self.initial_solution

728 else:

729 current_solution = self.initializer.solve(bap)

730 best_makespan = current_solution.makespan

731 improvement_possible = True

732

733 empty_seats_per_row = {

734 r: bap.seats_per_row

735 - sum(1 for p in bap.passengers if current_solution.

assignment[p] == r)

736 for r in bap.rows

737 }

738

739 def swap(p1: int , p2: int):

740 current_solution._makespan = None

741 current_solution._seating_simulation = None

742 old_p1 = current_solution.assignment[p1]

743 current_solution.assignment[p1] = current_solution.

assignment[p2]

744 current_solution.assignment[p2] = old_p1

745

746 def swap_into_empty_seat(p: int , target_row: int) -> int:

747 """

748 Returns the row that was swapped out of.

749 """

750 if not empty_seats_per_row[target_row] > 0:

751 raise ValueError(f"There is no empty seat in row {

target_row}")

Page 59

A.1. Library

752

753 old_row = current_solution.assignment[p]

754 current_solution.assignment[p] = target_row

755

756 empty_seats_per_row[old_row] += 1

757 empty_seats_per_row[target_row] -= 1

758

759 return old_row

760

761 while improvement_possible:

762 improvement_possible = False

763

764 passengers = list(bap.passengers)

765 random.shuffle(passengers)

766

767 for passenger in passengers:

768 other_passengers = list(range(passenger))

769 random.shuffle(other_passengers)

770

771 # swap into empty seats

772 empty_seats = [r for r in bap.rows if

empty_seats_per_row[r] > 0]

773 random.shuffle(empty_seats)

774

775 for target_row in empty_seats:

776 old_row = swap_into_empty_seat(passenger ,

target_row)

777 if current_solution.makespan < best_makespan:

778 best_makespan = current_solution.makespan

779 improvement_possible = True

780 break

781 else: # swap back

782 swap_into_empty_seat(passenger , old_row)

783

784 # swap among passengers

785 for other_passenger in other_passengers:

786 swap(passenger , other_passenger)

787 if current_solution.makespan < best_makespan:

788 best_makespan = current_solution.makespan

789 improvement_possible = True

790 else: # swap back

791 swap(passenger , other_passenger)

792

793 current_solution._makespan = None

794 current_solution._seating_simulation = None

795 return current_solution

796

797

798 class MultiSearchAssigner(SeatAssigner):

Page 60

A.1. Library

799 """

800 Uses local search to find solution. Has multiple starting

points.

801 """

802

803 def __init__(self , tries: int):

804 self.start_assigners: List[SeatAssigner] = [

805 RandomAssigner () for _ in range(tries)

806]

807

808 def solve_implementation(self , bap: AeroplaneBoardingProblem)

-> BapSolution:

809 solutions = [

810 LocalSearchAssigner(assigner).solve_implementation(bap

)

811 for assigner in self.start_assigners

812]

813

814 return min(solutions , key=lambda s: s.makespan)

815

816

817 class MIPExactSeatAssigner(SeatAssigner):

818 """

819 Exactly solves the Aeroplane Boarding Problem using gurobi and

mixed integer programming.

820 """

821

822 def __init__(

823 self ,

824 start_solution: Optional[BapSolution] = None ,

825 use_additional_cuts: bool = False ,

826 **kwargs ,

827):

828 self.solution_random_id = random.randint(0, 1_000_000)

829 self.start_solution = start_solution

830 self.use_additional_cuts = use_additional_cuts

831

832 def get_iis_for_solution(

833 self , bap: AeroplaneBoardingProblem , sol: BapSolution

834) -> str:

835 """

836 Tests a solution for feasibility and returns the

infeasible subsystem. Fails otherwise.

837 """

838 model , pass_in_row , _, _, _ = self.get_gurobi_model(bap)

839 for p in bap.passengers:

840 model.addConstr(pass_in_row[p, sol.assignment[p]] ==

1)

841 model.optimize ()

Page 61

A.1. Library

842

843 with NamedTemporaryFile(suffix=".ilp", mode="w") as f:

844 model.computeIIS ()

845 model.write(f.name)

846 iis_str = f.read()

847 return iis_str.decode ()

848

849 def get_gurobi_model(

850 self , bap: AeroplaneBoardingProblem

851) -> Tuple[gurobipy.Model , dict , dict , gurobipy.Var]:

852 """

853 Returns a gurobi model encoding of the aeroplane boarding

problem.

854 Also returns a dictionary with the relevant decision

variables and the makespan variable.

855 """

856 model = gurobipy.Model(f"MIP generated from aeroplane

boarding problem")

857 model.setAttr("ModelSense", gurobipy.GRB.MINIMIZE)

858 model.message(f"MODEL_ID {self.solution_random_id}")

859

860 pass_in_row = {

861 (passenger , row): model.addVar(

862 vtype=gurobipy.GRB.BINARY , name=f"p{passenger}

_in_r{row}"

863)

864 for passenger , row in product(bap.passengers , bap.rows

)

865 }

866

867 pass_enters_row = {

868 (passenger , row): model.addVar(

869 vtype=gurobipy.GRB.CONTINUOUS ,

870 name=f"p{passenger}_enters_r{row}",

871 lb=0.0,

872)

873 for passenger , row in product(bap.passengers , range(

bap.num_rows + 1))

874 }

875

876 M = max(

877 (

878 max(bap.walking_speeds[p][r], bap.stowing_speeds[p

][r])

879 for p, r in product(bap.passengers , bap.rows)

880),

881 default=0,

882) * bap.num_rows

883

Page 62

A.1. Library

884 makespan = model.addVar(

885 vtype=gurobipy.GRB.CONTINUOUS , lb=0.0, obj=1.0, name="

makespan"

886)

887

888 # no row exceeds capacity

889 for row in bap.rows:

890 model.addConstr(

891 quicksum(pass_in_row[p, row] for p in bap.

passengers)

892 <= bap.seats_per_row

893)

894

895 for passenger in bap.passengers:

896 # every passenger has a seat

897 model.addConstr(

898 quicksum(pass_in_row[passenger , row] for row in

bap.rows) == 1

899)

900 # makespan conditions

901 model.addConstr(makespan >= pass_enters_row[passenger ,

bap.num_rows])

902

903 for row in bap.rows:

904 # respect moving and stowing times

905 model.addConstr(

906 pass_enters_row[passenger , row + 1]

907 >= pass_enters_row[passenger , row]

908 + bap.stowing_speeds[passenger][row] *

pass_in_row[passenger , row]

909 + bap.walking_speeds[passenger][row]

910 * quicksum(

911 pass_in_row[passenger , r] for r in range(

row + 1, bap.num_rows)

912)

913)

914

915 if self.use_additional_cuts:

916 # add lower bounds on arrival times in rows

917 model.addConstr(

918 pass_enters_row[passenger , row + 1]

919 >= (

920 quicksum(

921 bap.walking_speeds[passenger][r]

for r in range(row)

922)

923 + bap.stowing_speeds[passenger][row]

924)

925 * pass_in_row[passenger , row]

Page 63

A.1. Library

926)

927

928 # only enter row once all others have left

929 for other_passenger in range(passenger):

930 model.addConstr(

931 pass_enters_row[passenger , row]

932 >= pass_enters_row[other_passenger , row +

1]

933 - M

934 * (

935 1

936 - quicksum(

937 pass_in_row[passenger , r]

938 for r in range(row , bap.num_rows)

939)

940)

941)

942

943 model.setParam("TimeLimit", 2 * 60 * 60)

944

945 return model , pass_in_row , pass_enters_row , makespan

946

947 def set_initial_solution(

948 self ,

949 bap: AeroplaneBoardingProblem ,

950 pass_in_row: Dict[Tuple[int , int], gurobipy.Var],

951):

952 initial_solution = self.start_solution

953 for p, r in product(bap.passengers , bap.rows):

954 pass_in_row[p, r].Start = 1 if initial_solution.

assignment[p] == r else 0

955

956 def get_relaxed_solution(self , bap: AeroplaneBoardingProblem):

957 """

958 Computes the solution of the relaxed model and returns it.

959 """

960 model , pass_in_row , pass_enters_row , _ = self.

get_gurobi_model(bap)

961

962 pir = dict()

963 per = dict()

964

965 def callback(model , where):

966 if where == gurobipy.GRB.Callback.MIPNODE:

967 for p, r in product(bap.passengers , bap.rows):

968 pir[p, r] = model.cbGetNodeRel(pass_in_row [(p,

r)])

969 per[p, r] = model.cbGetNodeRel(pass_enters_row

[(p, r)])

Page 64

A.1. Library

970

971 model.setParam("NodeLimit", 1)

972 model.optimize(callback)

973

974 return pir , per

975

976 def show_relaxed_solution(

977 self , bap: AeroplaneBoardingProblem , file_name=None ,

random_seed=None

978):

979 """

980 Shows a timing graph for the relaxed root node solution.

981 """

982

983 pass_in_row , pass_enters_row = self.get_relaxed_solution(

bap)

984

985 fig = plt.figure ()

986 ax = fig.add_subplot (111)

987 handles = []

988

989 if random_seed:

990 random.seed(random_seed)

991

992 for p in bap.passengers:

993

994 def random_colour ():

995 return random.random (), random.random (), random.

random ()

996

997 colour = random_colour ()

998 while not sum(colour) >= 1:

999 colour = random_colour ()

1000

1001 for r in bap.rows:

1002 width = sum(pass_in_row[p, row] for row in range(r

, bap.num_rows))

1003 height = pass_enters_row[p, r + 1] -

pass_enters_row[p, r]

1004 rect = Rectangle(

1005 (r, pass_enters_row[p, r]),

1006 width ,

1007 height ,

1008 fc=colour ,

1009 alpha =0.5,

1010 label=f"passenger {p}",

1011)

1012 ax.add_patch(rect)

1013 if r == 0:

Page 65

A.1. Library

1014 handles.append(rect)

1015

1016 ax.set_xscale("linear")

1017 ax.set_xlabel("rows")

1018 ax.set_yscale("linear")

1019 ax.set_ylabel("time")

1020

1021 ax.set_title(f"Fractional solution for {bap.num_passengers

} passengers")

1022

1023 # plt.legend(handles=handles)

1024

1025 if file_name:

1026 with open(file_name , "w") as f:

1027 for p in bap.passengers:

1028 f.write(f"passenger {p}:\n")

1029 for r in bap.rows:

1030 f.write(

1031 f"row {r}:\t{pass_in_row[p, r]}\t {

pass_enters_row[p, r]}\n"

1032)

1033

1034 plt.show()

1035

1036 def solve_implementation(

1037 self , bap: AeroplaneBoardingProblem , ** kwargs

1038) -> BapSolution:

1039 """

1040 Returns an optimal assignment of passengers to seats as a

dictionary and the optimal objective value.

1041 """

1042 model , pass_in_row , pass_enters_row , makespan = self.

get_gurobi_model(bap)

1043 if self.start_solution:

1044 self.set_initial_solution(bap , pass_in_row)

1045 model.optimize ()

1046

1047 if model.Status == gurobipy.GRB.INFEASIBLE:

1048 model.computeIIS ()

1049 model.write("out.ilp")

1050 print("Walking speeds: ")

1051 print(bap.walking_speeds)

1052 print("Stowing speeds:")

1053 print(bap.stowing_speeds)

1054

1055 assignment = []

1056 for p in bap.passengers:

1057 for r in bap.rows:

1058 if pass_in_row[p, r].X > 0.5:

Page 66

A.1. Library

1059 assignment.append(r)

1060

1061 return BapSolution(assignment=assignment , makespan=

makespan.X, problem=bap)

1062

1063

1064 class AlternativeMIPAssigner(MIPExactSeatAssigner):

1065 """

1066 Uses an alternative MIP formulation

1067 """

1068

1069 def get_iis_for_solution(

1070 self , bap: AeroplaneBoardingProblem , sol: BapSolution

1071) -> str:

1072 model , pass_in_seat , _, _, _ = self.get_gurobi_model(bap)

1073 next_assignable_seat = [0 for _ in bap.rows]

1074 for p in bap.passengers:

1075 r = sol.assignment[p]

1076 s = next_assignable_seat[r]

1077 next_assignable_seat[r] += 1

1078 model.addConstr(pass_in_seat[p, r, s] == 1)

1079 model.optimize ()

1080

1081 with NamedTemporaryFile(suffix=".ilp") as f:

1082 model.computeIIS ()

1083 model.write(f.name)

1084 iis_str = f.read()

1085 return iis_str.decode ()

1086

1087 def set_initial_solution(

1088 self ,

1089 bap: AeroplaneBoardingProblem ,

1090 pass_in_seat: Dict[Tuple[int , int , int], gurobipy.Var],

1091 seat_arrival_times: Dict[Tuple[int , int , int], gurobipy.

Var],

1092):

1093 initial_solution = self.start_solution

1094 first_available_seat = {r: 0 for r in bap.rows}

1095 passenger_seated = {p: False for p in bap.passengers}

1096

1097 for p, r, s in product(bap.passengers , bap.rows , range(bap

.seats_per_row)):

1098 start_value = 0

1099 if initial_solution.assignment[p] == r:

1100 if first_available_seat[r] == s and not

passenger_seated[p]:

1101 first_available_seat[r] += 1

1102 passenger_seated[p] = True

1103 start_value = 1

Page 67

A.1. Library

1104

1105 # Copy seat arrival times

1106 for row in range(r + 1):

1107 seat_arrival_times[

1108 (r, s, row)

1109]. Start = initial_solution.

seating_simulation.passenger_enters_row[

1110 p

1111][

1112 row

1113]

1114

1115 pass_in_seat[p, r, s]. Start = start_value

1116

1117 def solve_implementation(

1118 self , bap: AeroplaneBoardingProblem , ** kwargs

1119) -> BapSolution:

1120 """

1121 Returns an optimal assignment of passengers to seats as a

dictionary and the optimal objective value.

1122 """

1123 model , pass_in_seat , seat_arrival_times ,

seat_departure_times , M, makespan = self.get_gurobi_model(

1124 bap

1125)

1126

1127 if self.start_solution:

1128 self.set_initial_solution(bap , pass_in_seat ,

seat_arrival_times)

1129

1130 model.setParam("LazyConstraints", 1)

1131 model.optimize ()

1132

1133 assignment = []

1134 for p in bap.passengers:

1135 for r in bap.rows:

1136 if any(

1137 pass_in_seat [(p, r, s)].X > 0.5 for s in range

(bap.seats_per_row)

1138):

1139 assignment.append(r)

1140

1141 return BapSolution(assignment=assignment , makespan=

makespan.X, problem=bap)

1142

1143 def get_gurobi_model(self , bap: AeroplaneBoardingProblem):

1144 """

1145 Implements an alternative MIP formulation of the problem.

1146 """

Page 68

A.1. Library

1147 env = gurobipy.Env(GUROBI_LOG_NAME)

1148 model = gurobipy.Model(

1149 f"Alternative MIP generated from aeroplane boarding

problem", env

1150)

1151 model.setParam("Heuristics", 0)

1152 model.setAttr("ModelSense", gurobipy.GRB.MINIMIZE)

1153 model.message(f"MODEL_ID {self.solution_random_id}")

1154

1155 M = (

1156 max(

1157 max(bap.walking_speeds[p][r], bap.stowing_speeds[p

][r])

1158 for p, r in product(bap.passengers , bap.rows)

1159)

1160 * bap.num_rows

1161)

1162

1163 pass_in_seat = {

1164 (passenger , row , seat): model.addVar(

1165 vtype=gurobipy.GRB.BINARY , name=f"p{passenger}

_in_s{seat}_in_r{row}"

1166)

1167 for passenger , row , seat in product(

1168 bap.passengers , bap.rows , range(bap.seats_per_row)

1169)

1170 }

1171

1172 seat_arrival_times = {

1173 (row , seat , r): model.addVar(

1174 vtype=gurobipy.GRB.INTEGER , name=f"arr_r{row}_s{

seat}_in_r{r}"

1175)

1176 for row , seat in product(bap.rows , range(bap.

seats_per_row))

1177 for r in range(row + 1)

1178 }

1179

1180 seat_departure_times = {

1181 (row , seat , r): model.addVar(

1182 vtype=gurobipy.GRB.INTEGER , name=f"dep_r{row}_s{

seat}_from_r_{r}"

1183)

1184 for row , seat in product(bap.rows , range(bap.

seats_per_row))

1185 for r in range(row + 1)

1186 }

1187

1188 makespan = model.addVar(vtype=gurobipy.GRB.INTEGER , obj=1,

Page 69

A.1. Library

name="makespan")

1189

1190 # Makespan conditions

1191 for row , seat in product(bap.rows , range(bap.seats_per_row

)):

1192 model.addConstr(makespan >= seat_departure_times [(row ,

seat , row)])

1193

1194 # Every passenger has exactly one seat

1195 for passenger in bap.passengers:

1196 model.addConstr(

1197 quicksum(

1198 pass_in_seat [(passenger , row , seat)]

1199 for row , seat in product(bap.rows , range(bap.

seats_per_row))

1200)

1201 == 1

1202)

1203

1204 # At most one passenger is in every seat

1205 for row , seat in product(bap.rows , range(bap.seats_per_row

)):

1206 model.addConstr(

1207 quicksum(

1208 pass_in_seat [(passenger , row , seat)] for

passenger in bap.passengers

1209)

1210 <= 1

1211)

1212

1213 for row , seat in product(bap.rows , range(bap.seats_per_row

)):

1214 # couple arrive and leave times

1215 for r in range(1, row + 1):

1216 model.addConstr(

1217 seat_arrival_times [(row , seat , r)]

1218 == seat_departure_times [(row , seat , r - 1)]

1219)

1220

1221 # respect moving times

1222 for r in range(row):

1223 model.addConstr(

1224 seat_departure_times [(row , seat , r)]

1225 >= seat_arrival_times [(row , seat , r)]

1226 + quicksum(

1227 bap.walking_speeds[p][r] * pass_in_seat [(p

, row , seat)]

1228 for p in bap.passengers

1229)

Page 70

A.1. Library

1230)

1231

1232 # respect stowing times

1233 model.addConstr(

1234 seat_departure_times [(row , seat , row)]

1235 == seat_arrival_times [(row , seat , row)]

1236 + quicksum(

1237 bap.stowing_speeds[p][row] * pass_in_seat [(p,

row , seat)]

1238 for p in bap.passengers

1239)

1240)

1241

1242 # break symmetries

1243 for p, r in product(bap.passengers , bap.rows):

1244 for right_seat in range(bap.seats_per_row):

1245 for left_seat in range(right_seat):

1246 model.addConstr(

1247 1 - pass_in_seat[p, r, right_seat]

1248 >= quicksum(

1249 pass_in_seat[other_p , r, left_seat]

1250 for other_p in range(p, bap.

num_passengers)

1251)

1252)

1253

1254 # transfer passenger order

1255 for r, s in product(bap.rows , range(bap.seats_per_row)):

1256 for o_r , o_s in product(bap.rows , range(bap.

seats_per_row)):

1257 if (r, s) != (o_r , o_s):

1258 for row in range(min(r, o_r) + 1):

1259 for p in bap.passengers:

1260 c = model.addConstr(

1261 seat_arrival_times[r, s, row]

1262 >= seat_departure_times[o_r , o_s ,

row]

1263 - M

1264 * (

1265 2

1266 - pass_in_seat[p, r, s]

1267 - quicksum(

1268 pass_in_seat[o_p , o_r , o_s

] for o_p in range(p)

1269)

1270)

1271)

1272 c.setAttr("Lazy", 1)

1273

Page 71

A.2. Instance Generation

1274 model.setParam("TimeLimit", 2 * 60 * 60)

1275

1276 return (

1277 model ,

1278 pass_in_seat ,

1279 seat_arrival_times ,

1280 seat_departure_times ,

1281 M,

1282 makespan ,

1283)

A.2 Instance Generation

1 """

2 Contains the generation code for instances where times vary per

row

3 """

4

5 import os.path as op

6

7 from lib import AeroplaneBoardingProblem

8

9 NUM_INSTANCES = 10

10 CONFIGURATIONS = [(10, 2), (20, 2), (20, 4), (30, 6)]

11

12 def generate_instances ():

13 for c in CONFIGURATIONS:

14 rows , seats_per_row = c

15 for i in range(NUM_INSTANCES):

16 instance = AeroplaneBoardingProblem.

generate_common_bap_instance(rows , seats_per_row)

17 file_name = f"own_{rows}_{seats_per_row}_{i}.abp"

18 file_name = op.abspath(op.join("instances/own",

file_name))

19 AeroplaneBoardingProblem.write_common_instance_to_disk

(instance , file_name)

20

21

22 if __name__ == "__main__":

23 generate_instances ()

Page 72

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

	1 Introducion
	1.1 Literature Survey
	1.2 Own Contributions

	2 Problem Formulation
	3 NP-Hardness
	4 MIP Formulation
	4.1 Standard Formulation
	4.2 Alternative Formulation

	5 Heuristics
	6 Computational Study
	6.0.1 Instance Generation
	6.0.2 Test Description
	6.0.3 Software and Hardware used

	6.1 Results
	6.1.1 Dual Gaps for MIPs
	6.1.2 Robustness of Solutions
	6.1.3 A non-optimal Hwtw Solution
	6.1.4 Comparison to Boarding Sequence Optimisation

	6.2 Conclusions

	7 Outlook and Future Research
	7.1 Heuristics and Data
	7.2 Online Setting
	7.2.1 Possible Scenarios
	7.2.2 Consequences

	8 Conclusion
	References
	A Code Listings
	A.1 Library
	A.2 Instance Generation

	B Statutory Declaration in Lieu of an Oath

