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Abstract

Given a set of aircraft and a set of scheduled flights, the tail assignment problem
determines the sequences of flights, ground periods and maintenance activities for
each individual aircraft. The routings have to comply with various operational re-
quirements stipulated by airlines, airports and authorities. Of particular importance
are restrictions on the maximum accumulated flying time, number of take offs and
calendar time between two consecutive maintenance checks.
In the literature and also in practice, fleeting and routing are usually solved individ-
ually and sequentially. Tail assignment is often treated as a pure feasibility problem
as the associated costs are relatively low compared to other planning stages. In
doing so, airlines give up a great potential to improve their operational efficiency.
Our approach is different as it minimizes tail assignment costs while providing the
possibility to readjust fleeting decisions.
We introduce an adaptive large neighborhood search algorithm for the tail assign-
ment problem of airlines. Throughout the algorithm, we take advantage of the
benefits of two different formulation techniques of how to map a flight schedule in
a mathematical model. To quickly obtain an initial solution, we embed an inex-
pressive problem formulation in an iteratively solved row generation framework. In
the subsequent improvement iterations, we employ a more expressive problem for-
mulation. The model is able to capture detailed maintenance requirements and all
other relevant operational restrictions, such as minimum turn times, curfews and
maintenance capacities.
We show how a math-heuristic framework of the adaptive large neighborhood search
can be designed to obtain good solutions to the tail assignment problem in accept-
able time frames. To reduce problem sizes and increase solving speed, we develop
and evaluate several preprocessing methods. The performance of our approach is
demonstrated using real-world data from two major international carriers.

Keywords: airline scheduling, tail assignment, aircraft routing, large neighborhood
search, adaptive large neighborhood search, math-heuristic
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1 Introduction

The airline industry is a dynamic and highly competitive business sector. Airlines
continuously need to adapt to various influencing market forces. New players and
low-cost carriers have created a market environment characterized by excess capac-
ities and low fares. To remain profitable, the efficient management of resources,
especially aircraft and crews, is inevitable. In this context, airlines rely on the
methods and tools of operations research. Major airlines are confronted with huge
amount of data, which is impossible to handle manually. One of our airline partners
offers nearly 3,500 daily flights to 275 destinations in 50 countries using more than
700 aircraft of twelve different fleet types.

1.1 Overview

The planning tasks of an airline include schedule design, fleet assignment, aircraft
scheduling and crew scheduling. Traditionally, these planning stages are solved
individually and sequentially. After developing the flight schedule and assigning a
fleet type to every flight, the airline seeks to create routings for its aircraft and
work schedules for its crews. This thesis deals with the tail assignment problem,
which is part of the aircraft scheduling stage. The name of the problem results
from the fact that aircraft are identified by their registration number, which is
indicated on the rear end of the aircraft. The problem consists of creating flight
routes for individual aircraft such that all flights in a schedule are covered and diverse
operational restrictions fulfilled. The most crucial restrictions are the maintenance
requirements stipulated by the aviation authorities. The planner has to make sure
that the routes of the aircraft comply with these requirements to avoid aircraft
from being grounded. Other operational restrictions arise from minimum turn time
requirements, limited maintenance capacity, multi-leg flights as well as preassigned
and forbidden activities for individual aircraft.
The purpose of this thesis is to develop an optimizing tool for the tail assignment
problem of airlines. The tool should be able to create valid aircraft routings while
optimizing maintenance planning. Furthermore, it should provide the possibility to
consider fleeting and routing decisions simultaneously. The generated routing and
maintenance plans have to be suitable for real-world implementation. The solution
therefore has to comply with all relevant restrictions of the real-world problem, espe-
cially the complex, interdependent maintenance requirements. The planning horizon
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Chapter 1 Introduction

should cover a fixed period of approximately one week. To derive valid routings, the
initial position and maintenance state of the aircraft have to be considered.
An explicit requirement is to create a flexible and technically unspecialized optimiz-
ing system. During the development of a prototype for a software, massive changes
of customer requirements are probable. The system therefore has to be designed in
a way that allows fast and easy adjustments to future customer requests. Also, the
tool should take into account different preferences of the user. It should be able to
quickly generate solutions of acceptable quality, as well as solution of higher quality
when the user is willing to wait longer.
Throughout this thesis, we develop a comprehensive mathematical representation
of the real-world tail assignment problem. Our model is distinctive as it is able
to capture various operational restrictions and allows multiple fleets to be treated
simultaneously. We then present a math-heuristic to obtain problem solutions. Our
algorithm is based on an adaptive large neighborhood search. The underlying idea
is to iteratively improve an initial solution by alternately destroying and repairing
different parts of the assignments. We implement multiple competing destructor
methods in an adaptive framework, enabling the algorithm to adapt to the instance
at hand and state of the search.
We prove our concept on 220 real-world instances from two major international
carriers. The instances are heterogeneous. They cover planning periods from three
days to one month. The largest instances involve up to 180 aircraft and 2,500 flights.

1.2 Motivation

The current market situation poses a big challenge for airlines. Fierce competition,
cost pressure and changes in customer requirements put many airlines in difficult
financial situations. Losses, bankruptcies and low profit margins are omnipresent.
In order to survive, airlines are forced to increase the efficiency of their operations.
Improvements in aircraft routing and maintenance planning are promising candi-
dates. Compared to other stages of the airline planning process, they still offer a
great potential for cost reductions.
The majority of existing studies on tail assignment is incapable of capturing all rel-
evant objectives and restrictions of the real-world problem. Therefore, these studies
are unsuitable for operational implementation, not to mention for optimization of
maintenance planning. Tail assignment is often treated as a pure feasibility problem,
because the incurred costs are relatively low compared to other planning stages, such
as fleet assignment and crew scheduling. In neglecting the financial impact of unnec-
essary and untimely maintenance, airlines disregard a great potential to reduce their
operational costs. We present an approach in which detailed maintenance require-
ments and many other operational restrictions are considered while incurred costs
are minimized. Our research supports airlines to increase the utilization of their

2



1.2 Motivation

expensive aircraft resources and improve their competitive position. The resulting
routing and maintenance plans are suitable for direct implementation.

Most airlines take a sequential approach when planning their operations. The se-
quential approach is justified by organizational and computational reasons, but con-
tains major drawbacks. Decisions taken in early planning stages limit the solution
space in succeeding stages and might result in a final solution that is far away from
the global optimum. Many planning stages are carried out weeks or even months
before the day of operation, using historic data and unreliable forecasts as key in-
puts. Often the assumptions turn out to be inaccurate, requiring costly adjustments
close to the day of operation. For example, the actual passenger demand on a flight
is unknown during fleet assignment. Airlines counteract by incorporating a late re-
fleeting stage in their planning process to reoptimize their fleeting decisions close to
the day of operation. They aim to improve the generated profit by better matching
offered capacity with actual demand. However, changes in fleet assignment require
additional adjustment loops in aircraft and crew scheduling.

In this thesis, we present an alternative paradigm. We propose a tail assignment
model that considers several fleets simultaneously and includes fleeting decisions.
We thereby provide the opportunity for a late refleeting while avoiding costly it-
eration loops in aircraft scheduling. By optimizing fleeting and routing decisions
simultaneously in an integrated approach, we expect to obtain solutions that are
closer to the global optimum. We thus again contribute to increase profitability of
the airline.

The operations of an airline are subject to many influencing factors. The frequent
occurrence of unplanned maintenance needs, schedule disruptions, delays and can-
cellations force airlines to continuously revise their planning and adapt the routings
of their aircraft to new information. Our proposed solution approach generates so-
lutions of high quality in acceptable time frames satisfying the airlines’ need for
frequent replanning.

By its nature, tail assignment is a combinatorial optimization problem that is com-
putationally hard in practice. To handle the huge amount of decision variables
and constraints appearing in real-world instances, efficient model formulations and
solution methodologies have to be applied. A deficit of exact approaches, like col-
umn generation, is that they are not aimed at finding solutions quickly. Heuristic
approaches, on the other hand, are very promising for finding good suboptimal solu-
tions while applying a reasonable computational effort. These characteristics make
them ideally suited for the dynamic operational planning of an airline.

Our solution algorithm is based on a comprehensive mathematical model in con-
junction with an adaptive large neighborhood search. The proposed math-heuristic
fulfils the requirement to be flexible and adjustable. Future customer requirements
can be easily included in the model without compromising the efficiency of our
solution approach.
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Chapter 1 Introduction

1.3 Outline

The structure of this thesis is organized in nine chapters as illustrated in Fig. 1.1.
Subsequent to this introduction, we analyze the current market situation in the air-
line industry and introduce the planning process of an airline (Chap. 2). In Chap. 3,
we provide a detailed overview on the tail assignment problem, its objectives and
constraints. Chap. 4 discusses modeling techniques as well as solution methodolo-
gies for the tail assignment problem and reviews the relevant literature. In Chap. 5,
we provide a theoretical background on the large neighborhood search, our solu-
tion methodology. In Chap. 6, we introduce a comprehensive mathematical model
for the tail assignment problem. Our solution algorithm is described in Chap. 7.
We present computational results and evaluate the performance of our solution tool
on real-world instances in Chap. 8. Chap. 9 provides a summary of our work and
identifies future research possibilities.
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Figure 1.1: Outline of this thesis
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2 Airline operations planning

In this chapter, we provide an overview on the planning tasks of an airline. To point
out the need for efficient planning, we start by taking a look at the development and
current state of the airline market (Sec. 2.1). Afterwards, we describe the traditional
planning process of an airline (Sec. 2.2).

2.1 Market environment

The commercial aviation has developed impressively since the first passenger flight
100 years ago [53]. Since the 1970s, the aviation sector is one of the strongest
growing traffic sectors. The average annual growth rate of passenger demand in the
past 30 years was five percent1 [41]. External factors such as the events of 9/11,
economic downturns, or the SARS epidemic only led to a temporary slowdown of
growth [6]. A significant event in the development of the airline industry was the
deregulation of the American aviation sector in 1978. After the commencement of
the United States Airline Deregulation Act, American airlines got the right to decide
independently on their flight schedules, networks and ticket prices. At the same
time, governmental protection disappeared, which led to the formations of many
new competitors. As consequences, traffic and network growth increased rapidly,
but also market dynamics and uncertainties [13, 18].

In 2013, the global passenger traffic grew by 5.2 percent [41]. A total of five tril-
lion passenger kilometers were flown [75]. The total profit of all airlines worldwide
amounted to $7.6 billion [40]. Also, the future development is predicted to be
promising. Boeing forecasts an annual growth of passenger and cargo traffic of ap-
proximately five percent in the next 20 years. For the same period, Boeing estimates
that 36,770 new airplanes are needed: 15,500 to replace old ones and 21,270 to meet
the growing demand [18]. Especially, the demand for single-aisle aircraft will be
high due to the fast growth of low-cost carriers.

In spite of those promising figures, many airlines operate at the edge of profitability
or struggle with losses. In seven out of the nine years from 2000 to 2008, the
U.S. airline industry spent more money than they earned. In 2008 alone, U.S.-
based airlines generated a combined operating loss of $5.6 billion [71]. This trend

1All quoted growth rates are based on either revenue passenger kilometers to measure actual
passenger traffic or revenue tonne kilometers to measure actual cargo traffic.
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Chapter 2 Airline operations planning

changed after 2008. In 2012, American airline companies generated a combined
profit of $5 billion [71]. Nevertheless, profit margins are marginal. Out of every
dollar generated through revenue, an airline typically makes less than one cent profit.
Compared to other industries, this key figure is extremely low [75]. Apple Inc., for
example, had a profit margin of 25 percent in 2012 [59]. There are different reasons
for this situation. One reason is the fierce competition among the airlines. At the
same time, the supplying aircraft manufacturers face little competition. Only two
companies, namely Airbus and Boeing, share most of the market and thus possess a
strong competitive position. Airports and air traffic control are also in a monopoly
position towards airlines [75]. To survive in this environment, many airlines tried to
increase their market share by adding additional capacities to their network routes.
Air fares were cut due to a surplus of supply over demand. Only in the past few
years, airlines started to incorporate a strict capacity discipline to their strategies
and air fares started to rise again [71]. Another reason for the low profit margins
are volatile, unpredictable cost parameters. Especially, fuel prices emerged to play a
dominant role. Accounting for approximately 35 percent of total costs, fuel nowadays
represents the largest cost factor of an airline, followed by crew expenses [29, 49, 59].
We can identify several trends that will affect the business models of airlines in the
future. A major trend is the rise of low-cost carriers in the past two decades. Those
airlines operate with 20 to 40 percent lower operational costs than flag carriers.
At the same time, a consolidation process among the flag carriers is noticeable.
Many former renowned airlines go bankrupt or merge with other financially stricken
competitors. They struggle with old fleets, large networks, unionized staff and large
pension liabilities [47, 75]. The bankruptcy of American Airlines in 2011 and the
merger of Air France-KLM in 2004 are two prominent examples.
Another challenge for many flag carriers, especially European, is the fast growth of
state-subsidized airlines from the Persian Gulf. Those airlines grow a lot faster than
the global average [18]. Tim Clark, CEO of the state-owned Emirates airline from
Dubai, targets a continuous profit growth of eight to ten percent per year due to
modern aircraft and new routes [63]. According to him, Emirates will expand its
fleet to 250 aircraft and serve 70 million annual passengers by 2020. Emirates will
then be the world’s largest airline by international passenger traffic [55].
Besides the Gulf region, there are other emerging markets which will play a signifi-
cant role in future airline strategies. Above all, this will be China and the Asia Pacific
region. With increasing income and economic wealth, more travelers will choose an
air flight instead of slower, less comfortable modes of transportation. The Chinese
domestic market is growing more rapidly than any other region in the world [6].
China already starts to produce own airplanes and will soon be challenging Airbus
and Boeing on the global market [68]. Similar developments can be observed in
India, Brazil and Russia. Another major trend is environmental awareness. Some
countries have already implemented additional environmental charges while others
plan to do so in the near future. Fig. 2.1 summarizes the identified trends in the
airline industry.
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Figure 2.1: Trends in the airline industry

In order to survive in this increasingly competitive, dynamic and uncertain market
environment, airlines need to optimize the utilization of their resources, in particular
aircraft and crews [13, 29]. The decisions must take into account all influencing
market forces as well as the desires of the customers. The complexity of the planning
problems requires adequate tools to support decision-making.

Airlines have a long history of applying methods and techniques of operations re-
search (OR) to their planning problems. Due to the advances in computer tech-
nology and optimization models in the past years and decades, OR tools are able
to solve larger problems with increased complexity in shorter time. Major airlines
have established in-house OR departments and seek a close cooperation with corre-
spondent research institutes [13, 37, 65]. By optimizing their planning, airlines can
improve their profitability, which allows them to invest additional resources for fu-
ture growth. Those investments again are needed to enhance the offered services and
operational efficiency. Airlines seek to achieve a maximum of operational efficiency
on all levels of their planning process [18].

2.2 Planning process

The operations planning of an airline is a continuous process, which starts up to five
years in advance of the day of operation [42]. It involves various decisions on different
levels of management. In the early stages, strategic decisions are made based on
long planning horizons. These decisions involve the selection of flight destinations
and flight times. With advancing time and approaching the day of operation, the
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Chapter 2 Airline operations planning

responsibility for planning shifts to lower management levels, who assign aircraft
and crews to every flight. In the end, operational decisions are made with daily or
even hourly planning horizons. In this phase, the planners define countermeasures
to react to disruptions and other unpredictable events during operation.

The decisions to be made do not only differ in planning horizon, but also in their
scope, objectives and group of involved stakeholders. The decision-making is lim-
ited by various restrictions. Airport, fleet and aircraft characteristics are important
restrictions when working out the flight schedule and assigning aircraft to flights.
In addition, maintenance requirements limit the leeway for aircraft assignment de-
cisions. During crew planning, requirements of the Human Resources Department
have to be considered. Applicable laws and policies are important restrictions for
all decisions in the planning process.

Understandably, mapping the entire planning process in a single OR model would
result in an overall optimized solution and the biggest benefit [11]. However, due to
the complexity and heterogeneity of the decisions, this is hardly possible. According
to Haouri et al., the size of such a model would be too large to be manageable
by standard solution methodologies, even for a moderately sized airline [33]. To
optimize their operations, airlines divide the planning process into several stages.
Traditionally, these stages are solved separately and sequentially. The outputs of
upstream stages constitute the inputs for downstream stages. For many stages, OR
models have been successful in supporting the decision-making of airlines [11, 50].

2.2.1 Traditional planning approach

The airline planning process is usually divided into five stages: flight scheduling,
fleet assignment, aircraft scheduling, crew scheduling and disruption management.
The chronology and interdependencies of these stages are illustrated in Fig. 2.2.

Flight scheduling

Starting point of the planning process is the construction of the flight timetable,
also called flight schedule. In this strategic stage, the planners decide on served
destinations, flight times and flight frequencies [13]. The initial schedule is usually
designed more than a year in advance of the operating day. Decisions on introducing
new destinations are made even earlier. The scheduling decisions are critical, because
the choice of flight destinations and travel times affect the number of attracted
passengers and the potential flight fares [42]. Airlines seek to create a schedule that
best matches passenger travel demand. To predict the demand on various origin-
destination relations, extensive and reliable forecasts are required [76].

Many airlines, especially flag carriers, have established hub-and-spoke networks to
serve a maximum number of origin-destination relations with a minimum number of
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Figure 2.2: Traditional planning process of an airline

flights. An immanent disadvantage of hub-and-spoke networks compared to point-
to-point networks is that passengers need to transfer flights at the airline’s hub.
For hub-and-spoke operators, the flight time decisions are especially important to
provide convenient and fast connections to onward flights [42].

The design of the schedule is restricted by airport characteristics, e.g., the availability
of slots and night flight bans. International flights are subject to bilateral agreements
and government allocations [11]. Also, airline alliances are a factor to consider [29].
The flight schedule defines the core product sold by the airline and forms the basis
for all subsequent planning steps.

Fleet assignment

In the tactical fleet assignment, the flights in the schedule are assigned to an aircraft
type (fleet). To decide on an assignment, the planners trade the expected revenues
against the operational costs of using a particular fleet on a flight [50]. Fleets
with a large seating capacity generate more revenue when assigned to high-demand
flights. On the other hand, smaller aircraft have lower operational costs, especially
on short-haul routes [11, 70]. The fleet assignment is restricted by the technical
characteristics of the fleet, e.g., the maximum range and required runway length.
Besides the financial and technical aspects, the fleet assignment is also driven by
marketing aspects. Marketing departments try to enter new markets or increase
shares in important markets by assigning new, modern fleets to corresponding routes.

The fleet assignment is carried out one month to one year prior to the departure.
It has to be performed early for two reasons. First, it checks on a very high level if
the flight schedule is operable. That is, it ensures that the aircraft flow is balanced
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Chapter 2 Airline operations planning

and sufficient turn time is available to perform the connections between two flights.
Second, the fleet assignment is a major input for the subsequent planning stages.
Depending on the assigned fleet, different operational requirements apply for aircraft
and crew scheduling. As the solution of the fleet assignment decomposes the flight
schedule into flight schedules for separate fleets, the following planning steps can be
solved on a homogeneous set of aircraft [13, 29, 76].

Aircraft scheduling

In the aircraft scheduling stage, the flights in the schedule are assigned to individual
aircraft. While the fleet assignment only checks the operability of the schedule on
a very high level, detailed operational restrictions, especially maintenance intervals,
are incorporated in this stage. The planners have to consider different levels of
maintenance checks, which vary in scope, frequency, duration and cost [13, 22]. The
aircraft scheduling is often divided into two separate stages, the aircraft maintenance
routing and the tail assignment stage [42].
The assignment of flights to specific aircraft is done in the tail assignment stage
and is subject to the current location and maintenance condition of the aircraft.
Due to disruptions and replanning, this information is difficult to forecast. It be-
comes increasingly more accurate when approaching the day of operation. There-
fore, tail assignment is usually done only a few days or weeks before the departure
of a flight [28]. The disadvantage is that deficits in the schedule concerning main-
tainability and other operational requirements are detected very late. In response,
many airlines insert an additional planning step in-between the fleet and tail as-
signment. This is referred to as aircraft maintenance routing and can be seen as a
tail anonymous version of the tail assignment problem [28]. The problem consists
of creating generic routes such that enough maintenance opportunities are provided
for all aircraft. The routes are to be flown by a single, yet unspecified, aircraft [62].
In general, the aircraft maintenance routing can only take into account the most fre-
quent maintenance requirements, since the planning of less frequent checks depends
on the flying and maintenance history of the specific aircraft [12, 62]. To guaran-
tee valid assignments in the tail assignment stage, the planners have to readjust
the generic routes [62]. Due to marketing or technical issues, some aircraft may be
restricted from performing certain flights. Similarly, some activities may be preas-
signed to particular aircraft. The outputs of the tail assignment are the routings of
the aircraft as well as a detailed plan of maintenance activities.

Crew scheduling

The process of crew scheduling is similar to aircraft scheduling. In the crew pairing
stage, anonymous work schedules are generated. In the subsequent crew assignment
stage, the work schedules are assigned to specific crew members [11].
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2.2 Planning process

The objective in the crew pairing stage is to find a set of work schedules that
minimizes total crew cost. The work schedules are called pairings and consist of
duty and rest periods that are performed by a single, yet anonymous, crew member.
Crew pairings are conceptually the same as aircraft routings, as both describe a
sequence of flights and ground times assigned to a single resource [44]. The planners
have to make sure that the required number of crew members is assigned to the flights
and that the work schedules comply with applicable laws and policies dictated by
authorities and labor unions [11, 29].
In the crew assignment stage, the planners create extended work schedules for all em-
ployees for a period of typically one month. They need to consider vacation requests
and fixed training sessions [11]. Most airlines also try to consider the employees’
preferences during the assignment. There are two different approaches. In Europe,
rostering is commonly used. Rostering means that the requests of the crew members
are explicitly considered when designing their individual work schedules. American
carriers, in contrast, commonly use a preferential bidding system. In this approach,
anonymous extended work schedules are created and the employees set individual
priorities on the available schedules. The assignment of schedules to employees is
then usually based on seniority [11].

Disruption management

Once the tail and the crew assignment stages are finalized, the operations plan is
finished. However, disruptions are unpreventable occurrences in the daily opera-
tions of an airline. They occur when equipment failures make flying unsafe, when
bad weather shuts down airports, or when required flight crews are unavailable [8].
The job of the operations controller is to react to any disruption and define coun-
termeasures to run operations as close to plan as possible while minimizing delays,
cancellations and customer inconvenience [11]. When delays occur, successive flights
can be deliberately delayed to make sure that connecting passengers and crews reach
their onward flights. In addition, the cruise speed may be increased to compensate
for delays. When a flight is cancelled, successive flights either need to be cancelled
or a substitute aircraft and crew have to be provided. The decisions in this stage
are made in real-time [11].

2.2.2 Disadvantages of the traditional approach

The hierarchical, sequential approach in planning the operations of an airline is
common industry practice. Due to the breakdown of the entire planning, the sub-
problems become tractable and solvable. However, the approach involves a number
of substantial drawbacks. The optimization of subproblems does not necessarily lead
to an overall optimized solution. The decisions are taken by different departments
on different management levels which are driven by different key figures. As the
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Chapter 2 Airline operations planning

outcomes of precedent stages restrict decision-making in subsequent stages, it is not
guaranteed that fixed decisions allow good or even feasible solutions in subsequent
stages. For example, the optimal fleet assignment might incur high maintenance
costs in the subsequent aircraft scheduling stage. When no feasible solution exist,
iteration loops are inevitable (see Fig. 2.2).
Other drawbacks are the long lead times between planning and execution. Many
decisions are made months or even years before the day of operation, using inaccurate
and unreliable forecasts as key input. During the long time between planning and
execution, substantial changes of the general conditions may occur which influence
the benefits of taken decisions [62].

2.2.3 Trends

Recently, researchers started to investigate the integration of multiple planning
stages. There are multiple reasons for this trend. First, it is obvious that solv-
ing integrated problems results in solutions that are closer to the global optimum.
Second, the increased computational performance in the past years enables examin-
ing larger problem sizes with smaller time requirements. Third, the development and
enhancement of efficient solution methodologies, like column generation and intelli-
gent heuristics, allow the handling of more complex problems. Finally, due to major
progresses in data availability, data analysis and forecasting, decisions of different
time horizons can be optimized simultaneously with satisfactory results [42].
According to Grönkvist, an integration can be achieved in three ways [29]. The
first option is to fully integrate different planning stages, which guarantees to find the
best solution for the integrated problem. However, the problem size and complexity
increase drastically when solving multiple stages simultaneously. The second option
is to partially integrate different planning steps. For example, additional constraints
could be included in the fleet assignment model to consider some restrictions of the
aircraft scheduling stage. The third option is to iteratively solve different planning
stages. In this approach, the planning steps communicate with each other providing
feedback from a subsequent stage to an earlier stage which is then readjusted.
Another trend is to incorporate a late refleeting stage in the planning process. As
information becomes significantly more accurate, it would be favorable to adjust
fleeting and routing decisions close to the day of operation. According to Jiang
and Barnhart, only half of the flight tickets are sold more than three weeks prior
to the departure [43]. Refleeting would allow airlines to better match seat capacity
with the demand on a flight, and thereby increase profit. Of course, the cost to
readjust aircraft routes and crew schedules should not be higher than the profit
growth through refleeting. Warburg et al. estimate that a profit growth of
up to 3.47 percent can be achieved when refleeting is done 24 days prior to the
day of operation and up to 7.46 percent when done within the last week prior to
departure [74].
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3 Tail assignment

This thesis aims to optimize the tail assignment process of airlines. In this chapter,
we take a closer look at how the tail assignment problem is treated in reality and
explain the underlying objectives and restrictions. At the same time, we describe
the framework and assumptions of our optimizing approach.

3.1 Problem description

Tail assignment is the problem of creating operational feasible routes for individ-
ual aircraft covering a set of scheduled flights. A route represents a sequence of
flights and maintenance activities that are performed consecutively by a specific air-
craft. The construction of the route for an aircraft is subject to its current location,
maintenance and flying history, and possibly tail-dependent restrictions [29, 62].

Most airlines solve the tail assignment a few days before the departure of a flight,
when reliable information about the current state of the aircraft is available [62]. For
other reasons, it is motivating to enlarge the planning horizon to several weeks. One
reason is that there are maintenance checks that an aircraft does not need to perform
frequently. In order to maximize the utilization before the next check, it is beneficial
to look at a longer planning period. Another reason is the interdependency with
crew assignment. It is desirable for crews to follow the routes of the aircraft. Such a
solution reduces crew costs and is more robust regarding disruptions. As the work
schedules for crews are usually designed for a one-month period, tail assignment
should cover the same amount of time [21, 29, 62].

The choice of the appropriate period length is a tradeoff between different factors.
In general, the longer the planning horizon, the more beneficial for maintenance
and crew planning. On the other hand, the reliability of data forecasts decreases
with a longer planning horizon. Due to the high frequency of stochastic events in
the airline business, long planned routings are likely to be disturbed. Also, larger
instances are more difficult and time-consuming to solve. In this study, we focus
on solving the tail assignment for a planning period of one week. Nevertheless, our
problem formulation is independent of the horizon length and capable of considering
periods of several weeks.

Airlines solve the tail assignment for a specific time period considering restrictions
for individual aircraft. Therefore, we set up a dated problem formulation based
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on a finite planning horizon. This approach is common for the tail assignment
problem [12, 29, 30, 62, 65]. In contrast, the aircraft maintenance routing is often
modeled as a cyclic problem based on an infinite planning horizon [9, 27, 33, 44,
50, 51]. In a cyclic formulation, the researchers assume that the same daily/ weekly
schedule is carried out every day/ week [50]. This formulation is reasonable for
the aircraft maintenance routing stage where it is assumed that the fleets consist
of generic aircraft. In the tail assignment stage, we want to consider individual
characteristics of the aircraft, especially their flying and maintenance history. This
implies that we need to have information about the position and maintenance state
of the aircraft at the beginning of the planning horizon. It is also imaginable that
some aircraft are preassigned or restricted to perform certain activities. We use the
term activity to refer to flights and maintenance. The terms airport and station are
used interchangeably throughout this thesis. A maintenance station is an airport at
which the airline operates a maintenance base.
There are two different application scenarios for a tail assignment optimizer. In
the first scenario, the airline requires an optimizer to derive the initial routes for
the aircraft during a selected future planning period. The objective is to assign all
activities in the schedule to the available aircraft. We can assume that the initial
positions as well as the maintenance state of the aircraft are according to plan and
allow all activities to be performed. The second scenario is to use an optimizer
to recover from disruptions. That is, when the real operations deviate from the
predefined plan due to bad weather or delays. In this scenario, the disruption
manager needs a tool that readjusts the routes according to the new information in
real-time. The objective is to return to the original plan as quickly as possible. It is
likely that the conditions of the aircraft do not allow all activities to be performed.
Our research is focused on the first scenario, the standard tail assignment procedure,
and not on disruption recovery. We assume that all scheduled activities have to be
performed. At the end of this thesis, we provide an outlook on how our model and
solution process would need to be adjusted to allow activities to be left unassigned.
We have seen in the previous chapter that the fleet assignment decomposes the
schedule into sets of activities for every fleet. Therefore, many airlines solve the tail
assignment individually for every fleet [13, 76]. We have decided to develop a fleet-
independent problem formulation allowing us to look at several fleets simultaneously.
We see several advantages of our approach. First and most importantly, as the
fleet assignment does not include detailed operational requirements, solving the tail
assignment individually for every fleet might be infeasible [29]. Second, airlines tend
to update their fleet assignment close to the day of operation. In allowing several
fleets to be considered simultaneously, we support the refleeting purposes of airlines
[62]. Finally, different fleets might share common resources, e.g., hangar space. Only
when considering those fleets simultaneously, we can guarantee that the available
resource capacity is respected.
We assume that the problems we solve are deterministic. This means that all infor-
mation is available before we solve the problem and does not change during the
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planning horizon. In reality, tail assignment is a stochastic problem based on unsure
information and subject to disruptions during the planning horizon. We take account
of the stochastic characteristics of the real-world problem by applying our approach
within a rolling time horizon scheme. We propose to regularly resolve the tail
assignment with updated information about the position and state of the aircraft.
Our optimizer has to be able to find good solutions within acceptable computation
time. Many optimization systems are focused on pure optimization and only able
to generate a single optimal solution at the end of every run. A shortcoming of
such systems is that the user does not know in advance how long the run time
will be. Finding the optimal solution can require disproportional longer run times
than finding a solution that is close to the optimum. We create a framework that
constantly generates feasible solutions while running. The longer the run time, the
better the quality of the solutions. The user can decide when an acceptable solution
quality has been achieved and stop the optimization process. Our approach follows
the satisficing concept introduced by Nobel Laureate in economics Herbert Simon.
The term satisficing is a coinage of satisfactory and optimizing. Simon argues that
managers tend to seek solutions that are “good enough” rather than spending much
effort in finding a solution that is presumably optimal regarding various desirable
objectives [37].

3.2 Objectives in tail assignment

For the tail assignment problem, different objectives are imaginable. As the incurred
costs are relatively low compared to fleet assignment and crew scheduling, some
airlines treat tail assignment as a pure feasibility problem [27, 44, 51, 70]. Other
airlines seek to minimize some cost function, representing real or fictitious costs.
A popular approach is to reward short and long ground times while penalizing
medium length connections in the routes of the aircraft [28, 33, 50, 51]. During
a medium length connection, i.e., around two or three hours, the aircraft cannot
be used for other activities and may be causing high parking cost at a gate. Long
ground times are less unattractive, because the aircraft may be used as standby
aircraft in case of disruptions [29]. Extremely short connections, making it difficult
for crews to change aircraft, are either forbidden or penalized as they are likely to
cause disruptions [28].
Another approach is to maximize through revenues [13, 20, 33, 50, 51]. Through
revenues are measured by the number of passengers that stay on the same aircraft
between two consecutive flights. Especially when operating a hub-and-spoke net-
work, maximizing through revenues can be a reasonable approach to alleviate the
disadvantage of longer flight times compared to point-to-point operators [13].
Some airlines try to increase the robustness of the tail assignment solution by max-
imizing maintenance opportunities. They seek to design their aircrafts’ routes such
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that every aircraft frequently spends some time, e.g., a night, at a maintenance
base. During maintenance opportunities, an aircraft does not necessarily undergo a
maintenance check, but in case unpredictable maintenance activities are required,
they can be incorporated easily in the route of the aircraft [13].
For our model, we choose a different objective. As we seek to solve a deterministic
and dated problem, we focus on the real occurring maintenance effort. Our objective
is to minimize the number of maintenance activities and penalize untimely main-
tenance, that is, whenever a check is performed before the allowed interval limits
are reached. Early maintenance is undesirable, because flight capacity is wasted
and parts are replaced before reaching their permitted lifetime [12]. In addition, we
allow the user to set individual penalties on undesirable connections.

3.3 Restrictions in tail assignment

After analyzing the different objectives in tail assignment, we now summarize the
relevant constraints. The airline business is an industry with strict safety and op-
erational regulations. There are many restrictions that an airline has to consider
when deciding on an aircraft to perform a flight. Especially, maintenance require-
ments limit the leeway in decision-making. But also characteristics of the aircraft
and fleets impose assignment restrictions.

3.3.1 Maintenance

An aircraft in service has to undergo periodic maintenance inspections to prove its
airworthiness. The content of the inspections as well as the inspection intervals
differ from fleet to fleet. In the United States, maintenance regulations are specified
by the Federal Aviation Administration (FAA), in Europe by the European Aviation
Safety Agency (EASA).
Before entering into service, the minimum scheduled maintenance requirements for
a new aircraft type and its power plants are set. This is the responsibility of the
Maintenance Review Board (MRB), a panel of representatives of the civil aviation
authorities (e.g., FAA, EASA). The MRB gets technical support from the Industry
Steering Committee (ISC). In this committee, representatives of the aircraft and
engine manufacturers, major suppliers as well as airlines and maintenance providers
are convened. The MRB and ISC call together Working Groups (WG) which work
out proposals on the maintenance requirements. At least three different WG for the
fields of structure, systems and zonal dependencies are formed. Based on the propos-
als of the WG, the MRB works out a Maintenance Review Board Report (MRBR) in
which the minimum scheduled maintenance requirements for the aircraft type and
its power plants are approved. The MRBR it is not necessarily fixed for the whole
life cycle as revisions are possible due to lessons learnt in operation [24, 38].
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3.3 Restrictions in tail assignment

Airlines develop their individual maintenance programs in accordance with the
MRBR [24]. The programs are often more strict than the regulations of the au-
thorities to increase the robustness in case of disruptions [29].

The MRBR defines in detail which maintenance tasks have to be performed at
which intervals. If an aircraft in service exceeds the intervals, it is grounded until
the necessary maintenance tasks have been performed. A grounded aircraft at an
airport which is not a maintenance base of the airline provokes high costs as external
maintenance providers need to be used. Lufthansa Technik, for example, charges
275 euros per man-hour for non contracted customers. Additional costs incur for
taxiing, materials and hangar space [52]. Unplanned groundings also lead to disrup-
tions as flights may be delayed or cancelled. Therefore, airlines pay high attention
that their aircraft operate within the allowed maintenance interval limits.

The interval limits are subject to the specific system or structural component. As
most systems and components are exposed to a usage-dependent wear, the intervals
are usually defined in terms of flight hours. For systems or components that are only
stressed at specific events, the interval limits are defined in terms of flight cycles. For
example, the landing gear and braking system are mainly stressed during landing.
Other systems and components are exposed to a time-dependent wear. For example,
the inflation pressure of the tires may change even when the aircraft is not used.
The corresponding intervals are defined in terms of calendar time [15, 16, 17, 69].

The maintenance requirements are the most important constraints in tail assign-
ment. We thus seek to map them as close to reality as possible in our model for-
mulation. We can distinguish regular from irregular maintenance activities. While
regular activities derive from the requirements of the authorities, irregular activities
originate from unpredictable defects during operation. Irregular activities are al-
ways defined for a specific aircraft. An example of an irregular maintenance activity
is the repair of a broken seat. Regular maintenance activities can be further divided
in minor and major maintenance activities. Minor activities do not require long
ground times but occur regularly in short intervals, e.g., Daily Check, A-Check.
They are usually done at the ramp of the airport or overnight at a hangar [13].
Major activities are longer but occur seldom, e.g., C-Check, D-Check. They require
special tools, spare parts, staff and hangar space.

Based on this classification, we define two categories of maintenance constraints
(see Fig. 3.1). The first category applies for minor maintenance activities. We
assume that minor maintenance activities are not fixed in time and not preassigned
to aircraft. Their planning is the result of the tail assignment process. The tail
assignment planner has to make sure to respect the interval limits between two
consecutive checks, which can be defined in terms of accumulated flight time, flight
cycles or calendar time. The second category of maintenance constraints applies
for major and irregular maintenance activities. It is reasonable to assume that the
location and time these activities take place are specified by a maintenance planning
department. In tail assignment, they can be treated as preassigned activities. The
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Figure 3.1: Classification of maintenance constraints

tail assignment planner solely has to make sure that the particular aircraft is on
ground at the specified maintenance base during the specified time [29].

It should be noted that the second category of maintenance constraints only affects
a small group of aircraft. Major maintenance checks occur very seldom and irregular
maintenance stops should be an exception that applies only for a small percentage
of the aircraft. We estimate that no more than 20 percent of the aircraft have
prescheduled maintenance stops in a planning horizon of one week. The first category
of constraints, in turn, affects all aircraft.

Some airlines require their aircraft to return to a maintenance base after a certain
amount of days, regardless of how much flight time they have accumulated. In
doing so, they create periodic maintenance possibilities for every aircraft. If a minor
defect occurs, it might be possible to continue the planned operation of the aircraft
until the next maintenance possibility without rerouting other aircraft [29]. In our
formulation, these robustness constraints can be modeled the same way as regular
minor maintenance activities.

The different types of regular maintenance activities are interrelated and cannot be
planned individually. For example, it is not necessary to perform a Daily Check on
days an A-Check is performed. We model the relation in terms of a check hierarchy.
We assume that the check types can be explicitly ranked. A higher ranked check
includes all lower ranked checks, which means a higher ranked check covers all tasks
required in lower ranked checks plus additional tasks.

Maintenance activities cannot take place at every station, because certified staff
and tools are required. The training of staff and purchasing of certified tools is
expensive. Therefore, airlines concentrate their maintenance activities at a few
maintenance bases [13]. Each base can only perform a limited number of checks at
the same time, as maintenance resources, like hangar space and staff, are finite.
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3.3 Restrictions in tail assignment

3.3.2 Other operational restrictions in tail assignment

Besides maintenance, there are other operational restrictions to consider in tail
assignment. The most natural ones are the turn time constraints. The routes of
the aircraft have to respect the minimum ground time that is required to perform
the turnaround between two flights. During this time, the plane is disembarked,
unloaded, cleaned, refueled, loaded, boarded and eventually de-iced. The turn time
depends on fleet and airport and is typically 30 to 60 minutes. If the minimum
ground time is not respected, the risk of disruptions rises [30].
Other common restrictions are so called curfews forbidding individual aircraft to
perform certain activities. There can be numerous reasons for curfews. One reason
is lacking aircraft equipment. For example, some aircraft in a fleet may be lacking
an auxiliary power unit (APU), a small gas turbine located in the tail of the air-
craft, which is needed to generate power during ground times. If an aircraft is not
equipped with an APU, it is restricted from flying to airports where external ground
power is unavailable. Aircraft without crew rest compartment are not allowed to
perform long-distance flights on which two different crews are required. If a twin-
engine fleet is used on flights where the distance to the next suitable airport exceeds
certain limits, only aircraft fulfilling the Extended-range Twin-engine Operational
Performance Standards (ETOPS) can be assigned.
Other reasons for curfews are minor technical issues. A prominent example is a
defective reverse thrust [28]. This failure does not necessarily force an aircraft to
immediately undergo repair. Instead, it is allowed to continue its operations, but
restricted from landing at airports having too short runways. The tail assignment
planner can try to route the aircraft so that restricted airports are avoided and the
repair can be done in a cost- and time-effective manner during the next maintenance
visit at an own base. Marketing aspects can also be reasons for curfews. If an aircraft
is not equipped with an in-flight entertainment system, it is preferentially used on
domestic routes and not on long international flights [29]. Even though some curfews
apply for the entire fleet while others only apply for subfleets or individual aircraft,
they all can be modeled as forbidding individual aircraft to perform certain activities.
Aircraft are sometimes preassigned to a list of activities. As stated above, pre-
assigned activities are mainly irregular and major maintenance checks. But also
flights can be preassigned to an aircraft. For example, Lufthansa used one of its
new Boeing 747-8i equipped with a special livery to pick up the German national
team from the World Cup 2014 in Brazil. Special treatment is also required for
multi-leg flights. Multi-leg flights are flights consisting of several legs under a single
flight number. The idea of multi-leg flights is that passengers do not need to change
aircraft during a stop-over. These types of flights are especially important for hub-
and-spoke operators. When smartly designed, they reduce the number of passengers
having to change aircraft between two flights and thus increase passenger comfort.
During tail assignment, the planner has to make sure that all legs of a multi-leg
flight are assigned to the same aircraft.
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Operational restrictions also arise due to interdependencies with other planning
stages, e.g., crew scheduling. The routes of the aircraft have to be designed in a
way that allows valid crew assignments. If the route of an aircraft includes flight
sequences longer than the working hours limit without providing the possibility to
swap crews in-between, it will be impossible to find valid crew assignments [21, 29].
As the scope of this thesis is focused on tail assignment, we currently do not take
account of interdependency constraints with other planning stages.
Airlines sometimes require that all aircraft are exposed to an equal wear. In a cyclic
formulation, this requirement can be achieved by a big-cycle constraint forcing all
aircraft in a fleet to perform the same sequence of activities with a time shift. In a
dated formulation, it is more difficult to incorporate such a constraint, because it in-
volves the entire fleet and not a single tail. It can be approximated by requiring that
the utilization of an aircraft must be within a specified interval of flying time relative
to calendar time [29]. As such a formulation runs the risk to provoke infeasibilities,
we do not incorporate equal utilization constraints in our model formulation.
The features and assumptions described in this chapter form the basis for our model
formulation in Chap. 6. Before presenting our model, we first summarize exist-
ing research studies (Chap. 4) and provide a theoretical overview on our solution
methodology (Chap. 5).
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The tail assignment problem of airlines is comparable to scheduling problems in other
transportation sectors. Shipping companies have to assign vessels to their journeys
[7, 60], railway companies schedule trains [19, 26, 36], and public transportation
companies decide on busses to perform the offered trips [25, 46, 57]. While the
general structures of these problems are similar to tail assignment, the objectives
and restrictions are different. For bus scheduling, the focus is to minimize the
number of required vehicles and deadhead trips while satisfying depot capacity.
The critical bottlenecks in train scheduling are the limited number of platforms,
tracks and overtaking possibilities. In seaborne shipping, the main challenge arises
from the individual characteristics and cost structure of each vessel. None of these
transportation sectors are confronted with such strict maintenance regulations as
the airline industry. Therefore, the research is only partially transferable to the
commercial aviation.
In this literature review, we summarize existing studies on the tail assignment prob-
lem and discuss the contributions of our work. We first provide an overview on
modeling techniques and solution methodologies that are commonly used for solv-
ing this type of large-scale problem in the airline industry (Sec. 4.1). In practice,
the assignment of aircraft to flights is performed in two stages: a tactical aircraft
maintenance routing stage and an operational tail assignment stage1. In Sec. 4.2,
we provide a comprehensive review of research papers on the aircraft maintenance
routing problem. Existing research on the tail assignment problem is presented in
Sec. 4.3. In Sec. 4.4, we review studies that seek to integrate the aircraft maintenance
routing or tail assignment stage with other stages of the airline planning process.
At the end of this chapter (Sec. 4.5), we summarize the benefits of our approach as
opposed to the presented studies and outline our research contribution.

4.1 Modeling techniques and solution methodologies

Like many other airline planning problems, the aircraft maintenance routing and tail
assignment problems are characterized by a large size and complexity. To be able to
find solutions within a reasonable time frame, efficient formulations of the underlying

1It should be noted again that we use the term aircraft maintenance routing to refer to the problem
of determining maintenance feasible routings for generic aircraft, while the tail assignment
problem deals with specific aircraft.
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mathematical models are required. At the same time, standard solution methodolo-
gies, like branch-and-bound, are often incapable of dealing with the characteristics
of airline problems. As a consequence, more intelligent solution methodologies have
to be adapted or newly invented. In this section, we give a résumé on used modeling
techniques and solution methodologies for the aircraft maintenance routing and tail
assignment problems in the literature.

4.1.1 Modeling techniques

A major challenge for all planning stages succeeding the flight scheduling is to map
the constructed schedule in a mathematical model. Concerning the planning horizon,
the existing research approaches can be split up in those assuming a finite and
those assuming an infinite planning horizon. Approaches assuming a finite planning
horizon are usually applied in a rolling horizon framework to reduce undesirable
end-of-horizon effects. When an infinite planning horizon is used, researchers either
assume that the same schedule is repeated every day or that a weekly schedule is
repeated every week. While the weekly schedule is more realistic, especially for
international operating airlines, it increases the complexity considerably [50]. In
general, three different formulations are used to transform the flight schedule in a
mathematical model:
• Time-space network
• Connection network
• Flight string formulation

The three formulations can be seen as a progression. In a time-space network each
flight is treated individually, a connection network looks at pairs of flights and a flight
string formulation considers sequences of flights. While the first two formulations
originate from graph theory and model the flight schedule as a directed flow network,
the flight string formulation results in a combinatorial set partitioning approach.

Time-space network

The time-space network is not only used in the context of aircraft maintenance
routing and tail assignment, but also to model other airline planning problems, such
as the fleet assignment and crew pairing. It was first proposed by Hane et al.
to model the fleet assignment problem [31]. The schedule is modeled as a directed
graph consisting of a set of vertices, called nodes, and a set of connecting edges,
called arcs. Each destination in the schedule is represented by a time line. The time
line of an airport consists of a series of nodes that denote either departure or arrival
events. To correctly order the nodes on the time line, event dates are needed. For
departure events, the departure time of the corresponding flight is used. For arrival
events, the minimum turn time is added on the actual arrival time of the flight.
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There are different types of arcs in the time-space network. Flight arcs connect
the departure node with the arrival node of a flight. Ground arcs are required to
allow aircraft to stay on ground for a certain period of time, e.g., waiting for the
next departure [51, 64]. When an infinite planning horizon is assumed, additional
wraparound arcs are required to connect the last with the first events in the plan-
ning horizon. When using a finite planning horizon, researchers usually implement
dummy start events that represent the time and place an aircraft becomes available.
Fig. 4.1 shows the time-space network for a schedule that consists of two aircraft,
three airports and eight flights assuming a finite day-long planning horizon. We will
use this schedule throughout this thesis to illustrate our proceedings.

Figure 4.1: Example of a time-space network

Connection network

The connection network is also based on a directed graph. In contrast to a time-
space network, the node set is used to denote the flights in the schedule. The arc
set represents connections between two flights. Two flight nodes are connected by
an arc if the departure airport of the succeeding flight equals the arrival airport of
the preceding flight and the departure time of the succeeding flight is later than
the arrival time of the preceding flight plus the minimum turn time [65]. Besides
direct connection arcs, additional maintenance arcs are incorporated in the network.
The prerequisite for a maintenance arc is that the airport at which the preceding
flight arrives at and the succeeding flight departs from is a maintenance base of
the airline, and that the available ground time is longer than the required time to
perform maintenance [9]. If a finite planning horizon is used, additional source and
sink nodes representing dummy start and end activities have to be implemented
[32, 65]. The connection network is acyclic as only connections to future flights are
possible [29]. Fig. 4.2 illustrates our example schedule using a connection network.
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Figure 4.2: Example of a connection network

Flight string formulation

We find a third formulation technique to map the schedule of an airline in a math-
ematical model. In a flight string formulation, the problem is formulated in terms
of flight routes, called flight strings. A flight string is defined as a sequence of
flights, ground times and maintenance activities that are consecutively performed
by an individual aircraft. A flight string satisfies flow balance, thus each flight in
the sequence departs from the airport its predecessor arrived at. The sequence is
feasible with respect to all operational requirements, e.g., maintenance standards of
the aviation authorities [9, 56, 62]. A model based on the flight string formulation
has a binary decision variable for each flight string through the schedule [29].

4.1.2 Solution methodologies

The second challenge is to develop a procedure to derive solutions from the model.
For the aircraft maintenance routing and tail assignment problems, different solution
methodologies are proposed in the literature. According to Klabjan they can be
classified in five categories [45]:
• Branch-and-price (column generation)
• Benders decomposition
• Lagrangian relaxation
• Constraint programming
• Heuristic approaches
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Branch-and-price (column generation)

Branch-and-price is a branch-and-bound algorithm where a linear programming (LP)
relaxation is solved at every node of the branch-and-bound tree using column gener-
ation. Column generation is ideally suited when the constraint matrix has too many
variables (columns) to handle efficiently. As the values of most variables equal zero
in an optimal solution, the idea is to only consider a subset of columns in every
iteration. The problem consisting of the chosen subset of columns is called the re-
stricted master problem (RMP). At the start of each iteration, the LP relaxation
of the RMP is solved and a set of optimal dual values determined. Based on the
dual values, the reduced cost of nonbasic variables can be assessed. A subproblem,
called pricing problem, is created to check the optimality of the obtained solution.
The pricing problem seeks to identify nonbasic columns which may improve the so-
lution. In a minimization problem, promising columns are columns with negative
reduced cost. In case promising columns are identified they are added to the RMP
and the next iteration begins. Appending columns to the RMP is referred to as
column generation. Similarly, columns with large reduced cost are removed from
the RMP when the size of the constraints matrix becomes too large. The repeated
iterations are stopped and an optimal solution is found when the pricing problem
cannot identify columns with negative reduced cost [9, 10, 45].
The performance of column generation largely depends on the pricing problem. It
should be able to identify columns with negative reduced cost without examining
all variables [28]. Therefore, it must be tailored to the problem under consideration.

Benders decomposition

Benders decomposition follows a strategy of “learning from one’s mistakes” [39].
The original problem is decomposed in a master problem and a subproblem which
are solved iteratively. By solving the master problem, trial values for a subset of
decision variables are generated. The subproblem consists of finding the optimal
solution to the residual problem after fixing the trial values.
Traditionally, both problems are formulated as a linear programming problem. The
master problem includes a single continuous variable that provides a bound on the
optimal solution. When infeasibilities occur, the dual vector to the subproblem is
used to define a Benders cut which is added to the master problem before it is re-
solved. The added cuts restrict the assignment of trial values for the fixed variables
in the next iterations. Finally, only optimal values remain and the algorithm termi-
nates after enumerating only a few possible values for the fixed variables [39, 45].
Logic-based Benders decomposition can be seen as a generalization of the classical
Benders decomposition. It extends the generation of Benders cuts to an arbitrary
class of subproblems. Instead of using the linear programming dual, an inference
dual is derived from the constraint set. The inference dual is a logical formulated
proof of optimality which provides a bound on the optimal value [39].
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Lagrangian relaxation

Lagrangian relaxation works under the assumption that the constraint matrix can
be subdivided into “easy” and “difficult” constraints. The difficult constraints are
accountable for raising complexity. When they are removed, the problem is solvable
without difficulty. Lagrangian relaxation takes advantage of this observation. The
difficult constraints are removed from the set of constraints and instead added to
the objective function. A linear positive Lagrangian multiplier is associated with
every constraint that has been moved to the objective function to impose a penalty
for violating it. The resulting problem is called Lagrangian relaxation and is less
challenging to solve than the original problem. The solution of the Lagrangian
relaxation is not necessarily feasible for the original problem, but it can be used
to formulate a bound on its optimal solution. The problem of finding the set of
Lagrangian multipliers which yields the tightest bound is referred to as Lagrangian
multiplier problem. The Lagrangian multiplier problem is a nonlinear optimization
problem, which is usually solved by variants of the subgradient algorithm [5, 37, 45].

A major advantage of Lagrangian relaxation is that the generated bounds are much
tighter than those provided by a LP relaxation. Also, it requires minor implementa-
tion effort and is able to handle complex constraints. The main drawback is that the
approach does not guarantee to find feasible solutions, as they have to be created
heuristically in the subgradient algorithm [5, 37, 45].

Constraint programming

In the recent years, constraint programming found its way into solving large-scale
planning problems in the airline industry. Constraint programming is a form of
declarative programming that was developed in the mid-1980s. In contrast to stan-
dard mathematical programming methods, the focus of the analysis is not the ob-
jective function, but the variables, their domain and the constraints. As constraint
programming mainly addresses feasibility, rather than optimality, it is suitable when
the user is interested in finding any solution to a problem [28, 73].

Heuristic approaches

Heuristic approaches are preferentially used when the problem is too complicated
to be solved exactly within a reasonable time frame. As opposed to exact ap-
proaches, heuristics do not guarantee optimality. The goal of using heuristics is to
find good suboptimal solutions while applying a reasonable computational effort.
Heuristics are often based on intuitive ideas of how to search for a good solution.
Many approaches employ some sort of priority rule to obtain initial solutions, e.g.,
greediness, or seek to iteratively improve existing solutions by screening their neigh-
borhood. The main drawback of these local search methods is the risk to get trapped
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in local optima, which they are unable to escape from. Also, heuristics are usually
problem-dependent and need to be tailored specifically to the problem under con-
sideration. In recent years, the development of meta-heuristics allows to circumvent
these shortcomings [37, 73, 77].

A meta-heuristic is an adaptive approach that provides a general framework in which
problem-specific heuristics and exact approaches can be integrated. It can be de-
scribed as an “iterative master process that guides and modifies the operations of
subordinate methods to efficiently produce high quality solutions” [72]. In contrast
to standard heuristics, a meta-heuristic does not stop when reaching a local opti-
mum. Instead it guides and modifies the subordinate methods to continue the search.
The basic concepts of meta-heuristics originate from psychology, biology, physics
and neurology. Among the most prominent meta-heuristics are: large neighborhood
search, simulated annealing, tabu search, evolutionary algorithms and swarm algo-
rithms [73]. Math-heuristics introduce mathematical programming methods within
a meta-heuristic framework. An essential feature is the utilization of mathematical
programming techniques in some part of the algorithm [37, 73, 77].

4.2 Aircraft maintenance routing literature

The aircraft maintenance routing problem has received much academic attention
in the past years. The studies mostly deal with cyclic problems and ignore initial
positions and conditions of the aircraft.

Liang et al. [51] propose a mixed-integer programming (MIP) formulation for
the daily aircraft maintenance routing problem. They create a compact representa-
tion of the time-space network which by its structure forces the aircraft to spend a
night at a maintenance base after a maximum number of operating days. Instead
of wraparound arcs, the authors introduce capacitated maintenance arcs at main-
tenance stations. The objective function maximizes through values and penalizes
undesirable short connections. The computational results show that the formulation
performs very well and optimal solutions can be found in a few seconds, even for
instances with up to 70 aircraft and 350 daily flights. A deficit is the assumption
that the maintenance requirements can be represented by a single check that only
depends on the number of operating days. Furthermore, they assume that mainte-
nance is only performed at night. This assumption might be valid for most carriers
operating a domestic flight schedule, as those flights are usually performed during
daytime. For international operating carriers, this assumption seldom applies.

Later, Liang and Chaovalitwongse [50] extend the analysis to a weekly sched-
ule. To do that, they further adjust the time-space network. The computational
results are again noticeable. For test scenarios with up to 4000 weekly flights and
more than 250 aircraft, the problem can be solved in less than 150 seconds. The
points of critic are similar to those mentioned above.
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Haouari et al. [33] propose a connection formulation for the daily aircraft main-
tenance routing problem. They assume that the maintenance requirements depend
on three criteria: the accumulated number of flight hours and flight cycles as well as
the calendar time since the last check. However, they only consider a single check
type. The compact polynomial-sized formulation avoids the need for complicated
algorithmic implementations. Test cases of up to 350 daily flights and 140 aircraft
can be solved to optimality in less than ten seconds. A weakness of the proposed
formulation is the arc definition. Two flights are connected by a single arc type.
Haouari et al. assume that the aircraft undergo maintenance whenever it is pos-
sible. This formulation is valid when we look at maintenance opportunities, but
not when we want to minimize maintenance effort. Due to the exclusive arc defini-
tion, the amount of created arcs remains relatively small. By allowing multiple arc
types to connect the same two flights, e.g., multiple maintenance arcs and direct
connection arcs, the number of arcs would increase drastically.

Barnhart et al. [9] discuss a flight string formulation for the daily aircraft main-
tenance routing problem. In their model, they implement a big-cycle constraint
ensuring an equal utilization of all aircraft. As solution approach, the authors de-
sign a branch-and-price framework based on an alternating column generation and
constraint generation algorithm. They solve test scenarios with up to 190 daily
flights. Their algorithm performs quite well on small instances with less than 80
daily flights. For larger instances, the solving time rises significantly. This is due to
the long time requirement for generating maintenance feasible flight strings, since
their number increases exponentially with the problem size.

A different approach is taken by Clarke et al. [20]. They model the daily aircraft
maintenance routing problem as an asymmetric traveling salesman problem with side
constraints. As solution approach, they use Lagrangian relaxation and subgradient
optimization. Clarke et al. maximize through values while respecting a big-cycle
constraint and the requirements of two maintenance types that both depend on the
accumulated number of calendar days. They provide results of eleven test instances,
but do not mention how large the instances are.

An early approach to optimize aircraft routings is presented by Kabbani and
Patty [44]. They propose a set-partitioning model to create maintenance feasible
routings at American Airlines. For a route to be maintenance feasible, it has to
incorporate an overnight stay at a maintenance base every three days. The authors
develop a two-step solution approach. Since maintenance is only done overnight,
they first determine over-the-day routings. In the second step, they connect the
daily routings to develop tours that satisfy the three-day maintenance requirement.

The same two-stage process is taken on by Gopalan and Talluri [27]. They
propose a polynomial-time algorithm to create routes when maintenance must be
performed overnight after three days of flying. Besides, the three-day maintenance
check, they also consider a less frequent balance check. Since the two-stage process
of fixing over-the-day routings before creating maintenance feasible tours can easily
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lead to infeasibilities, they develop an iterative framework. If infeasibilities occur,
the authors use heuristics to readjust the over-the-day routings and start a new iter-
ation. Gopalan and Talluri present two different models. First, they analyze a
model based on an infinite planning horizon in which the same over-the-day routings
are repeated every day. Second, they analyze a model based on a finite planning
horizon in which they permit varying daily routings.
Talluri [70] extends the analysis to longer maintenance intervals. He assumes that
the same over-the-day routings are repeated over an infinite planning horizon. The
author shows that the problem is NP-complete for any maintenance interval longer
than three days, but provides a polynomial-time algorithm for the special situation
of a single maintenance station and a four-day maintenance interval. He also shows
that the four-day routing problem can be solved in polynomial time for multiple
maintenance stations when neglecting the balance check requirement.

4.3 Tail assignment literature

Compared to aircraft maintenance routing, the research on tail assignment is limited
and mostly recent [12, 62]. The studies at this level deal with dated problems
that explicitly take into consideration the initial state of the aircraft. Operational
restrictions are more detailed than in the aircraft maintenance routing stage, because
the solutions serve as plans to be followed in real operation [62].
Grönkvist [29] develops a connection network and a flight string formulation for
the tail assignment problem. He assumes a finite planning horizon of several weeks.
As constraints, he considers detailed maintenance restrictions, preassigned activities
and aircraft curfews. He argues that the string-based model is more suitable to in-
corporate the complicated maintenance constraints and thus focuses his research on
it. To solve the problem, he proposes a combined column generation and constraint
programming approach. Instead of embedding the column generator in a branch-
and-price framework, he proposes a local search heuristic. Constraint programming
is mainly used during preprocessing to reduce problem sizes and to generate initial
solutions to start from.
A tail assignment approach for the short-term planning of an airline is presented by
Sarac et al. [65]. They aim to create routings such that all flights over a one-day
planning horizon are covered and aircraft needing maintenance end their route at an
appropriate maintenance station in the evening. Maintenance is performed in the
following night and is subject to available capacity. Sarac et al. propose a set-
partitioning model, which they expect to be solved every day. As solution approach,
they propose a branch-and-price algorithm. The authors present computational
results of ten randomly generated test instances, which are rather small-sized. They
assume that maintenance activities require six to eight hours and exclusively depend
on the accumulated flight hours. In their study, they neglect the impact of their
short-term route changes on crew planning.
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Afsar et al. [2] propose a two-step heuristic based on a longest path method
that maximizes aircraft utilization before maintenance checks and balances flight
loads of the aircraft. In the first step, they focus on critical aircraft which are in
need of maintenance during the next week. In the second step, they seek to ensure
that all remaining flights are assigned to the noncritical aircraft. Their approach
is applied in a rolling horizon framework, solving one week planning horizons at a
time. A shortcoming is that only one type of check depending on the accumulated
flight hours is considered. Their heuristic allows flights to be left unassigned, which
unfortunately appears to happen quite often in the final solutions.

In a following study, the same authors apply different heuristics, including a simu-
lated annealing approach, to the identical problem [3]. In both studies, all mainte-
nance checks are prescheduled.

A heuristic for a similar problem is proposed by Basdere and Bilge [12]. They
aim to maximize the utilization of the remaining flying time of the aircraft before a
maintenance check. The approach is embedded in a rolling horizon framework with
a weekly planning period. The underlying model is based on a connection network
and takes into account maintenance capacity considerations. The authors propose
a heuristic solution approach based on compressed annealing. For benchmarking,
they compare the performance with an exact branch-and-bound approach on a small-
sized instance. A shortcoming in their formulation is that at most one maintenance
activity is planned for each tail in the planning horizon. Besides, they assume that
predefined maintenance slots need to be used, but not necessarily by the preassigned
aircraft. This assumption is rather unrealistic, as aircraft specific parts need to be
provided to perform certain maintenance.

Argüello et al. [8] focus their research on reoptimizing the tail assignment in
case of disruptions. The objective is to minimize flight cancellation and delay costs
associated with the schedule recovery. They propose a greedy randomized adaptive
search procedure (GRASP) to generate feasible routings. GRASP is based on a
local search method that iteratively generates new solutions and randomly explores
their neighborhood. To generate new solutions a greedy approach is used.

Lapp and Wikenhauser [49] reformulate the tail assignment problem to consider
fuel consumption and emissions. Due to different engine equipment, modifications
and age, aircraft of the same fleet have different fuel efficiencies. The goal in this
study is to assign more efficient aircraft to fuel-intensive flights. The authors assume
that an initial routing plan for the planning period already exists. However, they
neglect any maintenance considerations. They only try to reduce distortions by
limiting the number of aircraft and route changes compared to the initial plan.
Also, the result may lead to a severe scattering of aircraft utilization as more efficient
aircraft tend to be used more.
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4.4 Integration with other planning stages

In recent years, the integrated analysis of different planning stages has attracted
more and more academic interest. The aircraft maintenance routing stage is prefer-
entially integrated with the fleet assignment stage [9, 32, 34, 50]. One of the earliest
attempts to integrate these two planning stages has been made by Barnhart et
al. [9]. The authors introduce a string-based model which is solved using a branch-
and-price framework. They consider a single maintenance check which is due after
four days. They were able to solve a weekly schedule consisting of nine fleets, 89
aircraft and 1124 flights in five and a half hours.

Liang and Chaovalitwongse [50] examine the same problem. They propose a
model based on an adjusted time-space network and present computational results
for eight different test cases of four and eight fleets with up to 2000 weekly flights
and more than 100 aircraft.

Haouari et al. [32] present heuristic approaches to solve the integrated fleet as-
signment and aircraft maintenance routing problem based on a connection network.
In addition, they develop two exact approaches to solve the same problem [34]. The
first approach is based on column generation, the second on Benders decomposition.
In their analysis, the authors conclude that column generation is more capable of
finding optimal solutions, the Benders approach of quickly finding good solutions.

A different integration is proposed by Cohn and Barnhart [21]. They seek to
partially integrate the crew pairing and aircraft maintenance routing stage by incor-
porating key maintenance routing decisions in an extended crew pairing model. The
authors propose a string-based model embedded in a branch-and-price approach. As
this approach might require long solving times, they also propose an alternative idea.
There, they start with a crew pairing problem in which the maintenance constraints
are neglected. If the obtained solution is maintenance infeasible, cuts excluding the
current solution are added to the problem before it is resolved.

An attempt to integrate the entire tactical planning of an airline is proposed by
Papadakos [56]. He uses a flight string formulation for solving the fleet assignment,
aircraft maintenance routing and crew pairing problem simultaneously. As solution
approach, he combines an enhanced Benders decomposition method with accelerated
column generation.

Cordeau et al. [22] focus their research on integrating the tail and crew assign-
ment stage. They solve a dated set-partitioning model using a Benders decom-
position approach. Tail assignment is handled in the master problem and crew
assignment in the subproblem. Both problems are solved using column generation.
A heuristic branch-and-bound method is used to compute integer solutions. They
present results to nine test instances with one to three days planning periods and
up to 525 flights, 35 aircraft and 67 crews. Deficits are the solving times of up to
five hours which are too long for an operational implementation.
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Another approach for the integrated tail and crew assignment is presented by Ruther
et al. [62]. They propose a planning approach in which the aircrafts’ routes and
crew assignments are reoptimized close to the day of operation, allowing a late re-
fleeting. Their model is based on a flight string formulation. As solution approach,
Ruther et al. propose a branch-and-price framework with a pricing problem for
each aircraft and group of crews having the same working period and work base. A
shortcoming is that crews would only be noticed a few days in advance when and
where they will fly. Before the assignment, they would only be informed about their
periods of operation. This is hardly realizable at airlines with powerful labor unions.

4.5 Contribution

The literature review shows that the tail assignment of airlines is not well optimized
yet. Most related studies focus on the tactical aircraft maintenance routing instead
of the operational tail assignment stage [12, 62]. The majority of studies is unable to
capture the complicated maintenance requirements. It is common to translate the
detailed restrictions in simply requiring the aircraft to overnight at a maintenance
base after a certain amount of days. Also, most studies assume a single check type,
neglecting the hierarchical interdependencies between different checks in reality. Our
approach is distinctive as it maps maintenance restrictions very close to reality.
Besides, we incorporate many other operational restrictions. Only few other studies
model the tail assignment problem as close to reality as we do, e.g., Grönkvist [29].
We present a model based on a connection network. In contrast to flight string
formulations, which imply exponentially many variables, our formulation makes do
with quadratically many variables. Our objective is not only the maximization
of through values or the minimization of undesired connections. We also aim to
minimize the occurring maintenance effort while maximizing aircraft utilization.
Maximizing aircraft utilization decreases the loss of flight potential, which can be
defined as the unused flight time, flight cycles and calendar time before a check. We
therefore contribute to reduce operational costs as unnecessary maintenance checks
are avoided. A weekly planning horizon applied in a rolling horizon framework
appears to be well balanced. On one hand, it is long enough to maximize aircraft
utilization before the next check and provide operational benefits for maintenance
and crew planning. On the other hand, it guarantees sufficient data quality and
avoids simplifying assumptions regarding maintenance needs.
Many publications can be found that successfully apply LNS to a wide variety of
optimization problems [1, 14, 35, 48, 54, 61]. However, the application to the tail
assignment problem is yet unexplored. The study of Grönkvist [29] leads in
a similar direction, but his research is mainly focused on column generation and
constraint programming. Our results show that LNS is capable of generating high
quality solutions in acceptable time frames making it ideally suited for the dynamic
environment of the airline industry.
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The aim of this work is to develop a large neighborhood search (LNS) algorithm
for the tail assignment problem of airlines. In this chapter, we provide a theoretical
foundation of the chosen solution methodology. We first give a brief introduction
to the LNS method (Sec. 5.1) and outline the process to derive a problem solution
(Sec. 5.2). In Sec. 5.3, we describe the enhanced adaptive large neighborhood search
(ALNS) framework which we seek to apply in our research. We conclude this chapter
(Sec. 5.4) by justifying our choice of solution methodology.

5.1 Overview

The LNS method is a meta-heuristic, which was first proposed by Shaw in the
context of vehicle routing [67]. The idea is to gradually improve an initial solution
by alternately destroying and repairing different parts of the solution [14, 58]. It is
similar to the ruin and recreate principle introduced by Schrimpf et al. [66]. An
alternative view on LNS is to see it as a sequence of fix-and-optimize iterations. In
the beginning of each iteration, the values of some variables in the current solution
are fixed. In the succeeding optimization step the algorithm seeks to reoptimize the
problem while taking into account the values of the fixed variables [61].
LNS belongs to the class of local search methods which explore the neighborhood
of a solution for improving alternatives. Traditionally, local search methods are
defined by exploring a very limited neighborhood in every iteration. In doing so,
a huge number of solutions is analyzed in a short time. However, there are only
minor changes of a solution in every iteration and the algorithms sometimes show
difficulties exploring different promising areas of the solution space. Enlarging the
searched neighborhood is favorable to facilitate moving around the solution space.
LNS provides a framework that supports exploring a large neighborhood in an effi-
cient manner [4, 61].
Solution algorithms based on LNS have recently become very popular. They are used
in various transportation and scheduling problems and persuade with an outstanding
ratio of solution quality to time effort [58]. Researchers report that LNS has excellent
capabilities, especially when solving large, complex problems [66]. Generic solvers
are often incapable of handling these problems explicitly in the aggregate. The
LNS procedure avoids this obstacle as only a small-sized decomposed problem is
investigated in each iteration.
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5.2 Process of a large neighborhood search

The LNS process is divided into two stages:
1. Initial solution stage
2. Improvement stage

The structure of the LNS process is illustrated in Fig. 5.1. Starting point of every
LNS algorithm is the construction of an initial solution. The subsequent improve-
ment stage consists of three steps that are iteratively repeated. In the first step,
the incumbent solution is partially destroyed. Afterwards, a repair procedure gen-
erates a new solution for the decomposed problem. In the last step, a decision tool
analyzes the newly obtained solution. Based on decision rules, the new solution is
either accepted to become the new incumbent or rejected. The iteration sequence
is repeated until a stopping criterion, e.g., an upper time limit, is met. The final
result is the best solution that has been found during the entire search.
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Figure 5.1: Process of a large neighborhood search

5.2.1 Initial solution stage

All LNS algorithms share the characteristic that they require an initial solution
to start the destroy-and-repair iterations in the improvement stage. The initial
solution must be feasible regarding all operational and functional constraints of the
underlying problem [14]. However, it must not be notably good in terms of objective
value. The required time to construct the initial solution should be low to allow a
quick changeover to the subsequent improvement stage.
For tractable problems, finding a feasible initial solution does not require much
computational effort. Intractable problems, on the other hand, are computationally
hard to solve, even when only looking for a feasible solution.
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5.2.2 Improvement stage

As stated above, the iterations in the improvement stage consists of three steps. In
this section, we take a detailed look at each step.

Step 1: Destructor method

In the first step, the incumbent solution is partially destroyed by using a destructor
method. This means that the values of some variables are released while other
variables are fixed at their current values. The ratio of released variables defines
the size of the searched neighborhood. When all variables are fixed, then no search
is performed. When all variables are released from their current values, the entire
problem is subject for resolving [61]. On one hand, the larger the neighborhood,
the higher is the quality of the locally optimal solutions. On the other hand, severe
destruction results in longer solving times to explore the neighborhood. Shaw
proposes an approach in which the degree of destruction is gradually increased.
He argues that LNS works best when in each iteration only the minimum set of
assignments of the current solution is released that yields an improvement [67].
Ropke and Pisinger, in contrast, randomly vary the degree of destruction in each
iteration [61]. The destructor method should also incorporate some randomness to
assure that different parts of the solution are destroyed in each iteration [58].

Step 2: Repair method

The implemented repair method affects the efficiency of the LNS algorithm as well.
The repair method can be designed as to find the optimal solution to the decom-
posed problem. In case a mathematical programming technique is used to search the
neighborhood for improving solutions, LNS evolves to a math-heuristic. Alterna-
tively, heuristic methods may be implemented, which yield faster but not necessarily
as good solutions as exact methods. Pisinger and Ropke favor heuristic repair
methods. They argue that exact procedures only lead to improving or identical so-
lutions and therefore are at risk to get stuck in local optima [58]. The repair method
can be hand-coded or implemented by use of a solver tool.

Step 3: Acceptance rule

The acceptance rule determines if a new solution is accepted as new incumbent or
rejected. If the new solution is rejected, the next iteration starts from the previous
incumbent solution. To avoid getting stuck in local optima, it might be unfavorable
to only accept improved solutions. By allowing some deterioration in iterations,
better solutions might be generated in the long run. Schrimpf et al. propose five
different acceptance rules [66]. The random walk rule accepts every new solution.
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The greedy rule only accepts new solutions which are better than the incumbent
solution. If a simulated annealing rule is implemented, improving solutions are
accepted, but also, with some probability, worse solutions. The probability that a
worse solution is accepted is high in the beginning and decreases gradually with
increasing number of iterations [58]. The threshold rule accepts new solutions which
are not worse than a certain threshold. The threshold is defined in reference to the
incumbent solution, e.g., a maximum deterioration of ten percent in objective value.
Finally, the great deluge rule rejects new solutions below a certain quality level, e.g.,
all solutions with an objective value of more than ten.

Stopping criterion

The three-step iterative procedure is repeated until a stopping criterion is met. Dif-
ferent definitions of an appropriate stopping criterion can be found in the literature.
Ropke and Pisinger propose to stop after a specified number of iterations [61].
Alternatively, a time limit can be set as stopping criterion [14]. Dueck recommends
to stop if the solution quality has not improved for a long time [23].

5.3 Adaptive large neighborhood search

The adaptive large neighborhood search (ALNS) heuristic is an advancement of the
LNS method. It was first proposed by Ropke and Pisinger in the context of
pickup and delivery problems [61]. In the standard LNS method, a single destructor
and repair method is chosen to be used throughout all iterations of the search.
However, it is unknown in advance which methods are best suited for the instance
under consideration. It is also imaginable that the performance of a method varies
during the search. For example, some methods might be well suited in the first
iterations of the search while others lead to better results in later iterations. Ropke
and Pisinger argue that the overall robustness of the search can be increased by
alternating between different destructor and repair methods [61].
ALNS provides a framework that allows multiple methods to be used within the same
search. The destructor and repair methods are selected randomly in each iteration.
The probability that a particular method is selected is based on its performance
during the past iterations. At fixed points during the search the probabilities are
readjusted. The ALNS heuristic thus possesses a certain intelligence as promising
methods are selected more often. The dynamic readjustment takes into account
that the suitability of a method may change during the progress of the search. The
ALNS heuristic enables the search to autonomously “adapt to the instance at hand
and to the state of the search” [58].
An important element in the design of an ALNS algorithm is the selection procedure
for the destructor and repair methods used in the next iteration. Ropke and
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Pisinger propose a roulette-wheel selection principle [61]. Given n competing
methods with weights wi, the probability that method x is selected in the next
iteration is:

Px = wx∑
nεN wn

(5.1)

Another critical decision is how and at what time to readjust the probabilities. In
order to consider a changing suitability of methods during the search, Ropke and
Pisinger divide the search into segments. A segment is defined as a fixed number
of iterations. At the beginning of the search, all methods have an equal weight.
When reaching the end of a segment, the weights are readjusted. Ropke and
Pisinger introduce a score variable to track the performance of a method. The score
represents how well the method has performed in the recent iterations. Successful
methods are characterized by a higher score. At the beginning of each segment the
score variables are set to zero. In each iteration a combination of the destructor
and repair methods is randomly selected. As it is impossible to state whether the
destructor or the repair method is accountable for a success, the scores of both
methods are updated equally at the end of the iteration. Depending on the quality
of the new found solution, the scores of the used destructor and repair methods are
increased by the parameters σi(i = 1, 2, 3, σ1 > σ2 > σ3). If the new found solution
is a new global best solution, both methods are rewarded with a high σ1. If the new
solution is better than the incumbent solution and has not been visited before, σ2
is added to the scores of the corresponding methods. Ropke and Pisinger also
reward non-improving solutions that have not been visited before. In this case, the
small reward σ3 is added to the scores of the methods. It is interesting to note that
Ropke and Pisinger only reward methods that find unvisited solutions. In doing
so, they want to increase the utilization of methods that diversify the search. At the
end of a segment, the new weights are calculated using formula 5.2. Let w∗x denote
the new weight of method x. πx denotes the final score of method x achieved in
the last segment. Θx represents the number of iterations during the last segment in
which method x was selected [61].

w∗x = wx(1− r) + r
πx
θx

(5.2)

The reaction factor r∈[0, 1] determines how quickly a change in performance is
applied to the weights. The higher r the more the weights are based on the recent
performance. If r is set to zero, the recent performance is ignored and the previous
weights are used again during the next segment [61].
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5.4 Benefits compared to other solution approaches

There are several reasons why we choose LNS as our solution methodology. The LNS
framework is an intuitive concept that can be implemented quickly without much
effort. At the same time, LNS provides a large freedom of design in configuration.
The three steps of the improvement stage, the stopping criterion as well as the ALNS
structure can be designed to any complexity. The efficiency of LNS largely depends
on the design of these elements. Compared to traditional local search methods, the
risk of getting stuck in local optima is minimized, because a large neighborhood is
explored in every iteration. Another benefit is that the solution methodology can
be tuned according to the user preferences. LNS is capable of providing solutions of
different quality levels depending on the provided time frame. The user himself can
choose if he wants an acceptable solution quickly, or if he is willing to wait longer
for a better solution.
In contrast to other algorithms, LNS does not focus on optimality, but instead on
satisficing. It is promising to find very good solutions for the tail assignment problem
in an acceptable time frame.
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In this chapter, we present a comprehensive mathematical model for the tail assign-
ment problem. We will refer to this model as main model, because it provides a
formal description of the detailed problem. The main model is independent of the
chosen solution methodology. In our approach, it will serve as basis for our ALNS
math-heuristic.

6.1 Choice of modeling technique

In Chap. 4, we provided an overview on modeling techniques for the tail assignment
problem. We identified three different formulations that are used in existing studies,
namely time-space networks, connection networks and flight string formulation. Our
main model is based on a connection network. In this section, we analyze the
advantages and disadvantages of the three formulations and justify our choice.

The main advantage of time-space networks is that their size increases linearly with
the size of the schedule [50]. Models based on a time-space network are very compact
and reported to be solvable in reasonable time frames, even for large instances. A
major shortcoming is the limited possibility to incorporate operational restrictions,
such as maintenance requirements, in the model formulation. Since the connections
between two flights are not explicitly defined, we can solely incorporate restrictions
that are independent of the flight route. As described in Sec. 3.3, the maintenance
intervals of an aircraft depend on three different criteria, i.e., flight hours, flight
cycles and calendar time. Out of these criteria only the calendar time is independent
of the flight route. It is also challenging to model multiple maintenance types and
their complex interdependencies within a time-space model formulation.

Researchers favoring time-space networks usually handle these drawbacks by simpli-
fying and aggregating the detailed maintenance restrictions. They translate them in
requiring an aircraft to spend a night at a maintenance base after a certain amount
of days [50, 51]. They argue that this approach corresponds with the maintenance
planning of most airlines. However, if the allowed number of days between two main-
tenance nights is too high, it is not ensured that all maintenance limits are met. If
the number is too low, the full potential for improvement may not be tapped [9].

Connection networks allow richer modeling possibilities than time-space networks.
Since the connections between two flights are explicitly defined by the arcs of the
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network, we can incorporate detailed operational restrictions in the model. We
can also assign a cost parameter to the arcs to express the benefit of flying two
flights consecutively. Forbidden connections can be modeled by either not including
the corresponding arc in the networks or by assigning a very high cost parameter.
But, the advantages come at the price of larger network sizes. The number of
arcs increases quadratically with the number of flights in the schedule [9]. The
complicated resource constraints to model the maintenance requirements are another
disadvantage of the connection formulation, because they raise the complexity and
destroy the flow structure of the network flow model [29].

String-based models claim to be more flexible and expressive than models based on
the other two formulation techniques. Nonlinear, complex cost functions and con-
straints can be incorporated without causing too much difficulties [9]. The resource
constraints to model the maintenance requirements are avoided, because only oper-
ational feasible flight strings are generated [29]. The main drawback of string-based
models is that even small-sized schedules dispose of an extremely large number of
flight strings. Extensive preprocessing is required, because the number of flight
strings increases exponentially with the number of flights in the schedule [9].

String-based models require complex solution methodologies and are mainly used in
combination with a branch-and-price algorithm [10, 33]. It is usually inefficient to
generate all flight strings in advance, since their number is too large to enumerate
explicitly. In the beginning, researchers only define a subset of flight strings. During
the solving procedure, their algorithm specifically creates additional flight strings
which are promising to improve the solution. The creation of promising flight strings
(the pricing problem) is especially challenging. The procedure must be tailored to
exploit the problem structure without examining all possible flight strings [9, 33].

The goal in this research is to build a comprehensive mathematical model that
considers detailed maintenance requirements and all other operational regulations.
The limited modeling possibilities of time-space networks contradict this goal. Con-
nection networks and string-based formulations, on the other hand, are capable of
incorporating complex operational restrictions and are both acceptable for our mod-
eling needs. As we seek to create an intuitive and easy solution algorithm, we want
to avoid complex implementation procedures and unnecessary large numbers of vari-
ables. Therefore, a connection formulation is more suitable. The larger model sizes
and longer solving times compared to a time-space formulation are not relevant for
our approach, as we only intend to optimize a small decomposed part of the main
model in each iteration of our LNS procedure.

6.2 Main model

Tail assignment is the process of defining operational feasible routes for a set of air-
craft, covering all activities in a schedule, while minimizing some cost function [29].

40



6.2 Main model

We present a model that allows several fleets to be solved simultaneously. The model
captures various operational restrictions as well as the requirements of multiple in-
terdependent maintenance types. The objective is to minimize the total occurring
maintenance effort. In addition, we consider optional cost terms for assigning two
consecutive flights to a specific tail. We propose a dated problem formulation for a
finite planning horizon and allow the schedule to be changed from day to day.
Our main model is based on the work of Haouari et al. [33] and Grönkvist [29].
We extend and adjust their ideas to fit our purposes. Even though there are some
similarities, there are also fundamental differences. Haouari et al. deal with the
aircraft maintenance routing problem. They seek to solve cyclic problems on an infi-
nite planning horizon considering a single maintenance type. Both, Haouari et al.
and Grönkvist, propose an exclusive arc definition that forces the aircraft to per-
form maintenance whenever possible. In doing so, they focus on maintenance op-
portunities and not on real maintenance activities. An exclusive arc definition con-
tradicts our objective and needs to be adjusted in our model. Haouari et al. use
an objective function that maximizes through revenues and penalizes short connec-
tions. Similarly, Grönkvist seeks to minimize the costs associated with assigning
two consecutive flights to a specific tail. Our objective, in contrast, is more flexible
and holistic.

Index sets: Let T be the set of aircraft (tails) and A the set of activities. A also
includes special source and sink activities that represent the start and end of the
routes. We will refer to them as carry-in (CI ) and carry-out (CO). These dummy ac-
tivities are required for modeling and algorithmic purposes [65]. For every aircraft t,
we define a set of preassigned activities Pt and a set of forbidden activities Ft.
The different types of maintenance are compiled in set M . Note that M only
consists of frequent and regular types of maintenance, e.g., Daily Check. We model
less frequent and irregular types, e.g., D-Check, as prescheduled activities that are
preassigned to a particular tail. The criteria in terms of which the interval limit of
maintenance m is defined are compiled in set Qm. In general, maintenance interval
limits can be defined in terms of the accumulated flight time, flight cycles and
calendar time. The set R contains all possible connection types of two activities.
Activities can be connected directly or via a maintenance check of type m.
Finally, let O be the set of connection arcs. As we intend to solve multiple fleets
simultaneously, we have to deal with heterogeneous aircraft, characterized by indi-
vidual turn times. Whether a connection between two activities is valid depends on
the assigned tail. We therefore choose to create an individual network for each tail.
The arcs of a network represent all valid connections for the particular tail. An arc
is defined by four indices: a preceding activity i∈A, a succeeding activity j∈A, a
connection type r∈R and a performing tail t∈T . The arc 〈i, j, r, t〉 is included in O
if j starts at the station i arrived at and if the time in-between i and j is sufficient
for connection type r performed by tail t.
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Parameters: Our model contains several parameters. C ′
ijrt denotes fictitious costs

for assigning arc 〈i, j, r, t〉. We particularly use this parameter to assign a penalty
value to connections that incorporate a maintenance check. In case r∈M , C ′

ijrt

represents the work effort for maintenance m. The higher C ′
ijmt the more laborious,

time-consuming and thus expensive is a check of type m. Different properties of
maintenance m can be used to derive C ′

ijmt. Depending on the data availability, it
can be derived from the duration, the required man-hours or the real costs. Besides,
the parameter C ′

ijrt is used to penalize undesirable connections and assignments of
flights to undesirable fleets or subfleets. The user can also use the cost parameter
to set preferences on connections where many through values are realizable.
C

′′
m is the incremental cost of performing maintenance m before the interval limits

are reached. The parameter maxmq specifies the allowed interval limit of criterion q
between two checks of type m, e.g., the allowed flight hours between two A-Checks.

Decision variables: We include two types of decision variables. The binary deci-
sion variable xijrt is 1 if arc 〈i, j, r, t〉 is part of the solution and 0 otherwise. yimq
are the maintenance counters. They show how many units of criterion q have been
accumulated since the last maintenance m after activity i. Now, the main model
can be written as a multi-commodity network flow model with side constraints:

min
∑

〈i,j,r,t〉∈O
C

′

ijrt · xijrt +
∑
i∈CO

∑
m∈M

∑
q∈Qm

C
′′

m · yimq (6.1)

∑
〈i,j,r,t〉∈O

xijrt = 1 ∀i∈A\CO (6.2)
∑

〈i,j,r,t〉∈O
xijrt = 1 ∀j∈CO (6.3)

∑
〈j,i,r,t〉∈O

xjirt =
∑

〈i,j,r,t〉∈O
xijrt ∀i∈A \ {CI ∪ CO} ,∀t∈T (6.4)

∑
〈i,j,r,t〉∈O

xijrt = 1 ∀i∈Pt, ∀t∈T (6.5)
∑

〈i,j,r,t〉∈O
xijrt = 0 ∀i∈Ft,∀t∈T (6.6)

yimq ≤ maxmq ∀i∈A, ∀m∈M,∀q∈Qm (6.7)
xijrt ∈{0, 1} ∀〈i, j, r, t〉∈O (6.8)
yimq ≥ 0 ∀i∈A,∀m∈M,∀q∈Qm (6.9)

Objective function: Equation 6.1 denotes the objective function of our main model.
The first term minimizes the total connection costs. Connections including a main-
tenance check are characterized by a higher cost factor than direct connections.
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The more effort a check requires, the higher the cost factor. Thereby, we minimize
the total maintenance effort. The second term of the objective function is needed
to avoid distortions due to the finite planning horizon. In this term, we minimize
the maintenance counters at the end of the routes. As we minimize the number of
checks in the route and the counters at the end of a route, we reward to delay the
occurrence of a check until the allowed interval limits have been reached.

Network flow constraints: Constraints 6.2 guarantee that every activity - except
carry-out activities - has exactly one successor. Carry-out activities have exactly one
predecessor (6.3). The aircraft flow balance constraints ensure that the arc leaving
an activity is assigned to the same aircraft as the arc leading to the activity (6.4).
Constraints 6.5 - 6.6 force preassigned and block forbidden activities.
Notice that the assignment of multi-leg flights to the same aircraft is implicitly
achieved through the definition of the arc set. Assuming i and j are two consecutive
legs of a multi-leg flight, then the arc set only includes arcs connecting i with j and
no arc connecting i with other activities. In combination with constraints 6.2, the
multi-leg flight restrictions are satisfied.

Maintenance constraints: The most complicated constraints are probably con-
straints 6.7, which guarantee that the maintenance counters yimq never exceed the
allowed limitsmaxmq. The values of yimq can be derived from the assignment of arcs.
For simplicity and illustration, let us first assume that activity h is the unique activ-
ity preceding activity i and let connection type r connect activity h with activity i.
Now, yimq is defined recursively as stated in equations 6.10. The parameter rchirmq
indicates the resource consumption. It specifies how much the maintenance counter
of criterion q of maintenance type m is increased if activity h is connected to ac-
tivity i via connection type r. Em denotes the set of maintenance m and all more
comprehensive maintenances that replaces a check of type m.

yimq =


inittmq
rchirmq

rchirmq + yhmq

if i∈CI
if r∈Em

if r /∈Em

∀i∈A, ∀m∈M,∀q∈Qm (6.10)

In case activity i is a carry-in activity (i∈CI), the maintenance counters after activ-
ity i are initialized with the start maintenance counters of the corresponding aircraft
inittmq. In case activity h and i are connected via a resetting maintenance activity
(r∈Em), the maintenance counters after activity i equal the resource consumption
of connecting h and i via r. In case no resetting maintenance is placed in-between
h and i (r /∈Em), the maintenance counters after activity i equal the maintenance
counters after activity h plus the resource consumption of connecting h and i via r.
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The resource consumption is determined according to equations 6.11. The param-
eters duri and cyci indicate the number of flight hours and take offs of activity i.
For the calendar time criterion, the resource consumption depends on the preceding
activity and the used connection type. The parameter timehirm indicates how many
calendar hours are added to the maintenance counter of check m if activities h and
i are connected via r.

rchirmq =


duri

cyci

timehirm

if q = flight time
if q = flight cycles
if q = calendar time

∀h, i∈A,∀r∈R, ∀m∈M, ∀q∈Qm (6.11)

In reality, most activities have multiple potential predecessors. We therefore need to
incorporate a “big M” formulation in equations 6.10 to select the actually assigned
predecessor. Appropriate values as big M are the allowed interval limits maxmq. We
transform equations 6.10 to equations 6.12 - 6.14.

yimq = inittmq ∀i∈CI ,∀m∈M, ∀q∈Qm (6.12)
yimq ≥

∑
〈h,i,r,t〉∈O

rchirmqxhirt ∀h, i∈A, ∀m∈M, ∀q∈Qm (6.13)

yimq ≥
∑

〈h,i,r,t〉∈O
rchirmqxhirt + yhmq

− (1−
∑

〈h,i,r,t〉∈O|r/∈Em

xhirt)maxmq ∀h, i∈A, ∀m∈M, ∀q∈Qm (6.14)

Finally, constraints 6.8 - 6.9 indicate the range of values of the decision variables.

6.3 Model enhancements

Without constraints 6.7, the main model is a pure multi-commodity network flow
problem. Constraints 6.7 break the flow structure and raise the complexity of the
problem [29]. For realistic instance sizes, the connection networks are extremely
large. The sole creation of the connection networks can already take several minutes.
In this section, we develop several model enhancements to reduce the problem size.

Aggregation of aircraft

We originally formulated the main model as a multi-commodity problem, in which
each aircraft is represented by an own commodity. To reduce the problem size, it
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would be desirable to create a single-commodity problem formulation. But this is
not possible, since we solve multiple fleets simultaneously and some aircraft have
preassigned or forbidden activities and therefore have to be treated separately. How-
ever, we observe that most aircraft in a fleet neither have preassigned nor forbidden
activities. These aircraft are identical in terms of optimization and can be treated
as a single commodity. By aggregating multiple aircraft in a single aircraft group,
we can reduce the problem size drastically. Notice that different start positions and
initial conditions of the aircraft are irrelevant, because they are introduced to the
routes via the carry-in activities.
From now on, we will not consider separate tails anymore, but aggregate all aircraft
of the same fleet that have the same list of allowed activities in a common group.
Aircraft that have an individual list of allowed activities are represented by an own
aircraft group.
Let G denote the set of aircraft groups. We transform the binary decision variable
xijrt to xijrg telling us whether arc 〈i, j, r, g〉 is part of the solution.

Only create arcs for allowed aircraft groups

Another valuable observation is that not all aircraft are allowed to perform all activ-
ities. In preprocessing, we can identify the subset of aircraft groups that are allowed
to perform a particular activity. We then create only arcs for those aircraft groups
that are allowed to perform both of the connected activities. Whenever an activity
is preassigned to a specific tail, by consequence all other aircraft groups are not
allowed to perform any connection to or from this activity. With this concept, we
can eliminate constraints 6.5 and 6.6, which force preassigned and restrict forbidden
activities. As only the variables of valid assignments are available, the compactness
of our model is further increased. The enhanced main model looks as follows:

min
∑

〈i,j,r,g〉∈O
C

′

ijrg · xijrg +
∑
i∈CO

∑
m∈M

∑
q∈Qm

C
′′

m · yimq (6.15)

∑
〈i,j,r,g〉∈O

xijrg = 1 ∀i∈A\CO (6.16)
∑

〈i,j,r,g〉∈O
xijrg = 1 ∀j∈CO (6.17)

∑
〈j,i,r,g〉∈O

xjirg =
∑

〈i,j,r,g〉∈O
xijrg ∀i∈A \ {CI ∪ CO} ,∀g∈G (6.18)

yimq ≤ maxmq ∀i∈A, ∀m∈M,∀q∈Qm (6.19)
xijrg∈{0, 1} ∀〈i, j, r, g〉∈O (6.20)
yimq ≥ 0 ∀i∈A, ∀m∈M,∀q∈Qm (6.21)
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Elimination of arcs that violate aircraft flow balance

The arc set O can be further reduced. Since all activities have to be performed,
the aircraft flow is known in advance. We know the location and time the aircraft
become available as well as when and where activities start and end. Therefore,
we can compute the number of aircraft on ground at any airport at any time. We
also know that valid connections require the aircraft to stay on ground during the
connection time. These two observations allow us to conclude that whenever the
aircraft flow balance equals zero at an airport, all arcs connecting activities at that
airport over this point in time are invalid. By removing them from the set of arcs,
we reduce the size of O without losing valid solutions [31].

(a) Network of example schedule after aggregating aircraft

(b) Network of example schedule after removing invalid arcs

(c) Network of example schedule after aggregating activities

Figure 6.1: Enhancements of connection networks
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The effect of this enhancement on our small example schedule with two aircraft and
eight flights as presented in Sec. 4.1 is shown in Fig. 6.1. Fig. 6.1a equals Fig. 4.2.
It shows the connection network of the example schedule after aggregating aircraft.
Fig. 6.1b shows the reduced network after eliminating invalid arcs.

Aggregation of activities

Another valid model enhancement is to aggregate activities. Whenever an activity
can only be connected to a single other activity and no maintenance can be planned
in-between, that is, whenever there is only a single direct connection arc leaving
an activity, we can remove the two activities and the interlinking arc from the
networks. Instead, we create an aggregated activity departing from the origin of the
first activity and arriving at the destination of the second activity. The resource
consumption of the aggregated activity equals the combined resource consumption
of the replaced activities. The enhancement is especially effective in hub-and-spoke
networks. The schedules are typically designed so that an aircraft heads out from
the hub to a spoke station and returns after a short turnaround. As there is no
other aircraft available at the spoke station except for the aircraft performing the
arriving flight, it is obvious that the same aircraft needs to perform the returning
flight. Also, it is often impossible to perform any maintenance at the spoke station.
Although we might be able to reduce the number of activities considerably, the
benefit of this enhancement is fairly marginal. For every two activities we aggregate,
we only eliminate a single connection arc. The vast majority of connection arcs exists
at the hub stations and is not affected by this enhancement. Fig. 6.1c shows the
adjusted network of our example schedule after aggregating activities. In Fig. 6.1b,
we observe that there is only one arc leaving activity 102 and 105. We therefore can
conclude that activities 102 and 107 as well as 105 and 106 are definitely performed
consecutively by a single tail. In Fig. 6.1c, we see that these activities have been
aggregated in a single node in each case.

6.4 Maintenance capacity

There are two possibilities to include the limited capacity of the maintenance stations
in the model. The first option is to add a constraint forbidding any excess of
utilization. The second option is to consider a penalty term in the objective function
for exceeding the available capacity. We have selected the second option. The
reason for this choice is the definition of the maintenance arcs. A maintenance
arc 〈i, j,m, g〉 in our model implies that a single maintenance check of type m is
performed in-between activities i and j. The start of the check is scheduled as late
as possible so that the check ends just before the departure of activity j minus a short
buffer time. However, the ground times in-between two activities are often longer
than the required time to perform a check, and it might be possible to reschedule the
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actual check times to an earlier point in time without compromising the maintenance
feasibility of the solution. We observe that a capacity overload can often be reduced
by subsequent manual rescheduling.

Example: Short range aircraft are mainly used during daytime and usually spend
the entire night at an airport. The definition of the maintenance arcs states that
the overnight checks of all aircraft are done right before their first departures in
the morning. In reality, maintenance can be done anytime during the night and it
is assumable that the airline distributes the occurring maintenance effort over the
entire available time period. 2

For our capacity considerations, we assume that hangar space is the limiting re-
source. When checking whether the maintenance capacity is respected, we only
need to focus on those stations S where hangar checks are performed. It is also
not necessary to continuously examine the number of aircraft in maintenance, but
only at the starting points of checks when the number of aircraft in maintenance
at a station might increase. As the maintenance arcs and preassigned maintenance
activities are defined a priori, we know the potential starting points of hangar checks
in advance. We merely need to focus on those points in time when the maximum
potential number of simultaneously maintained aircraft exceeds the available main-
tenance capacity Ks of the corresponding station. The critical points at station s
are collected in the set Bs.
We introduce a new decision variable zsb which denotes the excess of capacity in
number of aircraft at station s at critical point b. We create new sets of constraints to
measure the maintenance utilization (6.22 - 6.23). Ôsb denotes the set of maintenance
arcs that incorporate a hangar check at station s at point in time b.

zsb ≥

 ∑
〈i,j,r,g〉∈Ôsb

xijrg

−Ks ∀s∈S,∀b∈Bs (6.22)

zsb ≥ 0 ∀s∈S,∀b∈Bs (6.23)

With these constraints, we can add the following term (6.24) as summand to the
objective function. C ′′′ represents a penalty cost for exceeding the available main-
tenance capacity by one aircraft.

∑
s∈S

∑
b∈Bs

C ′′′ · zsb (6.24)

We now have completed our main model. In the following chapter, we describe the
ALNS algorithm we use to obtain problem solutions.
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7 Solution approach

As we have explained in Chap. 5, every LNS approach consists of two stages: the
initial solution stage and the improvement stage. In this chapter, we describe how
we have designed these two stages for our optimizing approach.

7.1 Initial solution stage

Starting point of our LNS algorithm is the construction of a feasible initial solution.
Considering that many studies treat tail assignment as a pure feasibility problem,
the challenge of finding a feasible initial tail assignment solution becomes obvious.

During our research, we have identified three generic approaches to create a feasible
solution for a problem. The first and most pragmatic approach is to create a mixed-
integer program (MIP) representation and use a MIP solver, but solve the MIP as
a pure feasibility problem. The second idea is to heuristically construct a feasible
solution. The specific heuristic can be based on naïve strategies, like greediness, as
well as more intelligent strategies. The idea of the third approach is to design an
iteratively solved row generation framework as illustrated in Fig. 7.1. The original
problem is split up in a restricted master problem (RMP) and a subproblem. As
the RMP is only a partial representation of the original problem, it is much faster
to solve. However, it is not guaranteed that the obtained solution is feasible for
the original problem. We use the subproblem to complete the solution and analyze
possible conflicts. If the obtained solution is infeasible, we start a new iteration.
We create a constraint which inhibits the conflict from recurring in the following
iterations. The constraint is added to the RMP before it is resolved. We continue
the iteration loop until we obtain a solution which is feasible for the original problem.

The third approach features elements of a logic-based Benders decomposition, which
is why we will refer to it as Benders framework. We apply the concept of “learning
from one’s mistakes”, which is also prevalent in constraint programming under the
rubric of nogoods [39]. Whenever we detect that a certain partial solution, provided
by the RMP, cannot be completed to obtain a feasible solution for the original
problem, we examine the reasons for this conflict. Based on this information, we
can formulate a constraint that excludes a number of infeasible partial solutions in
the RMP. In logic-based Benders decomposition, such a constraint is referred to as
a Benders cut. In constraint programming, it is known as a nogood [39].
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Figure 7.1: Structure of Benders framework

The three generic approaches are the basis for our attempts to create a feasible initial
solution for the tail assignment problem. We have implemented all three ideas and
analyzed their performance on 220 real-world instances. The instances are based
on data from two major international carriers. In chapter 8, we describe how the
instances are created. In Tab. 7.1, we present a subset of eight example instances.
The chosen example instances are heterogeneous. They differ in length of planning
horizon, number of fleets, number of aircraft and schedule size. The upper four
instances are based on data of Carrier One, the bottom four on data of Carrier Two.

Throughout this chapter, we use the example instances to illustrate our proceedings.
However, all results and conclusions are based on the entire set of 220 instances. For
our benchmarking, we employ the non-commercial MIP solver SCIP 3.1.1. We use
LP files to communicate with the solver. We set a solving time limit of 30 minutes
per instance. Our algorithms are coded in Python 3.4 programming language. The
test runs are carried out on a system with quad core 3.20 GHz Intel Core i5-3470
processors and 8GB RAM running under 64-bit Windows 7 operating system.

Table 7.1: Example instances

Instance Days (Sub-)

Fleets

Aircraft Activities Airports Preassigned

or curfews

03-767x 3 2 65 330 34 No

05-737 5 1 186 2,469 68 No

07-757 7 1 133 2,031 53 No

28-777 28 1 55 1,531 12 No

03-380xt 3 2 31 165 124 Yes

05-380x 5 4 55 409 124 No

10-330/340xt 10 4 29 727 124 Yes

10-777x 10 4 28 660 124 No

x: mixed (sub-)fleets, t: tail-dependent restrictions (preassigned or curfews)
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7.1 Initial solution stage

In our evaluation, we analyze the ratio of performance indicators using different
approaches and calculate the mean of this ratio across all instances. We use the
geometric mean instead of the arithmetic when evaluating relative performances.
The geometric mean for a series of n values x1, x2, ..., xn is defined as equation 7.1.

xgeom = n

√
n∏
i=1
xi (7.1)

7.1.1 Main Model as feasibility problem

We start our analysis by solving the main model as a pure feasibility problem using
a MIP solver. Our main model is a comprehensive linear representation of the tail
assignment problem. We replace the original objective function with the dummy
objective function minZ = 0. In Tab. 7.2, we present problem characteristics and
solving times of our eight example instances. We are able to generate initial solutions
for only two instances within the time limit of 30 minutes. Across all 220 instances,
we are able to create initial solutions for the smallest 92 instances.

The quadratically increasing number of arcs is responsible for slowing down solving
times of larger instances. However, since we are interested in finding any feasible
solution, we can reduce the number of arcs by implementing an exclusive arc defini-
tion. Like Haouari et al. and Grönkvist, we only allow any two activities to
be connected by a single connection arc [29, 33]. To be conservative, we eliminate all
arcs but the one that is the hierarchically highest from maintenance point of view.
In other words, we place the hierarchically highest possible maintenance check in-
between any two activities. As we eventually solve multiple fleets simultaneously
and the maintenance programs of different fleets might vary, we have to provide
the hierarchically highest possible maintenance arcs for all fleets that are allowed to
perform both connected activities.

Table 7.2: Benchmarking: main model as feasibility problem

All arcs Exclusive arcs

Instance Arcs Variables Constr. Time [s] Arcs Variables Constr. Time [s]

03-767x 34,072 35,912 47,160 1577 11,329 13,169 47,160 54

05-737 483,739 495,103 1,083,502 - 142,413 153,777 1,083,502 501

07-757 306,429 315,617 678,884 - 85,328 94,516 678,884 195

28-777 342,760 349,324 715,484 - 90,003 96,567 715,484 162

03-380xt 56,476 57,384 34,536 1753 22,529 23,437 34,536 250

05-380x 323,691 325,767 228,543 - 102,987 105,063 228,543 -

10-330/340xt 3,024,165 3,027,305 606,209 - 843,819 846,959 606,209 -

10-777x 547,852 550,716 306,836 - 153,480 156,344 306,836 -
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Chapter 7 Solution approach

Our analysis shows that the number of arcs can on average be reduced by 68 percent.
The number of variables is reduced by the same absolute amount as the arcs, which
equals a relative mean reduction of 63 percent. The number of constraints, on the
other hand, is unaffected by this enhancement.
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(a) Change in number of arcs for Carrier One (left) and Carrier Two (right)
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(b) Change in number of variables for Carrier One (left) and Carrier Two (right)

Figure 7.2: Change of problem characteristics depending on arc definition

Fig. 7.2 illustrates the reductions in number of arcs and variables for both airlines.
The dashed/ dotted lines represent second-order polynomial trend lines. Although
the scatter plots and trends look similar for both carriers, there is a significant
difference. Given an identical number of scheduled activities, the numbers of arcs
and variables are generally higher and increase a lot earlier for Carrier Two (observe
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7.1 Initial solution stage

different range and scale of axes). This phenomenon can be explained by the network
structures of the airlines. While Carrier One operates five different hubs, Carrier Two
serves all his flights out of a single hub. The large number of connection possibilities
at this station is responsible for the higher complexity of the instances.

The enhanced results are shown in Tab. 7.2. They prove that an exclusive arc defini-
tion is capable of reducing problem sizes and solving times considerably. Neverthe-
less, the reported solving times to create a feasible initial solution are still too long
to be acceptable. Within a time limit of 30 minutes, the enhancement allows us to
generate initial solutions for five of our eight example instances and 138 out of our
220 instances. Fig. 7.3 shows the relation between the size of the schedule and the
solving time for Carrier One. The dashed line is again a second-order polynomial
trend line. The figure highlights that the solving times increase drastically with the
size of the schedule, even when implementing an exclusive arc definition.
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Figure 7.3: Relation between solving times and schedule size for Carrier One

7.1.2 Heuristics

Next, we investigate heuristic approaches to construct an initial tail assignment
solution. We consider greediness and other naïve sequencing methods.

First-in, first-out routing

The simplest method is to apply a first-in, first-out (FIFO) rule to create the routings
of the aircraft. Pseudo-code for the naïve FIFO algorithm is shown in Tab. 7.3. In
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a loop, we look at aircraft by aircraft and add the next available activity departing
from the current position to the route of the aircraft (line 1-10). This procedure is
repeated until the end of the planning horizon is reached (line 9). We then continue
with the routing for the next aircraft. The activities that are already assigned
to previous routed aircraft are obviously not available anymore (line 10). Special
attention needs to be paid to multi-leg flights. To make sure that all legs are assigned
to the same aircraft, we neglect the FIFO rule whenever encountering a multi-leg
flight and instead add the succeeding legs to the route of the aircraft (line 6-7).

Table 7.3: Pseudo-code for FIFO heuristic

FIFO algorithm

1: for t in aircraft

2: initialize current position with start position of aircraft t

3: repeat

4: find next activity departing from current position that is not rear leg in a multi-leg flight

5: add activity to route of aircraft t

6: if activity is first leg of multi-leg flight then

7: add all other legs to route of aircraft t

8: update current position

9: until end of planning horizon is reached

10: remove activities performed by aircraft t

11: for t in aircraft

12: determine required maintenance checks to perform route

13: for activity in route of aircraft t

14: if activity ends at maintenance base and succeeding ground time sufficient for maintenance then

15: find hierarchically highest of required checks that fits in ground period

16: place check in route of aircraft t

After completing the routing for all aircraft, we manually incorporate maintenance
checks in-between the planned activities (line 11-16). We first analyze which check
types are required for a particular aircraft to perform its route (line 12). A check type
is required when the initial counters plus the accumulated resource consumption on
the route exceed the check limits. We then insert the hierarchically highest of the
required check types in every ground period at a maintenance station for which the
available ground time is sufficient (line 13-16).

Example: For illustration of the FIFO algorithm, let us consider the simple sched-
ule of two aircraft, three airports and eight flights as presented in Sec. 4.1. The
graphical representation is shown in Fig. 7.4. Let us assume that only a single type
of maintenance exists, which takes five hours and can only be performed at airport A.
The maintenance condition of aircraft 2 is critical. Only two additional take offs are
allowed before reaching the maintenance interval limits. For simplification, let us
further assume that both aircraft have neither preassigned nor forbidden activities.
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7.1 Initial solution stage

The FIFO algorithm starts with the routing of aircraft 1, which is currently located
at airport C. The algorithm assigns the next departing activity to the route, i.e.,
flight 101. Next, aircraft 1 performs flight 102, because it is the first activity de-
parting from airport B after the arrival of flight 101. Similarly, flights 107, 105 and
106 are added to the route of aircraft 1. As there is no activity starting at airport A
after the arrival of flight 106, the end of the planning horizon has been reached. In
the next step, we create the routing for aircraft 2. Its route starts with flight 103.
According to the FIFO rule, we would then add flight 102, because it is the first
activity departing from airport B after the arrival of flight 103. However, this ac-
tivity is already performed by aircraft 1 and hence not available anymore. The first
available activity is flight 104. The routing of aircraft 2 continues with flight 108,
after which the end of the planning horizon is reached.

Figure 7.4: Example schedule

After obtaining the routings for both aircraft, we focus our view on maintenance.
The route of aircraft 1 does not provide sufficient ground time at airport A, thus no
check can be incorporated. Aircraft 2, on the other hand, spends six and a half hours
at airport A in-between flights 104 and 108. When placing a check in this ground
period, we create a valid solution. Aircraft 2 performs exactly two flights before the
required check and therefore does not exceed the allowed interval limits. 2

The main advantage of the FIFO rule is its simplicity and easy implementation. The
required time to run the algorithm is extremely low. The average solving time is
0.2 seconds. However, we observe that in many cases it is not suitable to find a main-
tenance feasible routing. We are able to generate feasible solutions for only 42 out
of 220 instances. Especially, the first routed aircraft often violate the maintenance
interval limits. Due to the FIFO rule, these aircraft dispose of the shortest ground
times, which are often too short to incorporate sufficient maintenance checks.
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Example: Consider the example schedule again, but this time we assume that the
maintenance condition of aircraft 1 is critical and only two more take offs are allowed
for this aircraft. As stated above, the route of aircraft 1 consists of five flights, but
no check can be placed in-between. Aircraft 1 would reach the allowed interval limits
after performing flights 101 and 102. It would not be allowed to depart for flight 107
without prior maintenance. In this simple example, we see that the performance
of the FIFO algorithm largely depends on the routing order of the aircraft. It also
demonstrates that a more intelligent routing rule is inevitable. 2

Priority routing

An alternative idea is to employ a priority routing. In contrast to the naïve FIFO
rule, this algorithm evaluates the impact on the subsequent routing step when taking
a decision. The pseudo-code is shown in Tab. 7.4. We first sort the aircraft based
on their urgency for maintenance (line 4). Then, we start with the routing for the
most urgent aircraft (line 5). We try to incorporate the necessary ground time for
the required check at a suitable station as soon as possible in the route. If the
current station is incapable of performing the check or no activity departing after
the required ground time is available without violating the aircraft flow balance, the
aircraft is assigned to the earliest departing flight arriving at a capable maintenance
station (line 10-11). If such a flight is also not existent, we use the FIFO rule and
assign the next departing activity to the aircraft (line 12-14). This procedure is
repeated until we were able to place a maintenance slot in the route (line 18). We
then stop the routing for this aircraft, update its check counters (line 19) and renew
the aircraft sorting (line 4). In the next iteration, we repeat the same steps with the
currently most urgent aircraft (line 5). Whenever the routing of an aircraft reaches
the end of the planning horizon, we remove it from the aircraft list (line 21-22). The
routing is finished when all aircraft have been removed from the aircraft list (line 3).
As in the FIFO approach, we then incorporate the largest possible of the required
maintenance types in every ground period at a maintenance station (see Tab. 7.3,
line 11-16). The created slots in the routes of the aircraft support us in incorporating
required maintenance checks in routes of urgent aircraft.

Example: For a better understanding, we again use the simple schedule and the
assumptions from above to describe our algorithm. The schedule consists of eight
flights to be performed by two aircraft out of which aircraft 1 is maintenance critical.
Our algorithm starts by routing aircraft 1. Our goal is to incorporate a ground time
of more than five hours at airport A as soon as possible in the route of this aircraft.
The aircraft is currently located at airport C. As there is no other aircraft available
and all activities must be performed, flight 101 is assigned to aircraft 1. The flight
arrives at airport B, which is incapable of performing the required check. Next,
we look at the available activities departing from airport B after the arrival of
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7.1 Initial solution stage

Table 7.4: Pseudo-code for priority heuristic

Priority algorithm

1: initialize maintenance counters of aircraft with start counters

2: initialize current positions of aircraft with start positions

3: while aircraft list

4: sort aircraft based on urgency for maintenance

5: select most critical aircraft t

6: repeat

7: if (current station capable of performing required check and sufficient ground time

available without violating aircraft flow balance) then

8: add next departing activity from current position after required ground time

that is not rear leg in a multi-leg flight to route of aircraft t

9: else

10: if (activity that is not rear leg in a multi-leg flight departing from current position

to capable maintenance base available without violating aircraft flow balance) then

11: add activity to route of aircraft t

12: else

13: find next activity departing from current position that is not rear leg in a multi-leg flight

14: add activity to route of aircraft t

15: if added activity is first leg of multi-leg flight then

16: add all other legs to route of aircraft t

17: update current position

18: until slot for required check has been created or end of planning horizon reached

19: update maintenance counters of aircraft t

20: remove activities performed by aircraft t

21: if end of planning horizon is reached then

22: remove aircraft from aircraft list

flight 101. There are two candidates, i.e., flights 102 and 104. As flight 104 is bound
for maintenance base A, we assign it to the route of aircraft 1. In the next step,
we check if it is possible to incorporate a ground time of at least five hours after
flight 104. That means, we check if an activity departing from airport A after the
required ground time is available without violating the aircraft flow balance. In this
example, it is possible to assign flight 108 to aircraft 1 allowing sufficient ground time
in-between flight 104 and 108. The aircraft flow balance is not violated, because the
departing flight 105 can be performed by the aircraft arriving on flight 107. After
flight 108, the end of the planning horizon is reached. We thus remove aircraft 1 from
the aircraft list. The routing of aircraft 2 is done in the next step. The algorithm
assigns the remaining flights 103, 102, 107, 105 and 106 to this aircraft.

After completing the routings for both aircraft, we add checks to the available ground
periods. As the route of aircraft 1 provides a maintenance slot in-between flights
104 and 108, the obtained solution is maintenance feasible. 2
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Our benchmarking results show that the priority routing outperforms the naïve
FIFO routing. Even though the average solving times have more than doubled to
0.5 seconds, the algorithm generates feasible solutions for 122 out of our 220 in-
stances. As urgent aircraft are treated with priority, it is more suitable to avoid
exceeding the interval limits and therefore infeasibilities. However, also when apply-
ing this more intelligent heuristic, we still cannot find feasible initial solutions for all
analyzed scenarios. All heuristic routing methods share the drawback that finding
a feasible solution is not guaranteed. Also, the presented heuristics are incapable of
treating preassigned activities. Therefore, they are unsuitable to be used directly in
the initial solution stage of our LNS approach. To benefit from their outstanding
low time requirement, we have to integrate them in a larger framework.

7.1.3 Benders framework

As the first two ideas did not yield the desired results, we have also analyzed the
third generic approach. The tail assignment problem is split up in two problems. In
the restricted master problem, we consider the routing of the aircraft. To increase
the solving speed, we do not include any maintenance restrictions. The subproblem
addresses the maintenance feasibility of the obtained routings.

Restricted master problem

We express the RMP as a MIP. The model is based on a time-space network. For
our main model, we concluded that a connection network formulation is preferable,
because it is more expressive. For the RMP, we do not need a high degree of expres-
siveness. The goal is to quickly obtain aircraft routings. Concerning the required
time to solve a problem, we see a major benefit of the time-space formulation.
As base model, we formulate the RMP as a multi-commodity network flow model.
We create an individual time-space network for each aircraft. The arc set represents
the scheduled activities. The nodes represent departure and arrival events at a
station. Ground arcs connect the events at a station. To take into account turn
time restrictions, we delay the event time of flight arrivals by the required turn time.
We assume that the turn time is fleet and airport dependent.
A problem of delaying flight arrival events arises when a flight is followed by a
maintenance activity. In this case, it is not necessary to preserve the required time
for a full turnaround, because no passengers and cargo are loaded. Instead, we
consider a buffer time to unload the aircraft and prepare it for the check (e.g., tug
to a hangar). Another buffer time is required for re-entry into service after the check
is finished. To map these buffer times in our networks, we delay the start events
of prescheduled maintenance activities by the turn time of the preassigned aircraft
at the particular station minus the buffer time for entering into maintenance. The
arrival events are delayed by the buffer time required for re-entering into service.
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7.1 Initial solution stage

Example: Let us illustrate this idea with an example as shown in Fig. 7.5a. Con-
sider a flight arriving at 10:00am. The turn time at the airport is 45 minutes. We
thus place the arrival event at 10:45am in the time line of the airport. Now, let us
assume there is a preassigned maintenance activity for the aircraft which starts at
10:30am and the buffer time for entering into maintenance is 25 minutes. Obviously,
it should be possible to perform the maintenance after the arriving flight. However,
the network structure only allows the flight to be followed by activities starting after
10:45am. By delaying the flight arrival event, we have blocked a valid connection.
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(a) Buffer time of 25 minutes
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(b) Buffer time of 35 minutes

Figure 7.5: Event dates in time-space network

As solution, we propose to delay the start event of the maintenance activity by the
turn time minus the buffer time, hence 20 minutes. In doing so, it is placed at
10:50am in the time line, and a connection from the flight to the maintenance ac-
tivity is possible. If the time between the flight and maintenance activity is shorter
than the buffer time, they cannot be performed consecutively by the same tail. For
example, we would place the start event of the maintenance activity at 10:40am if
the buffer time is increased to 35 minutes (see Fig. 7.5b). 2

It should be noted that this manipulation only works when the duration of the
maintenance activity is longer than the turn time. Otherwise, we would place the
start event of the maintenance activity behind the arrival event in the time line.
Considering that the typical turn time is less than 60 minutes and that check dura-
tions are scheduled generously to allow for unforeseen occurrences, this assumption
is valid in most situations.
The resulting networks consist of all activities that the particular aircraft is allowed
to perform. Preassigned activities are only added to the network of the respective
aircraft. For modeling and algorithmic purposes, we also add a dummy carry-in
event (arrival node) that represents the time and place the aircraft becomes available
to each network. The model is treated as a pure feasibility problem.
Let T be the set of aircraft. A denotes the set of activities, which also includes
dummy carry-in activities CI . Let S be the set of airports (stations) in the schedule.
Nst denotes the set of nodes at airport s for tail t. O is the set of arcs in the time-
space networks. An arc in O comprises four elements 〈i, t, dep, arr〉: i∈A denotes the
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activity, t∈T the performing aircraft, dep = 〈sd, nd〉 the tuple of departure airport
sd∈S and node nd∈Nsdt and arr = 〈sa, na〉 the tuple of arriving airport sa∈S and
node na∈Nsat. The sets Oout

tsn and Oin
tsn contain all arcs that depart from, or arrive

at, respectively, node n in the time line of airport s in the network of aircraft t.
The binary decision variable xi,t,dep,arr is 1 if arc 〈i, t, dep, arr〉 is included in the
solution and 0 otherwise. Besides, we introduce the decision variable ytsn which is 1
if aircraft t is on ground at airport s after node n and 0 otherwise. Due to the
model structure, we can specify this variable as continuous on the interval [0, 1],
even though it is binary in reality.
To guarantee valid assignments of multi-leg flights, we combine all legs in a single
activity starting at the origin of the first leg and ending at the destination of the
last leg. The base model can be stated as follows:

minZ = 0 (7.2)

∑
〈i,t,dep,arr〉∈O

xi,t,dep,arr = 1 ∀i∈A (7.3)

yts,n−1 −
∑

〈i,t,dep,arr〉∈Oout
tsn

xi,t,dep,arr

+
∑

〈i,t,dep,arr〉∈Oin
tsn

xi,t,dep,arr = ytsn ∀t∈T,∀s∈S,∀n∈Nst (7.4)

yts0 = 0 ∀t∈T,∀s∈S (7.5)
xi,t,dep,arr ∈{0, 1} ∀〈i, t, dep, arr〉∈O (7.6)

ytsn ∈[0, 1] ∀t∈T,∀s∈S,∀n∈Nst (7.7)

As we solve a pure feasibility problem, we incorporate a dummy objective func-
tion (7.2). The solution assigns all activities in the schedule to the aircraft (7.3) and
assures a balanced flow at each node of the networks (7.4). For initialization, the
numbers of aircraft on ground before the first nodes are set to zero (7.5).

Subproblem

From the solution of the RMP, we can determine the route of each aircraft. After-
wards, we manually incorporate the largest possible required maintenance check in
the ground times at maintenance stations. However, since we did not consider any
maintenance restrictions in the RMP, we do not necessarily obtain a maintenance
feasible routing. Our subproblem algorithm identifies and analyzes existing conflicts.
They occur whenever a maintenance interval limit is exceeded on the route of an
aircraft. That is, whenever we were not able to incorporate sufficient maintenance
checks in the route. The main reasons for infeasibilities are too short ground times
at maintenance stations and too long ground times at non-maintenance stations.
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7.1 Initial solution stage

Benders cuts

We solve RMP and subproblem iteratively until we find a maintenance feasible
routing. We use additional constraints to avoid running into the same conflicts in
subsequent iterations.

The additional constraints restrict the sequence of activity and ground arcs that led
to an infeasibility. We do not need to block the entire route of the affected aircraft,
instead it suffice and is more efficient to block the minimal forbidden sequence. This
sequence starts with the first activity after the last check that resets the exceeded
maintenance counter (see Fig. 7.6a). If the route does not include such a check before
the infeasible activity, the forbidden sequence starts with the carry-in activity of the
route (see Fig. 7.6b). The end of the sequence is the infeasible activity itself. To
block this sequence in subsequent iterations, we have to extend our RMP by a new
restriction. This restriction works like a Benders cut and guarantees that at least
one activity arc or one ground arc of the forbidden sequence is not assigned to the
aircraft in the next iterations. As the additional constraints constitute of a single
linear inequality per conflict, they do not strongly increase the solving time.
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(a) Minimal forbidden sequence with prior resetting check
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(b) Minimal forbidden sequence without prior resetting check

Figure 7.6: Minimal forbidden sequence

Let O′ be the set of activity arcs and W ′ the set of ground arcs in the forbidden
sequence. We can then write the Benders cut as stated in equation 7.8. To keep the
model slim, we only create a Benders cut for one conflict in every iteration, even
when multiple routes are maintenance infeasible. By forcing changes in the route of
one aircraft, the routes of other aircraft are compulsory changed as well. We add
the Benders cut to the RMP before it is resolved. Later in this chapter, we evaluate
strategies of adding multiple Benders cuts to the RMP in every iteration.
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Chapter 7 Solution approach

∑
〈i,t,dep,arr〉∈O′

xi,t,dep,arr +
∑

〈t,s,n〉∈W ′

ytsn ≤| O′ | + | W ′ | −1 (7.8)

Our communication with the MIP solver is non-incremental. In every iteration, we
create a new LP file with the updated problem and hand it to the solver. We chose
this method for ease of implementation. However, an incremental communication
would perform better, since the solver would not need to reconstruct the problem in
every iteration, and also it could use the previous solution or LP basis as warm start.
On the left hand side of Tab. 7.5, we present problem and solving characteristics
of our eight example instances. We observe that the size and solving time of the
RMP increase rapidly with the number of aircraft and number of scheduled activities
impeding us to quickly find solutions for many instances. Providing a time limit of
30 minutes per instance, the base model integrated in a Benders framework allows
us to generate initial solutions for 149 of our 220 instances. However, there are
a couple of preprocessing techniques to reduce the size of the time-space networks
and thus improve the solving time of the RMP. Some of the enhancements are
similar to the ones presented for our main model in Sec. 6.3. We will use the simple
schedule consisting of two aircraft and eight flights from Sec. 4.1 to illustrate the
enhancements. The initial networks of the two aircraft are shown in Fig. 7.7a.

Aggregation of aircraft

When examining the time-space networks, it is noticeable that they are identical
for the majority of aircraft in a (sub-)fleet. We can reduce the size of our RMP
by aggregating as many aircraft of the same (sub-)fleet as possible in a common
network. However, as we cannot control which activity is assigned to which aircraft
in the group, we still have to treat aircraft with special restrictions on allowed
activities or preassigned activities separately in own aircraft groups. We will refer
to aircraft groups consisting of a single aircraft as single aircraft groups and aircraft
groups consisting of multiple aircraft as multi aircraft groups.
Since the connections between two activities are not explicitly defined in time-space
networks, the actual sequence of consecutively performed activities by an aircraft is
not part of the solution of the RMP. The restrictions of the RMP only guarantee that
the flow at each node is balanced and thus that a routing exists. Before aggregating
aircraft, this disadvantage was irrelevant, because each aircraft was represented by
an own commodity. The routes could implicitly be determined from the list of
assigned arcs. When aggregating aircraft, we can only determine the assignment of
activity and ground arcs to aircraft groups. We thus have to transfer the creation
of the tail-based routings to the subproblem. In the literature, an Eulerian tour
algorithm is commonly used to derive a routing sequence [50, 51]. We would like to
employ our priority heuristic from above. The heuristic can quickly derive a routing
sequence for the aircraft in multi aircraft groups.
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7.1 Initial solution stage

(a) Initial time-space networks of example schedule (left: aircraft 1, right: aircraft 2)

(b) Time-space network after aggregating air-
craft

(c) Time-space network after applying node
aggregation

(d) Time-space network after eliminating un-
necessary ground arcs

(e) Time-space network after aggregating ac-
tivities

Figure 7.7: Illustration of model enhancements

Dynamic disaggregation: A challenging question is how to handle infeasibilities
when aggregating aircraft. In general, we apply the same iterative procedure of
manually incorporating maintenance checks, analyzing conflicts, adding new restric-
tions to the RMP and resolving. However, this process requires slight modifications
depending on whether the conflicts occur on the route of an aircraft that has its own
aircraft group or is member of a multi aircraft group. In the first case, the procedure
is equivalent to above. We first determine the forbidden sequence and then add an
additional constraint to the RMP that restricts this sequence from recurring. In
the second case, the procedure is slightly different. We first have to remove the af-
fected aircraft from its original aircraft group and create a new single aircraft group.
Then, we can proceed with the same steps as above. This procedure implies that
the number of commodities is continuously enlarged during the iterations.
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Cut selection: Creating additional aircraft groups increases the size and slows
down solving times of the RMP. We therefore preferentially create Benders cuts for
single aircraft groups when encountering multiple infeasible routes. Only when all
conflicts occur on routes of aircraft that are member of multi aircraft groups, we
select one of these conflicts to block in subsequent iterations.

In our example schedule, the networks are identical for both aircraft. The aircraft
have neither preassigned nor forbidden activities. Therefore, we can aggregate them
in a single commodity and use a common network as shown in Fig. 7.7b.
When running benchmarks on all 220 instances, we observe that the initial number
of commodities is reduced for all instances. The average reduction amounts to
impressive 91 percent. The largest reduction is achieved for instance 05-738 where
a total of 186 aircraft are aggregated in a single group. The enhancement is less
powerful when many aircraft have preassigned or forbidden activities.

Table 7.5: Evaluation of aircraft aggregation enhancement

Base model Base model + aircraft aggregation

Instance Init. ac

groups

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Init. ac

groups

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

03-767x 65 68,641 47,520 4 527.1 2 2,175 1,845 1 0.4

05-737 186 1,412,485 1,458,477 - - 1 7,779 10,482 - -

07-757 133 828,192 898,185 - - 1 6,359 8,901 1 3.1

28-777 55 255,696 173,021 - - 1 4,703 4,703 1 4.8

03-380xt 31 16,212 11,351 2 8.2 5 2,643 1,995 1 0.4

05-380x 55 70,566 48,479 - - 4 5,183 3,956 10 49.3

10-330/340xt 29 63,598 43,465 2 1519.5 12 26,337 18,428 4 726.9

10-777x 28 56,253 38,432 - - 4 8,060 6,080 3 20.0

The enhancement does not only affect the network topography, but also the solv-
ing performance of the Benders framework. We notice a large average reduction in
solving times of 94 percent. The performance is improved for all instances, which
suggests that aircraft aggregation is a valid enhancement for diverse types of sched-
ules. The improvement ranges from a minimum of 2 percent to a maximum of
99 percent. When aggregating aircraft, we are able to solve 198 of our 220 instances
within the time limit of 30 minutes. The problem and solving characteristics of our
eight example instances are shown on the right hand side of Tab. 7.5.

Node aggregation

The size of the RMP can be further reduced by applying a preprocessing method
called node aggregation, which was first proposed by Hane et al. in the context
of fleet assignment [31]. In our base model, every activity is represented by an
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7.1 Initial solution stage

individual departure and arrival event. Consequently, the networks consist of a large
number of nodes. Since the exact event times are irrelevant as long as the order
is correct, we can combine consecutive arrival and following consecutive departure
events in a single node. In doing so, we do not only reduce the amount of nodes,
but also eliminate interlinking ground arcs. The number of nodes is at least halved,
because we can at least combine an arrival event with a departure event.
Fig. 7.7c shows the time-space network of our example schedule after aggregating
nodes. For this instance, the number of nodes is reduced by 56 percent from 18 to
eight. Measured over all 220 instances, we notice a mean reduction of 64 percent.

Table 7.6: Evaluation of node aggregation enhancement

All prior enhancements All prior enhancements

+ node aggregation

Instance Init.

nodes

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Init.

nodes

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

03-767x 1,450 2,175 1,845 1 0.4 439 1,164 834 1 0.3

05-737 5,124 7,779 10,482 - - 1,571 4,226 5,073 7 257.5

07-757 4,195 6,359 8,901 1 3.1 1,254 3,418 4,122 1 2.4

28-777 3,117 4,703 4,703 1 4.8 820 2,406 2,406 1 4.3

03-380xt 1,799 2,643 1,995 1 0.4 663 1,507 859 1 0.3

05-380x 3,492 5,183 3,956 10 49.3 1,280 2,971 1,744 3 5.2

10-330/340xt 17,672 26,337 18,428 4 726.9 6,330 14,995 7,086 2 192.2

10-777x 5,392 8,060 6,080 3 20.0 1,920 4,588 2,608 7 58.2

Node aggregation is commonly used in the literature to reduce the size of time-space
networks. In Tab. 7.6, we compare problem and solving characteristics before and
after applying node aggregation to our example instances. Across all 220 instances,
we measure a mean reduction in solving times of 33 percent. We are able to solve
202 instances within the time limit. The large majority of 187 instances follow the
prediction from literature that node aggregation is capable of speeding up the solving
process. Surprisingly, we also encounter 19 instances that seem to be negatively
affected by node aggregation. For example, we observe an increase in solving time
of 191 percent for instance 10-777x (see Tab. 7.6). The change in solving times ranges
from a maximum reduction of 99 percent to a maximum increase of 756 percent. We
conclude that this phenomenon is explained by coincidence and random factors. To
be able to reproduce our results, we have eliminated all non-deterministic elements
from our algorithms and set a random seed. However, this procedure does not
prevent us from being exposed to some “lucky” or “bad” permutations.

Island isolation

Island isolation is another preprocessing method proposed by Hane et al. It
describes the elimination of unnecessary ground arcs in the time-space networks [31].
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Since we know the number of aircraft at each airport at the beginning of the planning
horizon and we assume that all activities have to be performed, we can compute the
number of aircraft on ground at each airport at any time. Whenever this number
equals zero, we can eliminate the corresponding ground arc in the networks.

In Fig. 7.7d, we show how the time-space network of our example schedule looks
after eliminating unnecessary ground arcs. On average, 66 percent of the ground
arcs in the networks of our 220 instances are eliminated by this enhancement.

Table 7.7: Evaluation of island isolation enhancement

All prior enhancements All prior enhancements

+ island isolation

Instance Init. gr.

arcs

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Init. gr.

arcs

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

03-767x 439 1,164 834 1 0.3 223 1,164 1,050 1 0.2

05-737 1,571 4,226 5,073 7 257.5 1,045 4,226 5,599 7 266.0

07-757 1,254 3,418 4,122 1 2.4 871 3,418 4,505 1 2.3

28-777 820 2,406 2,406 1 4.3 496 2,406 2,730 1 4.3

03-380xt 663 1,507 859 1 0.3 193 1,507 1,329 1 0.2

05-380x 1,280 2,971 1,744 3 5.2 488 2,971 2,536 9 11.5

10-330/340xt 6,330 14,995 7,086 2 192.2 1,998 14,995 11,418 2 8.4

10-777x 1,920 4,588 2,608 7 58.2 600 4,588 3,928 2 2.2

Concerning the solving times, we measure a mean reduction of 21 percent. In
total, we are now able to solve 207 of our 220 instances within the time limit.
We observe an improved solving performance for 124 instances. For 12 instances,
we do not observe a change in performance and for 72 instances, longer solving
times are measured. Tab. 7.7 shows problem and solving characteristics of our eight
example instances before and after this enhancement. We notice that the initial
number of variables is unchanged and the initial number of constraints is increased
by this preprocessing method. This unexpected change is due to our implementation
procedure. We first create the entire networks including all ground arcs. We then
add additional constraints to the model that force the variables of invalid ground arcs
to be zero. Our implementation could be improved by not creating invalid ground
arcs in the beginning. In consequence, the number of variables should decrease while
the number of constraints should remain unchanged.

Aggregation of activities

The next logical step is to aggregate activities. When analyzing the structure of
our time-space networks, we identify nodes where preceding and succeeding ground
arcs have been eliminated, and that only consist of a single arrival and departure
event. Given this structure, it is obvious that the departing activity from that node
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has to be assigned to the same aircraft as the arriving activity. Due to the lack of
ground arcs, there is no other aircraft available than the one performing the arriving
activity. By aggregating both activities in one single activity arc, starting at the
departure event of the first activity and ending at the arrival event of the second
activity, we can reduce the number of arcs in our networks.
We measure an average reduction in number of scheduled activities of 38 percent.
The enhancement is especially powerful for schedules that include many forced turns
at spoke stations (e.g., 10-330/340xt). Schedules of fleets that serve major destina-
tions or connect different hubs, in contrast, are less likely to be improved (e.g.,
07-757). Fig. 7.7e shows the adjusted network for our example schedule.

Table 7.8: Evaluation of activity aggregation enhancement

All prior enhancements All prior enhancements

+ activity aggregation

Instance Activi-

ties

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Activi-

ties

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

03-767x 725 1,164 1,050 1 0.2 647 1,086 1,011 1 0.2

05-737 2,655 4,226 5,599 7 266.0 2,468 4,039 5,412 1 14.4

07-757 2,164 3,418 4,505 1 2.3 2,083 3,337 4,424 1 2.3

28-777 1,586 2,406 2,730 1 4.3 1,460 2,280 2,604 1 1.5

03-380xt 844 1,507 1,329 1 0.2 499 1,162 1,260 1 0.2

05-380x 1,691 2,971 2,536 9 11.5 991 2,271 2,361 6 5.3

10-330/340xt 8,665 14,995 11,418 2 8.4 4,453 10,783 11,067 1 3.8

10-777x 2,668 4,588 3,928 2 2.2 1,392 3,312 3,609 7 11.3

Aggregating activities supports us to solve 208 of our 220 instances within the time
limit. We measure a mean reduction in solving time of six percent. For the majority
of 144 instances, we observe a reduction in solving time. But unexpectedly, there
is also a large group of 63 instances for which aggregating activities leads to longer
solving times. We can only explain this result by non-deterministic processes in the
MIP solver.

Objective function

During our result analysis, we discovered that the utilization rate of the commodities
is widely scattered. While some aircraft groups are characterized by a high ratio
of flying time to disposable time, the aircraft of other groups spend much time on
ground. For the aircraft of aircraft groups with a high utilization, it is less likely that
sufficient ground time is available to incorporate maintenance checks. So far, the
RMP is solved without knowing that we will try to incorporate maintenance checks
in the ground periods of the routes. We realized that an objective function in the
time-space model might support us in balancing the utilization and thus distribute
the available ground times evenly over the aircraft groups.
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We consider three different objective functions. All of them reward to equalize
utilization. The first minimizes the maximum utilization over all groups. The second
maximizes the minimum utilization over all groups. And the third minimizes the
difference between maximum and minimum utilization over all groups.
Let Dg be the sum of the disposable times of the aircraft in aircraft group g. The
parameter duri indicates the flying time of activity i. We introduce the new decision
variables ` which represents the minimum ratio of flying time to disposable time of
all aircraft groups and u which represents the maximum ratio. Consequently, the
three objective functions can be formulated as min u,max ` and min u−`. The flight
time utilization of an aircraft group FTU (g) is calculated according to equation 7.9.

FTU (g) = 1
Dg

·
∑

〈i,g,dep,arr〉∈O
duri · xi,g,dep,arr (7.9)

We add constraints 7.10 - 7.11 to the RMP to measure the maximum and minimum
utilization over all groups.

u ≥ FTU (g) ∀g∈G (7.10)
` ≤ FTU (g) ∀g∈G (7.11)

In our test runs, we discovered that the MIP solver requires much time to find the
optimal solution to these problems. Near optimal solutions, on the other hand,
are found quickly. We therefore set a gap limit of ten percent and implement two
additional constraints that provide an upper/ lower bound on our decision variables.
By telling the solver that the minimum/ maximum utilization cannot be higher/
lower than the average utilization measured over all groups, we help the solver to
quickly find appropriate dual bounds and assess the optimality gaps (7.12/ 7.13).

u ≤

∑
i∈A

duri∑
g∈G

Dg

(7.12)

` ≥

∑
i∈A

duri∑
g∈G

Dg

(7.13)

The gap limit and the bounds perform satisfactorily when minimizing the maximum
utilization and maximizing the minimum utilization. However, when minimizing
the difference between maximum and minimum utilization, the solver still shows
difficulties finding appropriate dual bounds. We thus narrow our evaluation on the
first two objective functions. We compare their performance on our 220 instances
to find out whether the implementation of an objective function is beneficial for us.
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7.1 Initial solution stage

In both cases, the number of variables is increased by a single variable (either the
maximum utilization u or the minimum utilization `). The additional number of
initial constraints equals the number of initial aircraft groups (constraints 7.10 or
7.11) plus one (constraint 7.12 or 7.13).

Table 7.9: Evaluation of possible objective functions

All prior enhancements All prior enhancements

+ objective function

Minimize Maximize

max util min util

Instance Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Init.

variables

Init.

constr.

Itera-

tions

Time

[s]

Itera-

tions

Time

[s]

03-767x 1,086 1,011 1 0.2 1,087 1,014 1 0.3 1 0.3

05-737 4,039 5,412 1 14.4 4,040 5,414 1 13.1 1 13.4

07-757 3,337 4,424 1 2.3 3,338 4,426 1 2.3 1 2.3

28-777 2,280 2,604 1 1.5 2,281 2,606 1 1.6 1 1.5

03-380xt 1,162 1,260 1 0.2 1,163 1,266 1 0.3 1 0.3

05-380x 2,271 2,361 6 5.3 2,272 2,366 1 0.9 1 1.0

10-330/340xt 10,783 11,067 1 3.8 10,784 11,080 4 27.5 3 19.2

10-777x 3,312 3,609 7 11.3 3,313 3,614 1 1.4 3 6.1

The computational results for our eight example instances are shown in Tab. 7.9.

With respect to all 220 instances, the usefulness of this enhancement is hard to
evaluate. On one hand, we observe that an equalized utilization support us in
solving more instances within the 30 minutes time limit. When minimizing the
maximum utilization, we are able to solve 213 instances, when maximizing the
minimum utilization 211 instances. On the other hand, we measure an average
increase in solving times for both approaches. When minimizing the maximum
utilization, the average increase amounts to 24 percent. The solving performance is
improved for only 51 instances. For 160 instances, we detect a worse performance.
When maximizing the minimum utilization, the average increase in solving time
amounts to 22 percent. We observe improvements for 44 and setbacks for 170
instances.

The results suggest that the first objective performs slightly better. For a few in-
stances, this enhancement is very helpful. For example, the solving time for instance
10-777x is reduced by 88 percent. But, for the majority of instances, we observe a
negative effect. For instance 10-330/340xt, we measure an increase in solving time
of 632 percent. We therefore drop the idea to implement an objective function in
the RMP.
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Generation of Benders cuts

Another idea to improve the row generation process is to implement a different
strategy of how to add Benders cuts to the RMP. As described above, we currently
select a single conflict and solely add a single Benders cut to the RMP in every
iteration. Alternatively, we could implement a strategy of adding multiple Benders
cuts to the RMP in every iteration.
We developed two ideas. First, and most straightforward, we could add Benders cuts
for every conflict we identify. In doing so, we cut off as many invalid solutions from
the solution space of the RMP as possible in every iteration. The drawback of this
approach is that we eventually create many new aircraft groups for aircraft that were
pooled in multi aircraft groups before. We then quickly return to a multi-commodity
formulation, in which each aircraft is represented by an own commodity.
The second idea is somewhere in the middle between the first idea and our current
strategy. To avoid opening multi aircraft groups, the strategy is to solely add the
constraints blocking all conflicts in single aircraft groups in an iteration. In other
words, if we encounter multiple infeasible routes in single aircraft groups in an
iteration, we add multiple Benders cuts to restrict all these conflicts. In case there are
only infeasibilities in multi aircraft groups, the strategy is to select a single conflict,
create one additional aircraft group and add only one Benders cut to the RMP.

Table 7.10: Evaluation of strategies to generate Benders cuts

single conflict

per iteration

all conflicts

per iteration

all single ac group

conflicts per iteration

Instance Iterations Time [s] Iterations Time [s] Iterations Time [s]

03-767x 1 0.2 1 0.2 1 0.2

05-737 1 14.4 1 13.7 1 12.7

07-757 1 2.3 1 2.3 1 2.4

28-777 1 1.5 1 1.7 1 1.6

03-380xt 1 0.2 1 0.2 1 0.2

05-380x 6 5.3 2 1.3 6 5.1

10-330/340xt 1 3.8 1 3.5 1 3.6

10-777x 7 11.3 8 15.1 7 11.3

Tab. 7.10 shows the required numbers of iterations and solving times of our eight
example instances given the three strategies of how to generate Benders cuts. When
running benchmarks on all 220 instances, we see that blocking all conflicts encoun-
tered in an iteration performs worst. Although, the average solving time is slightly
improved compared to our currently implemented strategy (-1%), we are only able
to generate initial solutions for 202 of our 220 instances. For 106 instances, we see
improvements in solving time, but for 96 instances, the performance is worse.
The last strategy, in contrast, performs best. When adding multiple Benders cuts to
block all infeasibilities in single aircraft groups, the average solving time is reduced
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by five percent compared to our current strategy. We are still able to solve 208 of
the 220 instances within the time limit of 30 minutes per instance. For the majority
of 128 instances, we measure improvements in solving performance. We thus replace
our currently implemented strategy with the last strategy.

7.1.4 Conclusion

In this section, we have analyzed three ideas of how to generate a feasible initial
solution for the tail assignment problem. Using a MIP solver to solve the main
model as a feasibility problem requires the least implementation effort. But, for
medium and large problem sizes, it is a very time-consuming approach. Heuristics
are promising in terms of required time. Their disadvantage is that they have to
be tailored to the specific problem. We have seen that it is challenging to create
a heuristic that always finds a feasible solution. The iterative Benders framework
circumvents this disadvantage as it guarantees that a feasible solution is found if any
exists. Although the time requirement is generally longer than when using a pure
heuristic approach, we are able to generate feasible solutions for nearly all instances
within the time limit. Compared to the required time when using the first approach,
the Benders framework is far superior. Therefore, it is our methodology of choice
for the initial solution stage.

We have shown how preprocessing is capable of reducing problem sizes and solving
times. We use aircraft aggregation, node aggregation, island isolation and activity
aggregation to enhance the solving performance. In Sec. 7.2, we describe the ALNS
framework we have designed to iteratively improve the generated initial solution.

7.2 Improvement stage

The improvement stage is the core of every LNS algorithm. Essential elements are
the destructor and repair methods, the acceptance rule and the stopping criterion.
In our approach, the improvement stage is embedded in an adaptive framework,
allowing us to implement several competing destructor methods.

7.2.1 Destructor methods

The ideas for our destructors originate from observations we made when analyzing
routing plans. Most of them are based on intuitive ideas of how to improve an
existing routing. Some are also based on the proposals of Kabbani and Patty [44].
The destructors are designed so that they release different parts of the assignments.
Some destructors consider the routes of many aircraft, but focus on a small time
window or a limited number of stations. Other destructors take a more global
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perspective and seek to open larger time windows, but on a limited number of
routes. All of our destructors contain some element of randomness to vary the
released assignments in every call. In addition, we implement a tabu list containing
the information about opened assignments in all past iterations to make sure that
a unique set of assignments is released in every iteration.

Single route destructor

The need for the single route destructor arises from the way we construct our ini-
tial solution. Since we place a maintenance check in every possible ground period,
the initial routes of the aircraft are packed with maintenance checks. Most of these
checks are not required for the routing to be feasible. The purpose of the single route
destructor is to eliminate all superfluous checks in the route of an aircraft. When
it is called, a specific tail is chosen randomly. The routes of all other aircraft are
locked. In consequence, the destructor is incapable of performing changes in the fly-
ing sequences. We then identify the set of all arcs connecting any pair of neighboring
activities in the route of the selected aircraft and release them for reoptimization.
As result, activities that were formerly connected by a costly maintenance arc might
now be connected by a direct connection arc or a cheaper maintenance arc.

We realized that this destructor is very useful to “clean up” the initial routes of the
aircraft. We therefore decided to incorporate a preliminary improvement stage. We
refer to this stage as maintenance reduction stage. In a loop, we call the single route
destructor for every tail to remove all superfluous checks from the initial routes.
Afterwards, we start the actual improvement stage in which we do not implement
the single route destructor anymore.

Multi route destructor

The multi route destructor is an advancement of the single route destructor. Instead
of solely open the route of a single tail, this destructor allows the routes of several
tails to be reconfigured. At first, we identify all aircraft which have maintenance
slack in the current solution. Maintenance slack means that checks are performed
before the interval limits are reached. We then randomly select one of these aircraft.
Next, we determine all aircraft that cross the route of the selected aircraft. By
crossing a route, we mean that the aircraft share common ground times at a location.
Out of the potential partner aircraft, we select either one or two in a random way.
Then, we release the assignments of all arcs connecting any pair of activities in the
routes of the selected aircraft for reoptimization.

This destructor allows swaps in the routes of the selected aircraft during the entire
planning horizon. Also, maintenance activities can be inserted or removed. The
routes of the unselected aircraft, on the other hand, remain unchanged.

72



7.2 Improvement stage

Overnight destructor

The overnight destructor follows the idea of Kabbani and Patty to swap routings
of two aircraft which are overnighting at the same location [44]. They refer to this
swap as changing termination-origination connections (T-O swap). Especially for
short-haul fleets, flights are usually carried out during the day and maintenance is
performed at night. We observe though that checks are often performed too early,
because the particular aircraft is not overnighting at an appropriate maintenance
station in the required night. We therefore extend the idea of Kabbani and Patty.
The two aircraft are selected so that the route of one involves a check during the
night which is performed before the interval limits are met. The partner aircraft is
selected so that its routing ends at a maintenance base in the evening of the next day
(see Fig. 7.8). We then disconnect the ground arcs of the aircraft during the selected
night and try to reconnect them in a better way. The routes before and after the
common ground time are not allowed to be changed. However, as the latter might
be assigned to the other tail, we allow maintenance activities to be rescheduled.
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Figure 7.8: Overnight destructor [44]

Route swap destructor

The route swap destructor is a generalization of the overnight destructor. Instead
of allowing the connections to be swapped during nighttime, we now allow the rout-
ings of multiple aircraft to be swapped at a randomly chosen time and station. The
combination of time and station is selected so that at least two aircraft are simul-
taneously on ground in the current solution. Otherwise, it would not be possible to
swap any connections and the iteration would be useless. We then allow the routes
of all aircraft which are on ground at the particular station at the selected time to
be swapped (see Fig. 7.9). The routes prior and after the swap are not allowed to
be changed, only maintenance activities can be rescheduled. Unlike the overnight
destructor, this destructor does not pose additional requirements on the selected
aircraft. Kabbani and Patty refer to this idea as turn swap or through swap [44].
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Figure 7.9: Route swap destructor [44]

Time-space destructor

The time-space destructor follows a different strategy. Instead of releasing assign-
ments at a fixed point in time, we now release all connections at a station within
a larger time window (see Fig. 7.10). The appropriate length of the time window
depends on the instance at hand. We implement three different possibilities, i.e.,
six, twelve and 24 hours. The starting time, the length of the time window as well as
the station are chosen randomly. At least three different aircraft have to perform a
connection within the time window at the selected station. Otherwise, the selection
process is renewed. We do not set an upper limit of affected aircraft. The routes
before and after the time window are not allowed to be changed, but the latter might
be reassigned to a different tail and maintenance activities rescheduled.
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Figure 7.10: Time-space destructor
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Utilization balancing destructor

LNS sometimes works best when not doing the most intuitive things. The utilization
balancing destructor works similar to the multi route destructor. The difference lies
in the way we select the aircraft. When calling this destructor, we randomly choose
one of the aircraft with the ten percent highest utilization and one of the aircraft
with the ten percent lowest utilization. The utilization is defined as the ratio of
flying time to disposable time. We release the entire routes of the two aircraft for
reoptimization, allowing swaps at any time during the planning horizon.

7.2.2 Repair method

To repair the subproblems, we reoptimize the decomposed main model using a MIP
solver. Since the destructors only release a small fraction of variables for reas-
signment, a MIP solver is capable of repairing the subproblems in acceptable time
frames. We provide the old routing as a warm start solution. The search for im-
proving neighbors is limited by an iteration time limit between four and 20 seconds
depending on the instance size. We thereby force the algorithm to perform many
iterations in short time and search many promising areas of the solution space.

7.2.3 Acceptance rule

Our acceptance rule is simple. Since we use a MIP solver to repair the subproblems
and provide the incumbent solution as warm start, we only generate solutions of
equal or improved quality. We therefore chose to accept any unvisited solution.

7.2.4 Stopping criterion

We implement multiple stopping criteria to terminate the destroy-and-repair iter-
ations. As it is unknown beforehand how long it takes to generate an acceptable
solution, it is insufficient to only implement an upper time and iteration limit. We
designed a third criterion which is independent of the instance at hand. It is based
on the improvement rate, defined as the ratio of improvement in objective value to
number of iterations. In the beginning of a search, this rate is high as there are many
improving neighbors. With increasing number of iterations, the improvement curve
flattens and the improvement rate declines. Our idea is to stop the search when the
most recent iterations have shown no or only marginal changes in objective value.
In our tests, we stop the iterations when less than one percent improvement in
objective value has been achieved in the past 25 iterations. Besides, we implement
an upper time limit of 30 minutes and an iteration limit of 500. These values
appeared to be reasonable in our test runs and also appropriate considering the
time availability of airlines. Whichever criterion is first met terminates the search.
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7.2.5 Adaptive framework

Our LNS approach includes multiple destructor methods d∈D, but only a single
repair method. Therefore, we solely need to track the performance of the destructor
methods. In the initial state, all destructors are characterized by an equal weight,
which is calculated according to equation 7.14.

wd = 1
|D|

∀d∈D (7.14)

The weight wd of destructor d equals its selection probability. Ropke and Pisinger
propose to divide the search into segments and update the weights of the competing
methods at the end of each segment [61]. We propose a different paradigm. As
the search is a continuous process, we believe that it should not be discretized into
segments. Instead, we adjust the weights of the destructors after every iteration.
The used destructor method is rewarded according to its performance. If it yields a
new global best solution, a rewarding score of s = σ1 is granted. A destructor that
finds a non-improving but unvisited solution is rewarded with s = σ2. A destructor
that only finds a known solution is penalized with s = σ3. The new weight wx of the
used destructor x is calculated according to equation 7.15. Similar to Pisinger and
Ropke, we introduce a reaction parameter r∈[0, 1] which controls how sensitive the
weights follow the recent performance [58]. The weights of the destructors that have
not been used in the current iteration remain unchanged.

wx := wx(1− r) + rs if x was used (7.15)

Afterwards, we normalize all weights so that their sum equals 1 (7.16). In doing so,
we can directly derive the new selection probabilities from the weights. To do justice
to the fact that the suitability of a destructor might change during the search, we
reset the weights of all destructors to their initial values every 25 iterations.

wd := wd∑
d∈D

wd
∀d∈D (7.16)

Parameter tuning

We employ a similar parameter tuning approach as Ropke and Pisinger to assign
values to the parameters r, σ1, σ2 and σ3 [61]. At first, we assign a trial value to
each parameter that appears to be reasonable. Afterwards, we improve the initial
assignments by systematically varying the value of one parameter while fixing all
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other parameters at their current values. We define candidate values for each pa-
rameter and run benchmarks. The best candidate value is determined by assessing
the average deviation from the best known solution. We then fix the parameter
at this value and move on to the next parameter. We continue the process until
we have optimized all parameters. Ropke and Pisinger note that it would be
possible to repeat this process several times using the final results of the preceding
run as initial values in the succeeding run. However, like Ropke and Pisinger,
we refrain from doing this in our tuning [61].
To determine the best candidate value for a parameter, we assess both the deviation
in time and quality from the best known solution. The optimal parameter settings
are subject to the preferences of the user. Some users are more focused on time,
others on quality. We define two user profiles. The preferences for solution time and
quality are indicated by different weights. The first user has a high preference for
time. The weights in this profile are 0.8 for time and 0.2 for quality. The second
profile is defined complementary, using weights 0.2 for time and 0.8 for quality.
With these weights, we can aggregate the deviation in time and quality from the
best known solution and determine the overall best candidate value for each profile.
For both profiles, we start with the same set of trial values. We use the vector
(r, σ1, σ2, σ3) = (0.1, 0.3, 0.1, 0.0), which is derived from the tuning results of Ropke
and Pisinger [61]. Also, the candidate values are identical (Tab. 7.11). The only
difference lies in the way we aggregate the deviation in time and quality from the
best known solution. For the time-sensitive user, we place a higher weight on the
deviation in time, for the quality-sensitive user on the deviation in quality.

Table 7.11: Candidate values for the ALNS parameters

Parameter Candidate values

r 0.1 0.3 0.5

σ1 0.3 0.4 0.5

σ2 0.1 0.2 0.3

σ3 0.0 -0.1

Example: Let us illustrate the process of determining the optimized parameter
values with an example. Tab. 7.12 shows the duration of the improvement stage
and final objective value of our eight example instances given the three different
candidate values for the reaction parameter r. As r is the first parameter that
we optimize, the table is identical for both user profile. The best found time and
objective value for each instance is highlighted using a bold font. In the last row
of Tab. 7.12, we indicate the average deviation in time and quality from the best
solution for each r. We now use the weights of the user profiles to determine the
aggregated deviation, which is shown in Tab. 7.13. The minima in the rows of
Tab. 7.13 reveal the optimized value of the reaction parameter. A time-sensitive
user prefers a reaction factor of r = 0.1, a quality-sensitive favors r = 0.3.
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Table 7.12: Solving times and objective values given different reaction factors r

Solving time [s] Final objective value

Instance r = 0.1 r = 0.3 r = 0.5 r = 0.1 r = 0.3 r = 0.5

03-767x 234 435 267 1,489,659 1,307,760 1,407,920

05-737 185 214 298 500,715 485,971 466,190

07-757 1,095 1,008 1,053 3,933,895 3,928,002 3,937,980

28-777 1,000 1,377 1,376 1,942,965 1,706,680 1,706,115

03-380xt 759 730 775 3,512,704 3,520,273 3,510,846

05-380x 3,590 3,327 3,527 2,723,233 2,647,667 2,676,390

10-330/340xt 1,592 1,598 1,607 2,396,427 2,267,670 2,329,131

10-777x 1,345 1,657 1,497 6,331,917 6,231,717 6,261,513

Average deviation 0.0256 0.2036 0.1771 0.0569 0.0057 0.0152

Table 7.13: Aggregated deviation for both user profiles

Aggregated deviation

r = 0.1 r = 0.3 r = 0.5

Time-sensitive user 0,0319 0,1640 0,1447

Quality-sensitive user 0,0507 0,0453 0,0476
2

We present the optimized values for both user profiles in Tab. 7.14. We see that
the quality-sensitive user generally exploits the benefits of the adaptive framework
more explicitly. The user places a higher weight on the current performance and
his rewarding scheme is more pronounced. Especially, a higher reward is granted to
methods that find unvisited solutions (σ1, σ2), because they diversify the search and
promote to find better solutions in the long run. The time-sensitive user pursues in
some sense a counterproductive strategy. This user is not interested in placing high
weights on successful or diversifying methods. In doing so, the search is terminated
earlier, as our stopping criterion sets in when the improvement rate falls below
a threshold. Obviously, this behavior does not correspond to our interests. We
therefore assume a quality-sensitive user for our computational study in Chap. 8.

Table 7.14: Optimized parameter values for ALNS framework

Optimized values

Parameter r σ1 σ2 σ3

Time-sensitive user 0.1 0.3 0.1 0.0

Quality-sensitive user 0.3 0.5 0.3 -0.1

During our test runs, we noticed that the parameter tuning is subject to random fac-
tors. When running the same settings twice, we did not necessarily obtain the same
results. This is due to the stochastic elements in the ALNS algorithm. Nevertheless,
the general trend of our conclusions could be confirmed.
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Our computational study is divided into two parts. First, we describe how we
obtained the data for our test instances. In the second part, we analyze and evaluate
the performance of our adaptive large neighborhood search algorithm.

8.1 Generation of test instances

To prove the performance of our approach, the schedules of two major international
airlines are at our disposal. As the provided data sets from our airline partners are
incomplete, a number of measures are required to obtain evaluable test instances.
The first airline (Carrier One) operates five hubs, from which it serves 275 destina-
tions in 50 countries. On average, 3,450 flights are carried out every day using 710
aircraft of twelve different fleets. The airline provided us their complete Standard
Schedule data as defined by the International Air Transport Association (IATA),
including fleet assignment information. The second airline (Carrier Two) is a fast-
growing hub-and-spoke operator. Out of a single hub, 465 daily flights to 125 desti-
nations in 70 countries are offered. The airline owns a total of 211 aircraft of eight
different fleets and 15 subfleets. This airline provided us a detailed tail assignment
plan including scheduled checks for individual tails for a period of ten days. The
plan has been designed using their current best practice. The data also includes in-
formation about where and when the aircraft become available. However, the data
of both airlines withhold information about the flying and maintenance history of
the aircraft as well as tail-dependent restrictions. We also do not know the specific
maintenance programs of the airlines.
In total, we have created 220 test instances, 53 are based on the data of Carrier One
and 167 on the data of Carrier Two.

8.1.1 Initial positions of the aircraft

To generate test instances, we start by extracting all flights during a selected plan-
ning period from the schedule of an airline. The data of Carrier Two already provide
us with the information about the initial positions of the aircraft. The data of Carrier
One is lacking this information. We also do not know how many aircraft are required
to perform the schedule. However, as we assume that operations are according to
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plan and all flights are carried out, we can calculate the required number of aircraft
at every airport at the beginning of the planning period. We place the smallest
number of aircraft at every airport so that during the entire planning horizon the
aircraft flow balance never falls below zero.

8.1.2 Maintenance program and capacity

The data from our airline partners does not include any information about their
individual maintenance programs. We therefore create a standard program that is
based on the regulations of the FAA. We assume that there are three check types
to consider, which vary in scope, frequency, duration and cost.
All aircraft are required to perform a Daily Check every 48 calendar hours. A more
comprehensive Weekly Check is due every 168 calendar hours. Finally, we consider
an A-Check. The interval limits of the A-Check are fleet-dependent and defined in
terms of accumulated flight hours and cycles. We find target values in the MRBR of
the fleets. For example, the A-Check for a Boeing 757 is due after 500 flight hours
or 300 flight cycles [16]. We suppose an explicit check hierarchy, stating that a Daily
Check is included in a Weekly Check and a Weekly Check in an A-Check.
The scheduling of less frequent, regular maintenance checks, e.g., C-Check and D-
Check, is not considered in tail assignment. We model these checks as preassigned
maintenance activities for individual tails. Nevertheless, the maintenance hierarchy
still applies, which means that they include all hierarchically lower checks.
We estimate the durations of the checks from the tail assignment plan of Carrier Two
and the experience of experts at INFORM GmbH. We assume that a Daily Check
requires one hour of ground time, a Weekly Check two hours and an A-Check six
hours. In addition, we consider buffer times of 20 minutes prior and after a check. Of
course, all these parameters can easily be adjusted by the user. The check durations
are also used as reference point when assigning a cost parameter to each check.
Carrier Two performs all maintenance activities at its hub. For Carrier One, on
the other hand, we only know where A-Checks are performed (hangar bases). We
assume that Weekly Checks are performed at the same stations. Daily Checks, in
contrast, do not require extensive tools and materials. They can be done at most
larger airports. For our tests, we assume that they can be performed at any hangar
base but also at stations that are served at least four times a day.
We assume that Daily and Weekly Checks are performed at the ramp of the airport.
Only A-Checks and eventually some prescheduled maintenance activities require a
hangar. The data of Carrier One includes information on the maximum number of
simultaneously performed A-Checks at the maintenance bases. We use this number
as reference for available hangar positions. The data of Carrier Two does not include
capacity information. We assume that the hangar space at its hub is restricted to
five positions. We chose this number, because it equals the capacity at the largest
station of Carrier One.
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8.1.3 Initial maintenance counters

The data of both carriers withhold information about the initial maintenance coun-
ters of the aircraft. We therefore have to generate these parameters randomly. For
every aircraft t∈T , we first determine the relevant maintenance checksMt. Then, we
create initial counters inittmq for all criteria q∈Qm of the determined checks m∈Mt.
The initial counters are randomly generated integer numbers, which are drawn from
different uniform distributions. For the flight hours criterion, we use the uniform
distribution U(0,maxmq−25), for the flight cycles criterion U(0,maxmq−6), and for
the calendar hours criterion U(0,maxmq − 48). We incorporate buffers in the initial
counters to guarantee that the aircraft are not stranded at their initial positions.
Also, we make sure that the generated counters are consistent. The initial Daily
Check counter of an aircraft has to be equal or lower than the Weekly Check counter.
If a maintenance check depends on multiple criteria, like the A-Check, the initial
counters for all criteria should represent a similar flying history of the aircraft. For
example, it would not make sense if the counter of the flight hours criterion is close
to the allowed limit while the flight cycles counter is almost zero.

8.1.4 Preassigned activities and curfews

Creating instances with preassigned activities and curfews is risky, because a ran-
dom definition might turn the problem infeasible. To guarantee solvable instances,
we only use the data of Carrier Two. This airline provided us a feasible tail assign-
ment plan. However, we do not know which activity-aircraft assignments have been
obligatory. Our approach is as follows: based on the provided plan, we determine
heavy maintenance checks, e.g., D-Checks, and assign them to the corresponding
aircraft. We do the same for irregular maintenance activities, e.g., the repair of a
seat. All other maintenance activities are not preassigned, because we want them
to be scheduled by our optimizer.
The definition of preassigned and forbidden flights is done differently. We randomly
select flight-aircraft assignments from the provided plan and declare them to be
preassigned. Similarly, we select flight-aircraft assignments that are not part of the
plan to generate curfews. We create preassigned and forbidden activities so that no
more than 20 percent of the aircraft are affected in a one-week planning horizon.

8.2 Computational results

In this section, we show computational results and evaluate the performance of our
ALNS algorithm. We again employ the non-commercial MIP solver SCIP 3.1.1. All
coding is done using Python 3.4 programming language. The test runs are carried
out on the same system as the evaluation runs described in Chap. 7.
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8.2.1 Performance evaluation

We run benchmarks on all 208 instances for which we were able to generate initial
solutions within 30 minutes. Tab. 8.1 shows the computational results for our eight
example instances. The table shows the time requirement to create the initial solu-
tion, the required time for the improvement stage and the total solving time. Due to
data handling and preprocessing, the time of the improvement stage can be longer
than the time limit of 30 minutes. Tab. 8.1 also shows the effective stopping criterion.
Instead of an inexpressive objective value, we present a parameter that indicates the
quality of the final solution. It specifies the timeliness of maintenance activities. If
the value equals 100 percent, all checks are done right on time without wasting any
of the allowed intervals. A value of 90 percent means that on average ten percent of
the allowed intervals are not used. A solution quality of 100 percent is the theoretical
limit which is not always achievable, e.g., for some instances, the flight schedule does
not allow to perform a Daily Check after exactly 48 hours for all aircraft.

Table 8.1: ALNS solution of example instances

Instance Init.

time [s]

Impr.

time [s]

Total

time [s]

Stopping

criterion1

Solution

quality

03-767x 0.3 191 191 R 93,9%

05-737 14.0 1222 1,236 R 93,7%

07-757 2.4 893 895 R 91,4%

28-777 1.7 1,537 1,538 R 86,8%

03-380xt 0.3 284 285 R 94,9%

05-380x 7.8 1,399 1,407 T 85,7%

10-330/340xt 5.0 3,784 3,789 T 88,2%

10-777x 18.0 1,659 1,677 T 89,0%
1R: rate of improvement, T: time limit

Solving time: Our results confirm the good performance of our algorithm. The
average solving time across all 208 instances is 9 minutes and 50 seconds. Fig. 8.1a
shows the distribution of solving times. Half of the instances is solved in less than
five minutes, more than 70 percent in less than 15 minutes and 95 percent in less
than half an hour. Only instance 10-330/340xt requires more than 45 minutes to be
solved (see Tab. 8.1).

Solution quality: The achieved solution quality is compelling as well. The average
value of the solution quality across all 208 instances is 91 percent. As Fig. 8.1b
highlights, ALNS achieves solution qualities of more than 90 percent for more than
60 percent of the instances. A solution quality of at least 85 percent is achieved for
nearly 95 percent of the instances. Only for two instances, the solution quality is
slightly below 80 percent.
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Figure 8.1: Performance of ALNS algorithm across 208 instances

Effective stopping criterion: As we have intended, a low rate of improvement is
the effective stopping criterion for the large majority of instances (76%). For the
other instances, the iterations are stopped by the time limit criterion (16%) or when
all destructors propose to open assignments that are already included in the tabu
list (8%). The iteration limit is never the effective stopping criterion. Apparently,
the limit of 500 iterations has been set too high.

8.2.2 Destructor performance evaluation

We also seek to evaluate the performance of our destructor methods. The evalua-
tion is challenging, because the performance depends on many random factors. The
success of a particular method in an iteration is not only subject to its own perfor-
mance, but also to the preceding selection order and the random choice of released
assignments. We therefore can only provide a vague reference about the benefits of
the different destructor methods.

We one by one deactivate one destructor method and run benchmarks with the
reduced set of destructors. The assessment of the difference in achieved solution
time and quality is our indicator for the benefit of a method. Fig. 8.2 illustrates our
findings.

Our analysis shows that all destructors are legitimate. When deactivated, the mean
solution quality decreases for all destructors. The largest decrease is measured
when deactivating the overnight destructor (-1.6%), the smallest for the time-space
destructor (-0.2%). On the other hand, the time-space destructor is capable of
reducing solving times of the ALNS algorithm. When deactivated, the solving times
increase by 14.3 percent. A similar benefit is observed for the utilization balancing
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and multi route destructors. On average, we measure 9.5 percent higher solving
times when deactivating the utilization balancing destructor and 1.8 percent when
deactivating the multi route destructor. For the other two destructors, we measure
a decrease in solving times when deactivated.
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Figure 8.2: Destructor benchmarking

The time-space, utilization balancing and multi route destructors improve solution
quality while reducing solving times. For the other destructors, the overall evaluation
is not that clear. It is subject to the preferences of the user, because they improve
solution quality, but at the same time increase solving times. As our focus is mainly
on solution quality, all destructor methods appear to be reasonable.

8.2.3 Comparison to exact approach

In the last part of our computational analysis, we want to benchmark the perfor-
mance of our ALNS algorithm in contrast to an exact branch-and-bound approach,
i.e., we solve the main MIP as an optimization problem using a MIP solver. The
exact approach is capable of finding the globally optimal problem solution. As the
solving times are too long to run extensive benchmarks, we focus the comparison on
the smallest 24 instances having less than 50 scheduled activities.
The data points in Fig. 8.3 indicate the solving times using the ALNS algorithm and
the exact approach in reference to the number of scheduled activities. We use the
results of the exact approach to prove optimality of our ALNS results. Filled data
points indicate proven optimal solutions. Unfilled data points are either not optimal
or the exact approach was not terminated within two hours.
The chart shows that ALNS is capable of finding the optimal solution for many
of the analyzed instances. For the larger instances, we are just not able to prove
optimality, because the run times of the exact approach are too long.
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The dashed/ dotted lines are exponential trendlines. We see that the scatterting of
the data points in reference to the trendlines is quite large, especially for the exact
approach. We can conclude that the number of scheduled activities is not the only
determinant to increase solving times. Other factors to consider are the numbers of
fleets and aircraft in the schedule as well as the number of prescheduled activities.
Nevertheless, the results prove that the solving times using the exact approach rise
drastically with increasing size of the schedule. The solving times using the ALNS
algorithm, on the other hand, rise a lot slower. Only for instances with less than 20
scheduled activities, the exact approach is faster than the ALNS algorithm.

���

�

��

���

����

�����

� �� �� �� �� ��

�
�
�
�
��
�
�
�	



��
�

����������� ��	
�
	
��

�	
� �
���

�
�������	
�� �
�������
����

Figure 8.3: Solving times of ALNS algorithm and exact approach

The comparison in Fig. 8.3 is not entirely fair. In contrast to ALNS, the indicated
times for the exact approach include the time requirement to prove optimality. Also,
the exact approach provides more information, e.g., an assessment of the optimality
gap. In Fig. 8.4, we provide a different comparison. We evaluate the solving time of
the ALNS algorithm against the time needed for the exact approach to find a feasible
solution of at least equal quality. The ratio of the required times is illustrates in the
chart. A ratio below 1 means that the exact approach finds a solution that is equal
or better than the final solution of ALNS faster than the ALNS algorithm. A ratio
above 1 support the theory that ALNS is superior in quickly finding good solutions.
The results show that the exact approach is competitive or even superior on the
smallest instances having less than 30 scheduled activities. However, these instances
are not very relevant in practice. On larger instances, the ALNS algorithm outper-
forms the exact approach by several orders of magnitude.
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Figure 8.4: Fair comparison of ALNS and exact approach

In Fig. 8.5, we illustrate the typical search progress of the ALNS algorithm and the
exact approach. The chart shows the evolution of the best found objective value
for the largest of the 24 instances having exactly 50 scheduled activities. For this
instance, the final solution of ALNS and the solution of the exact approach after the
two-hour time limit are identical. The chart confirms the assumption that ALNS is
a reasonable strategy for searching good tail assignment solutions in limited time.
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Figure 8.5: Progress of ALNS and exact search on instance with 50 activities
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9 Conclusion

In the last chapter of this thesis, we summarize our work (Sec. 9.1) and provide an
outlook on future research possibilities (Sec. 9.2).

9.1 Summary

In this research, we have looked in detail into the tail assignment problem of airlines.
The problem consists of creating operational feasible routes for individual aircraft
to cover all flights in a schedule. We have described the real-world problem as well
as its context in the airline planning process and summarized the relevant literature.
The tail assignment process of airlines is not optimized satisfactorily yet. Most re-
lated studies focus on the tactical aircraft maintenance routing problem that aims
to create generic routes for anonymous aircraft providing a maximum number of
maintenance opportunities. A maintenance opportunity does not indicate whether
maintenance tasks are actually performed or not. Therefore, these studies are un-
suitable for operational maintenance planning and do not contribute to reduce the
maintenance effort of airlines. Tail-dependent restrictions, like preassigned activities
and curfews, are neglected. Also, only the most frequent maintenance requirements
are considered, since the scheduling of less frequent checks depends on the mainte-
nance and flying history of the individual tails.
In contrast, the operational tail assignment problem aims to provide results for real-
world implementation. Nevertheless, the majority of existing studies is incapable of
capturing in detail the extensive maintenance requirements and their complex in-
terdependencies. Most researchers employ aggregated, simplified maintenance rules
that do not reflect sufficiently the real-world situation.
We have developed a comprehensive mathematical model that is able to capture in
detail all relevant objectives and constraints of the real-world tail assignment prob-
lem. The model is based on a connection network. The objective is to optimize
maintenance planning by minimizing unnecessary and untimely maintenance activ-
ities. Additionally, the user can set individual cost penalties on connecting any two
activities by a particular tail. Our tail assignment model can be solved for several
fleets simultaneously and thus enables to consider the limited availability of com-
mon resources, e.g., hangar space. By integrating key fleeting decisions, we allow
airlines to optimize fleeting and routing decisions simultaneously close to the day of
operation.
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As solution methodology, we have introduced an adaptive large neighborhood search
algorithm. We have shown how our math-heuristic framework can be designed to
quickly generate good problem solutions. Our algorithm consists of two stages.
First, we create a feasible initial solution for our comprehensive model. Second,
we iteratively improve the given solution by alternately releasing and reoptimizing
different parts of the assignments using a MIP solver.

We have designed and evaluated different methods to create a feasible initial solution
for the tail assignment problem. Besides the obvious approach to solve the compre-
hensive MIP as pure feasibility problem using a MIP solver, we have investigated
heuristic approaches. Furthermore, we have developed a customized row generation
framework in conjunction with a specialized heuristic. In this approach, we employ a
restricted problem formulation based on a time-space network. The restricted prob-
lem is very compact and can be solved quickly using a MIP solver. The provided
partial solutions are heuristically completed. We create Benders cuts to rule out
partial solutions that cannot be completed to feasible solutions. The cuts are added
to the restricted problem before it is resolved. Finally, we obtain a feasible initial
solution for the tail assignment problem after running through several iterations.

Extensive benchmarking tests have shown that the last approach is superior to
the other ideas of how to generate a feasible initial solution for the tail assignment
problem. We have developed several preprocessing and model enhancement methods
to further reduce problem sizes and solving times. For 208 out of 220 test instances
with up to 180 aircraft and 2,500 flights, we are able to generate start solutions in
less than 30 minutes. For 189 of the test instances it took less than ten seconds.

In the improvement stage, we employ several competing destructor methods in an
adaptive framework. The probability that a particular method is selected is based
on its performance in the past iterations. In doing so, we achieve that promising
methods are used more often than unsuccessful methods. The search for improving
neighbors is stopped when an acceptable solution quality is achieved, an upper time/
iteration limit met, or when only marginal improvements have been realized in the
past iterations. We have shown how the adaptive framework can be tuned according
to the preferences of the user.

In our computational study, we have compared the performance of our algorithm to
an exact approach on a couple of small-sized instances. The results confirm that our
algorithm outperforms the exact approach on instances of practically relevant size by
several orders of magnitude. Our algorithm is able to find very good solutions for the
large majority of the instances in less than 15 minutes. The timeliness of the sched-
uled maintenance activities is satisfying. For more than 60 percent of the instances,
we plan maintenance so that less than ten percent of the allowed intervals between
two consecutive checks are wasted. Even in the optimal solution, a perfect utiliza-
tion of the allowed intervals is seldom achievable. The good performance proves that
our adaptive large neighborhood search algorithm is an appropriate methodology to
derive high quality tail assignment solutions in acceptable time frames.
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9.2 Future work

The development of our tail assignment optimizer is not finalized yet. There are
still many possibilities to improve performance in both solution time and quality.

Initial solution stage

A great potential to speed up solving times in the initial solution stage is the de-
sign of the heuristic to derive the routings in multi aircraft groups. When using a
more intelligent heuristic, the obtained routings are less likely to be maintenance
infeasible. In consequence, the required number of iterations is reduced and the
disaggregation of commodities avoided. Our priority heuristic is far more intelligent
than the naïve FIFO rule. However, the implemented heuristic could be further en-
hanced. An improved heuristic could be able to look several activities into the future
routing sequence to evaluate the impact of local decisions. Our priority heuristic
only tries to take locally reasonable decisions by looking one routing step ahead. It
is also imaginable to employ several heuristics, and use information about conflicts
as knowledge in subsequent algorithms. As the time requirement of heuristics is
generally extremely low, the total iteration time would only marginally increase,
even when running multiple heuristics consecutively.
In addition, the communication with the MIP solver during the row generation iter-
ations offers great room for improvements. Currently, we employ a non-incremental
communication via LP files. An incremental communication should reduce solving
times considerably, as the solver would not need to reconstruct the problem in every
iteration, and also it could use the previous solution or LP basis as warm start.
It would also be interesting to develop and evaluate other solution methodologies
for the initial solution stage. In particular, this could be a constraint programming
approach. Grönkvist reports good results in his studies on using constraint pro-
gramming to generate a feasible initial solution [29, 30]. A comparison with our row
generation framework on an equal set of instances would be a useful analysis.

Improvement stage

Although we have spent the largest proportion of our research effort on optimizing
the initial solution stage, the improvement stage features interesting research possi-
bilities as well. Of course, many other, more intelligent destructor methods could be
designed. In addition, alternative repair methods could be implemented. A promis-
ing and simple idea would be to work with multiple objective functions. There are
some intermediate objectives that might support detecting promising areas of the
solution space and achieving better results in the long run. For example, we could
implement an utilization balancing objective, which is randomly used in some itera-
tions instead of the real objective. Balancing utilization distributes workload evenly
on all commodities and in turn might result in better routing and maintenance plans.
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The adaptive framework could be reoptimized as well. In our parameter tuning,
we only defined a few candidate values per parameter and only two user profiles.
It would be interesting to extend the evaluation to larger sets of candidate values
given a larger pool of user profiles.

Parallelization of subproblems

Another great potential to increase the performance of our algorithm would be to
run several subproblems in parallel on separate processors. A prerequisite for par-
allelization is that the subproblems are not overlapping. Parallelization only works
when all processors work on completely independent subproblems. A promising
and obvious possibility to use parallelization is the maintenance reduction stage, in
which we call the single route destructor one after another for every tail to remove
superfluous checks from the initial routes of the aircraft. As this destructor does
not allow the flight sequences to be changed, the subproblems fulfil the requirement
to be completely independent. It would be possible to transform the sequential
procedure on one processor to a parallelized procedure on multiple processors, each
solving the subproblem of an individual tail.

Schedule decomposition

We also discovered that the schedules of some fleet consist of separate subschedules.
For example, the AT7 fleet of Carrier One is used to perform short feeder flights to
and from the hubs. All aircraft of the AT7 fleet are explicitly assigned to a single
hub. The fleet does not perform any connecting flights between the hubs and the
served destinations are disjoint sets for every subschedule. Given this structure, we
can decompose the flight schedule of a fleet in subschedules for smaller subfleets.
By successively solving the decomposed problems for every subfleet, we can achieve
better results in smaller time frames without losing any valid solution.

Disruption recovery

A further field of research would be to extend the applicability of our optimizer on
the disruption recovery scenario. In this scenario, it is likely that the initial positions
and conditions of the aircraft do not allow all activities to be performed. But also
in the standard tail assignment scenario, it could be beneficial to allow unassigned
activities. For example, when the rules specified by the user are too strict or in
case an airplane becomes unavailable for a long time period [28]. To avoid that the
entire problem becomes infeasible, we could allow activities to be left unassigned
and instead incorporate a high penalty cost for any uncovered activity.
During our research, we already started to study this setting. To allow activities to
be left unassigned, our main model requires slight modifications. The arc set O is
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enlarged by special arcs in the form of 〈i, i, r, g〉 allowing an activity to be connected
to itself. These arcs guarantee flow balance, even when activities have been left
unassigned. But, as we want to minimize the occurrence of unassigned activities,
we consider a very high penalty cost C ′

iirg in our objective function.
Allowing activities to be left unassigned comes along with advantages and disad-
vantages. A major advantage is that there is now an obvious feasible start solution,
namely the situation in which no activity is performed. We therefore could eliminate
the entire initial solution stage and directly start the improvement iterations from
this solution. But, as not performing any activity is the worst possible solution for
an airline, we would have to implement destructor and repair methods that are able
to quickly assign as many activities as possible to the routes of the aircraft. A more
reasonable approach is probably to keep an initial solution stage, in which a better
start solution is generated. The possibility to leave activities unassigned is still an
advantage, as it enables us to create feasible solutions from any partial solution.
A major drawback of allowing activities to be left unassigned is that most of our
preprocessing methods are not applicable anymore. Since we do not know in advance
which activities are performed and which are left unassigned, we cannot compute
the aircraft flow a priori. We thus are not able to eliminate connection arcs that
violate the aircraft flow balance. Aggregating activities is only possible if we assume
that either both activities are performed or left unassigned. In general, problem
sizes will be larger than when all activities have to be performed.
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