
Structure and Characterization of Popular
Matchings

Bachelor Thesis

Oliver Scheel

RWTH Aachen University, Germany
Lehrstuhl für Operations Research

Advisors:

Universitätsprofessor Dr.rer.nat.habil. Marco Lübbecke
Dipl.-Math. Florian Dahms
Universitätsprofessorin Dr. rer. nat. Britta Peis

Submission Date: 09-29-2014

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Aachen, September 29th, 2014

2

Contents

1 Introduction 5

2 A History of Matchings 7

3 An Introduction to Popular Matchings 9
3.1 Preliminaries . 9
3.2 Strictly Ordered Preference Lists . 9

3.2.1 Characterizing Popular Matchings Without Ties 10
3.2.2 Algorithmic Results . 11

3.3 Preference Lists With Ties . 13
3.3.1 Characterizing Popular Matchings With Ties 13
3.3.2 Algorithmic Results . 15

3.4 Usage in the Capacitated House Allocation Problem 17
3.4.1 CHA . 17
3.4.2 CHAT . 18

4 The Switching Graph 19
4.1 Structure and Properties of the Switching Graph 19
4.2 Algorithms That Exploit the Structure . 23

4.2.1 Counting Popular Matchings . 24
4.2.2 Enumerating Popular Matchings 24
4.2.3 Random Popular Matchings . 25

5 Cheating Strategies 26
5.1 Generalizing the Switching Graph . 27

5.1.1 Properties of the Switching Graph 28
5.1.2 Generating Popular Pairs and Counting Popular Matchings 31

5.2 Properties of the Cheating Instance . 32
5.3 The Modified Instance G̃ . 36
5.4 Definition of the Strategies for Single Manipulative Applicants 38

6 An Alternative Characterization of Popular Matchings 42

7 Counting Instances that Allow Popular Matchings 43
7.1 Preliminaries . 43
7.2 A Combinatorial Formula . 45
7.3 Estimating the Number of Popular Matchings 46

8 Using Linear Programs in the Popular Matching Problem 48
8.1 The Popular Matching LP . 48
8.2 The Popular Matching Polytope . 50

3

9 The Least-Unpopularity Factor 52
9.1 Calculating the Least-Unpopularity Factor 52
9.2 NP-hardness of Finding Least-Unpopularity Matchings 54

10 Subset Maximal Popular Matchings 58
10.1 Complexity of Finding a Subset Maximal Popular Matching 58

11 Conclusion 59

12 Acknowledgments 59

References 60

13 Appendix 62
13.1 Implementation . 62

13.1.1 Overview . 62
13.1.2 Solver for Instances Without Ties 65
13.1.3 Solver for Instances With Ties . 68
13.1.4 Creating the Switching Graph . 71
13.1.5 Enumerating Popular Matchings 73
13.1.6 LP Solver . 75
13.1.7 Enumerate Instances of a Given Size 76

4

1 Introduction

Matchings are present in many common tasks: Be it the matching of applicants to jobs,
the matching of persons to housing opportunities or the matching of students to tuto-
rials. But of course the applications extend much further, matchings are essential in
many complex mathematical and other scientific problems. Luckily, the case of finding a
simple maximum matching is fairly easy, however, many extensions have been proposed
and examined. Most center on the aspects fairness, robustness and complexity.
This work covers the topic of popular matchings, which have recently been studied quite
extensively. They are relatively robust against manipulation and use a very natural
criterion regarding fairness: A matching M is popular if no other matching beats it by
majority vote of the participants. Furthermore, popular matchings can be calculated
efficiently. One downside though, is the fact that not every instance allows a popular
matching.
The main goal of this work is to give an overview over most of the topics regarding
popular matchings known and discussed so far.
Section 2 first gives an overview over different matching criteria as well as some results
regarding popular matchings. Then in Section 3, an introduction to popular matchings
is given. Here, based on [1], a characterization of popular matchings is worked out,
which can be used to efficiently find popular matchings for an instance. In the basic
case we consider one sided preferences, where applicants get matched to posts, with each
post being able to be matched to at most one applicant. Furthermore, in this section
the case, where posts have a greater capacity than one, is considered, which leads to
the capacitated house allocation problem. Of course this is again solved using popular
matchings. In Section 4 an interesting graph structure, the switching graph as defined in
[2], is examined. Using this, many problems related to popular matchings can be solved,
like counting and enumerating all popular matchings for an instance. In Section 5 it is
shown that popular matchings are not strategyproof, that means there exist possibilities
for applicants to manipulate the outcome to their advantage. In this section, strategies
for single applicants are listed, who have total knowledge of the preferences of all others,
and use this to improve their outcome ([3]). In Section 9, a relaxation of the popular
matching criterion is presented, in order to always be able to chose one ”best” matching,
also if no popular matching exists. This uses the so called least-unpopularity factor and
turns out to be NP-complete ([4]).
Another part of this work consists of results which are to my knowledge not yet known
or investigated. In Section 6 an alternative characterization of popular matchings is pre-
sented. Amongst others this could be used to achieve a combinatoric formula to count
the number of instances allowing a popular matchings. An attempt is described in Sec-
tion 7, but this number could only be approximated here. However, the approximation
is very accurate. In Section 8 linear programs are used to formulate popular matchings.
First, just for describing solutions to the problem of finding popular matchings. The
goal was then to extend this to defining a subgraph polytope consisting of all vertex
combinations allowing a popular matching. This could not be done in this context, but

5

a negative result showing what is not sufficient for this is given. In Section 10 another
relaxation of the popular matching definition is shown, called the subset maximal pop-
ular matching. Here a subset of the applicants can be neglected, the goal is to find a
minimal subset such that a popular matching exists for the remaining applicants. This
problem is also in NP, but the lower bound remains unknown. Finally, a .Net program
was written which implements most of the algorithms and principles described here.

6

2 A History of Matchings

Let us limit ourselves here to matchings in bipartite graphs, say between men and women.
Although the basic matching problem is simple, when allowing the participants to voice
preferences about their matchings, we find a problem we cannot solve mathematically:
Every matching makes some participants more happy than others, and this can be
the other way around in other matchings. So the question arises: Which matching is
”the best”? Of course, if there is a way to make everyone happier in another matching
compared to the current one, we should do this - this is a Pareto improvement. However,
there may exist many Pareto efficient matchings, and we have to decide between these.
Therefor, we need some kind of optimality criterion. Of course, it should be ”fair” in
some sense, and be robust against manipulations. That is, it should be hard for the
participants to get better off by lying about their preferences.
Gale and Shapley were among the first to consider this, in 1962 they wrote about fair
college admissions as well as matching men and women in pairs, which is known as the
marriage problem ([5]). They introduced the concept of stable matchings: A matching
is unstable, if there exist two people of opposite sex, who prefer to be matched to each
other rather than to their current partner. This is a very useful and needed definition, as
in an unstable matching people could oppose the proposed one, which might be against
the purpose of a matching and could leave some people very bad off.
Other good criteria are for example rank-maximal or maximum utility matchings. These
value that matching most, in which for example the sum of the rank numbers or the sum
of some utility function for each participant is greatest. However, one has to be careful
here about cheating, one prominent example being the MIT. They once assigned students
to dormitories by minimizing the sum of the cubes of the rank numbers. Students then
could improve their chances of getting their true first choice by inserting other highly
popular dormitories near the top of their preference list ([4]).
The concept of popular matchings was first introduced by Gärdenfors in 1975 in the
context of the stable marriage problem ([6]). A matching M is popular if and only if
there is no other matching M ′, such that the number of people preferring M ′ over M
is greater than the number of people preferring M over M ′. Not every instance though
allows a popular matching and if it does, there may exist multiple ones.
This concept found no more consideration until Abraham and Irving proposed the first
polynomial time algorithm for it in 2005 ([1]). In the years after, many papers regarding
popular matchings have been published. Manlove and Sng introduced a capacitated
version ([7]) in 2006, Abraham and Kavitha also in 2006 a dynamic version, where
agents can enter and leave the market ([8]). Kavitha and Nasre ([9]) further introduced
different optimality criteria among popular matchings. Then we do not simply wish to
find any popular matching, but if there exist multiple ones, we want to chose one which
is best with respect to some criterion. Kavitha and Nasre defined for example rank-
maximal popular matchings and ”fair” popular matchings. In 2008 a structure with
interesting properties regarding popular matchings, the switching graph, was introduced
by McDermid and Irving ([2]). This concept allows the characterization of dependencies

7

between single popular matchings and helps to solve some problems related to popular
matchings. Based on this, in 2013 finally a paper was published by Nasre ([3]), which
defines cheating strategies for single applicants using the switching graph.

8

3 An Introduction to Popular Matchings

3.1 Preliminaries

An instance of the popular matching problem (POP-M) consists of a set of applicants
(A) and a set of posts (P). Every applicant has a preference list, describing how high
he regards the different posts. These posts are acceptable for him. The highest rank is
1, which means, the applicant prefers this post above all others, the second highest rank
is 2 etc. Multiple posts can have the same rank in a preference list.
A matching M in a POP-M instance is a set of applicant-post pairs (a, p), such that p
is acceptable for a and each a ∈ A and p ∈ P appear in at most one pair. M(p) denotes
the applicant assigned to p. An applicant a prefers a matching M ′ to the matching M
if either a is assigned to a post in M ′ and not assigned to a post in M , or he is assigned
to posts in both matchings but prefers M ′(a) over M(a).
A matching M ′ is more popular than a matching M , if the number of applicants who
prefer M ′ to M exceeds the number of applicants who prefer M to M ′. A matching is
popular if there is no other matching which is more popular.
The following sections are based on [1], wherein we will give useful lemmas which help
us to characterize and find popular matchings efficiently. We will do this first for the
case where no ties are allowed in the preference lists, and then for the case where ties
are allowed.
For simplicity, for each applicant we introduce a unique last resort l, connected to the
applicant with the lowest rank. This way, every applicant can be assigned to a post,
some are just matched to their last resort. It should be clear that not for every instance
a popular matching exists, as the ”more popular” relation is not acyclic. In the following
instance for example, where the preference lists are denoted next the respective appli-
cants, no popular matching exists: That is, because in each matching we can denote the
applicant matched to p1 to p3 and then promote the two other applicants:

a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

When examining the runtime, we will denote by n the number of applicants and posts,
and by m the sum of the lengths of all preference lists.

3.2 Strictly Ordered Preference Lists

We begin with an analysis of popular matchings for the case that the preference lists
need to be strictly ordered. This will turn out to be slightly easier than the general
case, we will discuss it to give some intuition for the latter. Like is shown in [1], it turns
out that popular matchings for this situation can be found in linear time, which is a bit

9

of a surprise, since by the general definition one might suspect that all other possible
matchings had to be calculated.

3.2.1 Characterizing Popular Matchings Without Ties

For each applicant a let f(a) denote his first-ranked post on his preference list. Any
such post we will call an f-post. Let f(p) be the set of applicants for which p is their
first-ranked post. The following lemma is a start towards the finding of sufficient criteria
to define popular matchings:

Lemma 1. ([1]) Let M be a popular matching. Then for every f-post p, (i) p is matched
in M , and (ii) M(p) ∈ f(p).

Proof. ([1]) Suppose some f-post p is unmatched. We could promote any applicant from
f(p) to p, thus creating a more popular matching, which is a contradiction. Otherwise
suppose every f-post is matched, but some f-post p is matched to some applicant a,
such that a 6∈ f(p). Select any applicant, say a1, from f(p). Let a2 = M(p) and
a3 = M(f(a2)) (a3 is well defined because all f-posts are matched M). When demoting
a3 to l(a3), promoting a2 to f(a2) and promoting a1 to p, we again get a more popular
matching.

For every applicant a, let s(a) denote the first non f-post on his preference list and call
any such post an s-post. Note that for every applicant one s-post has to exist due to the
introduction of l-posts.
In the next two lemmas we will show that in every popular matching applicants can only
be matched to their f- or s-post.

Lemma 2. ([1]) Let M be a popular matching. Then for every applicant a, M(a) is
never strictly between f(a) and s(a).

Proof. ([1]) Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
That means, M(a) is an f-post. Because of Lemma 1, for every f-post p, M(p) ∈ f(p),
contradicting the assumption that M(a) is not f(a).

Lemma 3. ([1]) Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a).

Proof. ([1]) Again suppose for a contradiction that M(a1) is worse than s(a1). If s(a1)
is unmatched, we can promote a1 to s(a1), constructing a more popular matching. Oth-
erwise, let a2 = M(s(a1)) and a3 = M(f(a2)). Note that a2 6= a3, because f- and s-posts
are disjoint. We then can construct a more popular matching by promoting a2 to f(a2),
promoting a1 to s(a1) and demoting a3 to l(a3).

10

Thus we already have derived an easy but important classification of popular matchings:

Lemma 4. ([1]) A matching M is popular iff
(i) every f-post is matched, and
(ii) for every applicant a, M(a) ∈ {f(a), s(a)}.

Proof. ([1]) By the previous lemmas we already know that, if a matching is popular, it
satisfies (i) and (ii). Now we have to show the reverse. Let M be a matching satisfying
(i) and (ii) and suppose for a contradiction that there exists a matching M ′, which is
more popular. Let a be any applicant which prefers M ′ over M . Thus, he has to be
matched to his f-post p in M ′, and to his s-post in M . But since all f-posts have to be
matched, p has to be matched in M too, say to a′, with p = f(a′) (because of condition
(ii) and the fact that f- and s-posts are disjoint). Thus a′ prefers M over M ′, and this
way for any applicant preferring M ′ we can find an applicant preferring M , contradicting
the fact that M ′ is more popular.

3.2.2 Algorithmic Results

Based on this we can specify Algorithm 3.1 ([1]), whose correctness is immediately proven
by Lemma 4. We just have to remark, that after the termination of the loop all f-posts are

Algorithm 3.1 Algorithm for the Popular Matching Problem Without Ties

1: Popular Matching (G = (A ∪ P,E))
2: G′ := reduced graph of G
3: if G′ admits applicant complete matching M then
4: for all f-post p unmatched in M do
5: Let a be any applicant in f(p)
6: Promote a to p in M
7: end for
8: return M
9: else

10: return ”no popular matching”
11: end if

matched, because every applicant has a unique f-post and these are disjoint from s-posts.
Let us look at the runtime, as linear time is not obvious yet. It is clear though that the
reduced graph of the instance can be constructed inO(m+n). The loop also runs in linear
time collecting the list of applicants in f(p) for any p during the construction. It remains
to show that the checking for an applicant complete matching can be done in linear
time. Using a standard approach, e.g. finding a maximum-cardinality matching with
the Hopcroft-Karp algorithm and then checking for applicant-completeness, takes super-
linear time, namely O(n3/2). Therefore we use the Algorithm 3.2 ([1]). In that algorithm
first all posts with degree 1 are matched to their corresponding applicant. Because these

11

Algorithm 3.2 Algorithm for Checking for an Applicant-Complete Matching

1: Applicant-complete matching (G′ = (A ∪ P,E′))
2: M := ∅
3: while some post p has degree 1 do
4: a := unique applicant adjacent to p
5: M := M ∪ {(a, p)}
6: G′ := G′ − {a, p}
7: end while
8: while some post p has degree 0 do
9: G′ := G′ − {p}

10: end while
11: if |P | < |A| then
12: return ”no applicant-complete matching”
13: else
14: M ′ := any maximum-cardinality matching of G′

15: M ∪M ′
16: end if

posts are matched and have degree 1, they cannot appear in any further augmenting
path and we can remove them. This can obviously be done in linear time. Next, all posts
with degree 0 are removed, so that all posts have degree at least 2, while all applicants
still have degree 2. Now, if |P | < |A|, by Hall’s marriage theorem there cannot be an
applicant-complete matching. Otherwise |P | ≥ |A|, and 2|P | ≤

∑
p∈P deg(p) = 2|A|, so

|P | = |A| and all posts have degree exactly 2. Therefore, G′ decomposes into a set of
disjoint cycles and we can simply walk over these cycles, choosing every second edge.

Lemma 5. ([1]) For instances with strictly ordered preference lists, in time O(n + m)
a popular matching can be found, if one exists, or decided, that none exists.

One interesting, a little further leading task, is to find a maximum-cardinality popular
matching. As mentioned before, not every instance allows a popular matching, but if
there exists a popular matching there can possibly be many. In the maximum-cardinality
popular matching problem we now want to find that popular matching, which allocates
the most people, that is, that allocates the fewest people to their last resort. With small
changes in the algorithm in [1] it is shown that also the following holds:

Theorem 6. ([1]) For instances with strictly ordered preference lists, in time O(n+m)
one can find a maximum-cardinality popular matching, if one exists, or decide, that no
popular matching exists.

12

3.3 Preference Lists With Ties

In this section we will relax the assumption of no ties and also allow applicants to assign
different posts the same rank. For this no algorithm which runs in linear time is given,
but one that runs in time O(

√
nm). It can also not be hoped to find a linear time

algorithm, since the special case, where all edges have rank one, is equivalent to the
finding of a maximum-cardinality matching in a bipartite graph, for which the fastest
known algorithm (the Hopcroft-Karp algorithm, [10]) runs in O(

√
nm). (This is, because

if all edges have rank one, a matching is popular if there is no other matching which
matches more applicants - thus if it is a maximum-cardinality matching.) That means,
the general popular matching problem is at least as hard as the maximum-cardinality
matching problem.

3.3.1 Characterizing Popular Matchings With Ties

The first difference, in contrast to the case of no ties, one can see is, that it is now not
longer possible to match all f-posts, as there can be more f-posts than applicants. Due
to this, also the characterization of s-posts gets slightly more difficult, now remaining
f-posts can also take up the role of s-posts. In the following paragraphs generalizations
of the previous lemmas will be worked out.
Like before, for each applicant a let f(a) denote his first-ranked posts on his preference
list. Any such post we will call an f-post and let f(p) be the set of applicants for which
p is their first-ranked post. We define the first-choice graph of G as G1 = {A ∪ P,E1},
whereat E1 contains all edges with rank 1.

Lemma 7. ([1]) Let M be a popular matching. Then M ∩ E1 is a maximum matching
in G1.

Proof. ([1]) IfM1 = M∩E1 is not a maximum matching, there has to exist an augmenting
path Q = 〈a1, p1, . . . , pk〉. Then M(a1) 6= f(a1) and pk is either unmatched in M or
M(pk) 6= f(pk). Let us consider these two cases.
(i) pk is unmatched in M :
Since both a1 and pk are unmatched in M1, we augment M with Q. Now a1 is matched
to a post he regards higher and all other applicants remain matched to a rank 1 post.
This gives a more popular matching, a contradiction.
(ii) pk is matched in M :
Let ak+1 = M(pk) and note that pk 6∈ f(ak+1). Remove (ak+1, pk) from M and augment
M with Q. Select any pk+1 ∈ f(ak+1). If pk+1 is unmatched in M , we promote ak+1

to pk+1. Now a1 and ak+1 prefer the new matching to M . If pk+1 is not unmatched in
M , we denote a = M ′(pk+1) to either l(a) (if a 6= a1), or back to M(a1) (if a = a1) and
then promote ak+1 to pk+1. In the first case a prefers the old matching, but both a1 and
ak+1 prefer the new matching. In the second case, a1 prefers the new matching. Again
we have constructed a more popular matching, a contradiction.

13

Let us come to the definition of s-posts. As already mentioned, now s-posts can contain
a number of surplus f-posts, since not all f-posts have to be or can be matched. But
we can exclude some f-posts to restrict the set of possible s-posts. For any maximum
matching we can partition the nodes into the sets odd (O), even (E) and unreachable
(U). A node v is odd (even), if there exists an alternating path of odd (even) length
from an unmatched node to v. If there exists no such path, v is unreachable.

Lemma 8. ([1]) Let O, E and U be the sets defined above.
(a) O, E and U are pairwise disjoint. Every maximum matching provides the same
partitions.
(b) In every maximum matching, every node in O is matched with some node in E and
every node in U is matched with another node in U . The size of any maximum matching
is |O|+ |U|/2.
(c) No maximum matching contains an edge between two nodes in O, between an node
in O and in U or between a node in E and a node in U .

Proof. See ([1]).

Since by Lemma 7 M1 is a maximum matching in G1, with the previous lemma we now
get, that every odd and unreachable post p in G1 must be matched in M1. These posts
cannot be s-posts, so we define s(a) as the set of the even posts in a′s preference list
with the same highest rank. Since the l-posts are never matched in M1, they are always
even and thus candidates for the s-posts, so s(a) 6= ∅ for all posts.

Lemma 9. ([1]) Let M be a popular matching. Then for every applicant a, M(a) can
never be strictly between f(a) and s(a).

Proof. ([1]) Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
Since a prefers M(a) to any post in s(a) and these are the top ranked even posts, M(a)
has to be an odd or unreachable node. By the previous lemma, these have to be matched
in every maximum matching of M1. But since M(a) is supposed to be strictly worse
than f(a), M(a) is not matched in M1 and M is not a popular matching.

Lemma 10. ([1]) Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a).

Proof. ([1]) Suppose for a contradiction that M(a1) is strictly worse than s(a1). Let p1
be any post in s(a1). If p1 is unmatched in M , we can, by promoting a1 to p1, construct
a more popular matching. Otherwise, let a2 = M(p1). We distinguish two cases.
(a) p1 6∈ f(a2): Select any post p2 ∈ f(a2) and let a3 = M(p2). We can construct a more
popular matching by (i) demoting a3 to l(a3), (ii) promoting a2 to p2 and (iii) promoting
a1 to p1.
(b) p1 ∈ f(a2): Since p1 is an s-post now as well, p1 must be even. So G1 contains

14

an even length alternating path Q = 〈p1, a2, . . . , pk〉 from pk to p1. If pk is unmatched,
M ⊕Q is a more popular matching. If not, let ak+1 = M ′(pk) (note that ak+1 6∈ fak+1

).
Remove (ak+1, pk) from M ′ and augment M ′ with Q. Select any pk+1 ∈ fak+1

. If pk+1 is
unmatched in M ′, promote ak+1 to pk+1. Otherwise, we demote a = M ′(pk+1) to either
l(a) (if a 6= a1) or otherwise back to M(a1). Then promote ak+1 to pk+1.

The previous lemmas hinted the following characterization of a popular matching:

Lemma 11. ([1]) A matching is popular iff
(i) M ∩ E1 is a maximum matching in G1, and
(ii) for each applicant a, M(a) ∈ {f(a) ∪ s(a)}.

Proof. ([1]) By the previous lemmas all popular matchings satisfy condition (i) and (ii).
Let M be a matching satisfying (i) and (ii) and suppose there is a more popular matching
M ′. For every applicant that prefers M ′ we will find an applicant preferring M . The
graph H = (M ⊕M ′) ∩ E1 consists of disjoint cycles and paths. Suppose applicant a
prefers matching M ′. That means he is assigned to his second post in M , which is his
top ranked even node, and therefor must be matched to an odd or unreachable node in
M ′. This node has to be also matched in M . Since M ′(a) 6= M(a), a is not isolated in
H. So a belongs to some non-empty path Q in H. Since M ′(a) is odd or unreachable,
every post in Q must also be odd or unreachable and thus matched in M ∩E1 too, and
only another applicant, say a′ can be the endpoint. This applicant though prefers M to
M ′, because M(a′) ∈ f(a′) but M(a) 6∈ f(a′). So we found the desired applicant.

Now we define the reduced subgraph G′ out of G by deleting all edges from each applicant
a except to f(a) ∪ s(a). Note that G′ need not admit an applicant-complete matching
anymore since l(a) is now isolated if s(a) 6= {l(a)}. Thus we get the final characterization:

Lemma 12. A matching is popular iff
(i) M ∩ E1 is a maximum matching in G1

(ii) M is an applicant-complete matching in G′

3.3.2 Algorithmic Results

As before, the direct realization of the characterization leads to an efficient algorithm,
namely Algorithm 3.3. To show the correctness of the algorithm we first have to show,
that successively augmenting the matching M1 does not destroy the maximum matching
on rank-1 edges and that it thus returns a maximum matching M on rank-1 edges. Let
us first consider Step 3, we will show that here only edges of rank 1 are deleted. Any
odd or unreachable post p is by definition never contained in s(a) for any applicant a, so
no edges of the form (p, a), p ∈ s(a) are deleted. For any odd applicant a, there exists
by definition an alternating path from a in M1 unmatched node to a. So a is connected

15

Algorithm 3.3 Algorithm for the Popular Matching Problem With Ties

1: Compute maximum matching M1 in G1

2: Construct G′ using it
3: Delete all edges connecting two nodes from O or a node in O with a node in U
4: Compute maximum matching in G′ by augmenting M1

5: if M is applicant-complete then
6: return M
7: else
8: return ”no popular matching”
9: end if

to even posts which are his highest ranked even nodes. Simultaneously, these are his
f-posts, because there are no edges from an odd node to odd or unreachable nodes in G1.
So s(a) ⊆ f(a). The case that an applicant is odd, and an adjacent post unreachable
never occurs as then the applicant would be even. So the edges removed in Step 3 are
all rank-1 edges, which anyway cannot be used by any maximum matching on rank-1
edges by Lemma 8 c). After the edge deletion the only neighbors of nodes in O remain
the nodes in E and the only neighbors of nodes in U ∩ A are nodes in U ∩ P . Since M
is obtained by augmenting M1, nodes matched in M1 stay matched in M . That means,
that M has to match every node in O with a node in E and every node in U with another
node in U . So in M there are at least |O|+ |U ∩P | = |O|+ |U|/2 matched edges, which
have rank 1. By Lemma 8 b) this is thus a maximum matching on rank-1 edges.
This proves one necessary condition for being a popular matching, the other, that the
matching must be applicant complete, is secured by the IF clause in the last step.
To find a maximum matching in G1 and compute G′ we use the Hopcroft-Karp Algo-
rithm, which takes time O(

√
nm). Then we iteratively augment this matching using

also the Hopcroft-Karp Algorithm, and get a final runtime of O(
√
nm). In ([1]) again a

slight modification of Algorithm 3.3 is presented to find a maximum-cardinality popular
matching.

Lemma 13. ([1]) In time O(
√
nm) a popular matching can be found, if one exists, or

decided, that none exists.

16

3.4 Usage in the Capacitated House Allocation Problem

In this chapter we will shortly mention the possibility that posts have a capacity, which
is known as the Capacitated House Allocation Problem. Again we will first consider the
case without ties (CHA), and then with ties (CHAT). Manlove and Sng analyzed the
use of popular matchings in this context ([7]). On the one hand, they mentioned that
instances can be ”inflated”, this principle will also be used here, and then Algorithm
3.1 or Algorithm 3.3 can be run on them. On the other hand, they repeated the above
lemmas in an alternative version for posts with capacities and came up with slightly
faster algorithms. By ”inflating” an instance we mean that we replace every post p with
capacity c by c posts with capacity 1, keeping the edges. So if post p appeared on an
applicant’s preference list, we replace this edge by c edges with the same rank pointing to
the newly created c posts. Then we can run Algorithm 3.3, eventually getting a popular
matching, if one exists. We denote the original instance by O and the inflated one by I.
The new posts created instead of post i we name si1 . . . sic(i). From a matching in O we
get the corresponding matching in I by matching the k to p assigend applicants to the
posts sp1 . . . spk and vice versa.
To be able to apply the lemmas from before, we need the following easy lemma:

Lemma 14. O admits a popular matching ⇔ I admits a popular matching.

Proof. (i) ⇒: Show this by contraposition. Suppose I does not admit a popular match-
ing. This means, for any matching M there exists a more popular matching M ′, so
at least one applicant a prefers M ′ to M . Let M(a) = sab, M

′(a) = scd. So in the
corresponding matching of M ′ in O a prefers tutorial c to a, and this matching is more
popular than then corresponding matching of M .
(ii) ⇐: Show this by contraposition. Suppose O does not admit a popular matching.
This means, for any matching M there exists a more popular matching M ′, so at least
one applicant a prefers M ′ to M . Let M(a) = p1, M

′(a) = p2. Then in the correspond-
ing matching of M ′ in I, a prefers the corresponding post of p2 to that of p1, and this
matching is more popular than the corresponding matching of M .

3.4.1 CHA

In this section we will repeat the results from [7] regarding the House Allocation Problems
without ties, which is known as CHA. After adapting the lemmas, Manlove and Sng came
up with

Theorem 15. [7] Let C be the sum of all capacities, n1 the number of applicants and m
the sum of the lengths of the preference lists. For an instance of CHA in time O(

√
Cn1+

m) a popular matching can be found, if one exists, or decided, that there exists none.

17

When applying Algorithm 3.3 to the inflated instance, we get a running time of roughly
O(n
√
mC). Manlove and Sng also showed a better estimation of O(

√
Cmcmin), so this

method is slower by a factor of Ω(
√
Ccmin) or Ω(mcmin/n1), depending on whether√

Cn1 ≤ m or
√
Cn1 > m ([7]).

3.4.2 CHAT

This section covers the general case of the House Allocation Problem, where ties are
allowed. By modifying the lemmas from [1], in [7] the following was shown:

Theorem 16. [7] Let C be the sum of all capacities, n1 the number of applicants and
m the sum of the lengths of the preference lists. For an instance of CHAT in time
O((
√
C + n1)m) a popular matching can be found, if one exists, or decided, that there

exists none.

When again comparing this result to applying Algorithm 3.3 on the inflated instance,
we find a time advantage of Ω(cmin) ([7]).

18

4 The Switching Graph

In this section we will discuss a structure introduced in [2], the switching graph, which
is a useful tool to solve many problems related to popular matchings, amongst others
counting the number of popular matchings for an instance or generating them randomly.
In this section we will only define the switching graph for instances with strictly ordered
preference lists, in Section 5 we will generalize this concept for all instances and use it
then to define cheating strategies for the popular matching problem.

4.1 Structure and Properties of the Switching Graph

By the previous lemmas we know that any applicant a in a popular matching can only
be matched to either his f- or s-post. Call the post matched to him M(a), the other
one OM (a). Given a popular matching M for an instance I the switching graph GM is
defined as follows:

Definition 17. ([2]) GM is a directed graph with one vertex for each post in M , and a
directed edge (pi, pj) for each pair of posts pi and pj, if M(a) = pi and OM (a) = pj.

We will use vertices and posts, and edges and applicants interchangeably. We call an
vertex f-post vertex (respectively s-post vertex), if its corresponding post is an f-post
(respectively s-post). The edges of the graph will be labeled with the corresponding
applicants. We say an applicant belongs to a component, if his incident post vertices
belong to that component.
Basic properties of the switching graph are given by the following lemma:

Lemma 18. ([2]) Let GM be the switching graph of a popular matching M for an
instance I. Then the following holds:

1. Each vertex in GM has outdegree at most 1.

2. The sink vertices of GM are those vertices which correspond to unmatched posts in
M and are all s-post vertices.

3. Each component of GM contains either a single sink vertex or a single cycle.

Proof. ([2])

1. Any outgoing edge of a vertex represents a matching of that post to some applicant.
Since M is a matching, each post can only be matched once.

19

2. A vertex with no outgoing edge represents an unmatched post. By Lemma 1 we
know that every f-post has to be matched in a popular matching, therefore any
unmatched post has to be an s-post.

3. This is an easy consequence of (1).

A component of a switching graph GM we call a cycle component or a tree component,
depending on whether it contains a cycle or a sink. Each cycle in GM we call switching
cycle. If T is a tree component in GM with sink p and q is another s-post vertex in T , we
call the unique path from q to p a switching path. So each component of GM contains
either one switching cycle, or if it does not, it can contain multiple switching paths.
More exactly, for each s-post vertex other than the sink there exists one switching path
from this vertex to the sink. It should be clear that the cycle and tree components of
GM can be found in linear time, for example with a depth-first search.
The following example should clarify this design. There are 8 applicants, a1 to a8, which
have the following properties and are matched to the underlined post:

a1: p1 p2
a2: p3 p2
a3: p3 p4
a4: p1 p4
a5: p5 p2
a6: p6 p7
a7: p8 p7
a8: p9 p7

The resulting switching graph is depicted in Figure 1.

In the next paragraphs we will explain the importance of the switching graph and show
how to use it to find all popular matchings.
For a matching M , to apply a switching cycle C means to match every applicant a in it
to OM (a) but leave all other applicants matched as in M . Similiar, to apply a switching
path P means, to match every applicant a in it to OM (a) but leave all other applicants
matched as in M . We denote the resultings matchings with M · C respectively M · P .

Theorem 19. ([2]) Let M be a popular matching for an instance I. Then:
(i) If C is a switching cycle in GM , M · C is a popular matching in I.
(ii) If P is a switching path in GM , M · P is a popular matching in I.

Proof. ([2]) (i) By Lemma 4 it is sufficient to show that any applicant in the new matching
is only matched to his f- or s-post and that all f-posts are matched. By the definition of
the switching graph it is obvious that in M · C any applicant still can only be matched
to his f- or s-post. Furthermore, in the cycle the matching partner of all applicants are

20

p6 p7 p8

p9

p1 p2

p3p4

p5

a1

a2

a3

a4

a5

a6 a7

a8

Figure 1: An exemplary switching graph

changed, but the same posts remain matched.
(ii) When examining M · P it should also be obvious, that every applicant can only be
matched to his f- or s-post. The only post vacated after applying the path is its starting
vertex p which is, by definition, an s-post vertex. Thus all f-posts are still matched.

Theorem 19 shows, that we can achieve new popular matchings out of a given one by
applying switching circles and paths. We now want to show that this is also the only
way to find these matchings, given some existing ones. More precisely we will show that
any popular matching for an instance I can be constructed out of any popular matching
M for that instance by only applying switching circles and paths.

Lemma 20. ([2]) Let M be a popular matching for an instance I and M ′ another
arbitrary popular matching for it. If the edge representing applicant a in GM connects
the vertex p to the vertex q, then
(i) a is assigned to p in M ;
(ii) if M ′(a) 6= M(a), then a is assigned to q in M ′.

Proof. This is an easy consequence of the definition of the switching graph.

The following lemmas, Lemma 21 and 22, consider switching cycles and switching paths
respectively:

21

Lemma 21. ([2]) Let M be a popular matching for an instance I, M ′ another arbitrary
popular matching for it and T a cycle component in GM with switching cycle C. Then
the following holds:
(i) Either for every applicant a in C M ′(a) = M(a), or for every applicant a in C
M ′(a) = OM (a).
(ii) For every applicant in T , which is not in C, M ′(a) = M(a).

Proof. ([2]) (i) Because of the cyclical structure, if one applicant a in C is matched to
OM (a) in M ′, all the others have to be, too.
(ii) Let C consist of the posts p1, . . . pk and let pp be the last post before the cycle,
meaning for the applicant a matched to it OM (a) = pi for some pi in C. Suppose
M(a) 6= M ′(a). Then pp must be matched to pi in M ′. By (i) we know that then also
all other applicants in C must be matched differently in M ′ than in M . This leads to a
contradiction, since then pi would have to be matched also to the applicant corresponding
to the edge (pi−1, pi).

Lemma 22. ([2]) Let M be a popular matching for an instance I, M ′ an arbitrary other
popular matching for it and T a tree component in GM . Then the following holds:
Either for every applicant a in T M ′(a) = M(a), or there exists a switching path P in
T , such that for every applicant a in P M ′(a) = OM (a), and for every applicant in T ,
which is not in P , M ′(a) = M(a).

Proof. ([2]) Suppose M(a) 6= M ′(a) for some a, by a similar argument as in Lemma 21
(i) the same has to hold for all other applicants on the path from a to the sink vertex.
Now suppose two applicants in T whose edges have a common end point, say p, are both
matched to different posts in M ′ than in M . This leads to a contradiction, since both
had to be assigned to p by Lemma 20. Thus the applicants who are assigned to different
posts in M ′ than in M form a path ending at the sink vertex. Furthermore, the path
has to start at an s-post vertex, because its starting post will be unmatched in M ′, a
state which is not allowed for f-posts in popular matchings. Therefore, the path is a
switching path.

As we have seen before, popular matchings differ with respect to switching components
only in the essential parts of the component, their circles or paths. That means, if we
have a popular matching M and two switching components T and T ′ and we apply the
switching cycle or some switching paths of T (depending on what kind of component T
is) to M , then the applicants from T ′ are unaffected, T ′ can still be found in M ·T . This
notion of independence is captured in the next lemma:

Lemma 23. ([2]) Let T and T ′ be components of a switching graph GM for a popular
matching M , and let Q either be a switching cycle or a switching path (depending on
whether T is a cycle or a tree component) in T . Then, T ′ is a component in the switching
graph GM ·Q.

22

Now we can prove a lemma that shows, that we can indeed construct all popular match-
ings of an instance out of an arbitrary popular matching by only applying switching
circles and paths:

Lemma 24. ([2]) Let M and M ′ be two popular matchings for an instance I of POP-M.
Then M ′ can be obtained from M by successively applying the switching cycle in each
of a subset of the cycle components of GM together with one switching path in each of a
subset of the tree components of GM .

Proof. ([2]) We will describe a procedure of obtaining M ′ from M which works in a way
as required in the claim.
For any circle component we know that either for each applicant in the circle M ′(a) =
M(a) or M ′(a) = OM (a). In the first case we do nothing, in the second one we apply
the circle to M , so that every applicant in it becomes matched to M ′(a).
For any tree component we know, that either for each applicant in it M ′(a) = M(a), or
there exists exactly one switching path, for whose applicants M ′(a) = OM (a). Exactly
like above, in the first case we do nothing, in the second one we apply the switching
path so that every applicant in it becomes matched to M ′(a). Thus we obtain M ′ out
of M by successively applying at most one switching cycle per cycle component of GM

and at most one switching path per tree component of GM , which proves the desired.
Moreover, the order in which the assignments are done, is irrelevant.

We will formulate this important procedure in

Corollary 25. ([2]) Let I be a POP-M instance and let M be any arbitrary popular
matching for I with the switching graph GM . Denote with X1, . . . , Xk the tree compo-
nents of GM , and with Y1, . . . , Yl the cycle components of GM . Then, the set of popular
matchings for I consists of exactly those matchings which are obtained by applying at
most one switching path in Xi for i ∈ {1, . . . , k} and by applying at most one switching
cycle in Yi for i ∈ {1, . . . , l}.

4.2 Algorithms That Exploit the Structure

In this section we show how to use the switching graph to solve a number of problems
efficiently, namely counting popular matchings, enumerating them and generating them
randomly.
All algorithms begin the same way, they calculate the reduced instance, then run Algo-
rithm 3.1 on it to find an arbitrary popular matching (if one exists) and then construct
the switching graph and identify the different components, for example by depth-first
search. This sequence we call the pre-processing phase - as discussed before, this can be
done in O(n+m) time, where n is the number of applicants and posts and m is the sum
of lengths of the original preference list.

23

The list of algorithms in the following section does not contain every algorithm of the
original paper, the sections about popular pairs and different optimality criteria for pop-
ular matchings are missing. Furthermore, also proofs of some of the following theorems
will be omitted and instead we will refer to the original paper.

4.2.1 Counting Popular Matchings

Recall that a tree component having q s-posts has exactly q − 1 switching paths and
that, in order to get from one popular matching to another, at most one of these can
be applied. For a tree component Xi we denote by S(Xi) the number of s-posts in
Xi. That is also the number of choices we have for a tree component (apply one of the
q−1 switching paths or take none), and since we either can or cannot apply a cycle from
any cycle component the following theorem is an immediate consequence of Corollary 25:

Theorem 26. ([2]) Let I be a POP-M instance and let M be an arbitrary popular
matching for I with switching graph GM . Let the tree components of GM be X1, . . . Xk

and the cycle components of GM be Y1, . . . Yl. Then the number of popular matchings
for this instance is 2l ∗

∏k
i=1 S(Xi).

Thus an algorithm for counting the number of popular matchings for a given instance
would first perform the pre-processing phase, during which also the number of circles
and the S(Xi) are calculated, and then evaluate the formula above. With the linear
running time of Algorithm 3.1 we get

Theorem 27. ([2]) The number of popular matchings for an arbitrary instance of POP-
M can be calculated in linear time.

4.2.2 Enumerating Popular Matchings

This section describes an algorithm to enumerate all popular matchings for an instance
I.
Again, the algorithm starts with the pre-processing phase, it finds an arbitrary popular
matching M for I (if existing) and calculates the switching graph. Also, for each tree
component Xi S(Xi) is calculated and the s-posts other than the sink are numbered
1, . . . q − 1, where q = S(Xi). Let the number of cycle components be l and the number
of tree components be k. Next a vector V = (v1, . . . , vj) is defined with j = l+ k, where
vi ∈ {0, 1}, 1 ≤ i ≤ l and vl+i ∈ {0, 1, . . . S(Xi)}, 1 ≤ i ≤ k.
The algorithms then outputs M as the first popular matching and initializes V with
(0, . . . , 0). Then all possible values of the vector are looped through. In each iteration
the cycle i is applied to M if vi = 1 (1 ≤ i ≤ l). Furthermore, in each iteration, if
vl+i 6= 0 (1 ≤ i ≤ k), the switching path beginning with node vl+i of tree component i
is applied. The resulting matching is then outputted in that iteration.

24

Theorem 28. ([2]) Let I be a POP-M instance, and let M denote the set of popular
matchings for I. There is an algorithm that enumerates M in O(n+m+ n|M|) time.

Proof. See [2].

4.2.3 Random Popular Matchings

The same principle as in the previous section can be applied to generate random popular
matchings. For this the vector V is simply generated randomly: For each cycle compo-
nent a random bit is generated, for the tree components a number between 0 and q − 1
(if that tree component has S(Xi) = q) is chosen uniformly at random.

Theorem 29. ([2]) Let I be an instance of POP-M, and letM denote the set of popular
matchings for I. There is an algorithm to generate a popular matching fromM uniformly
at random in linear time.

25

5 Cheating Strategies

In this section we will show that popular matchings can be manipulated. The finding,
that this is possible, is important for the general question how fair popular matchings
are. We will consider the case, where one applicant is aware of the preferences of all
others, and define cheating strategies, which allow him in some cases to get matched
to a higher ranked post when falsifying his true preferences according to the strategies.
These strategies were introduced in [3], we will follow its structure closely. To define
the cheating strategies, we will generalize the definition of the switching graph from
the previous chapter to general instances where ties are allowed. The optimal cheating
strategies can be found in polynomial time.
Important in this section is the notation of a ”better always” strategy. This is a strategy,
which allows an applicant to always be better off by changing his preferences. Formally,
an applicant a1 is always better off in a falsified instance H compared to the original
instance G, if (i) every popular matching in H matches him to a post that is at least as
good as the most preferred post that he gets matched to in G, and (ii) there exists some
popular matching in H that matches a1 to a post that is better than the most preferred
post p he gets matched to in G, assuming that p is not a rank-1 post for a1.
First we will define a generalization of the switching graph defined in Section 4, with
the difference that here ties are allowed in the preference lists of the applicants. Then
we will prove some essential lemmas which are needed for later. In Theorem 44 and
48 we then prove two important characteristics of the instance in which the cheating
applicant has falsified his preferences. Using all this, in Section 5.4 we eventually define
the cheating strategies for two possible types of applicants. Theorem 54 expresses the
time effort needed to find these strategies.
Now let us first list Algorithm 5.1 to find a popular matching in instances where ties are
allowed, which is the same as the one presented in Section 4, except that more edges are
deleted. The correctness of this algorithm is immediate because of the correctness of the
original algorithm. After having found a solution we simply delete more edges. Because
every popular matching is an applicant-complete and thus a maximum matching in G′,
we can again partition the nodes, this time according to M in G′ and know that no
popular matching contains edges between a node in O2 and a node in O2∪U2. However,
since every matching matches all applicants, this implies that A ∩ E2 = ∅ and thus
P ∩ O2 = ∅, which means that there are no O2O2 edges. Therefore, any edge deleted
in Step 13 of Algorithm 5.1 is of the form (a, p), where a ∈ O2 and p ∈ U2. With this
knowledge the following claim is immediate:

Claim 30. In Step 13 of Algorithm 5.1, no edge incident to an applicant a ∈ U2 is
deleted. In Step 4 of Algorithm 5.1, no edge incident to an applicant a ∈ E1 is deleted.

26

Algorithm 5.1 Algorithm for the Popular Matching Problem With Ties

1: Compute maximum matching M1 in G1

2: Construct G′ using it
3: Partition A ∪ P as O1, E1 and U1 with respect to M1 in G1

4: Delete all edges connecting two nodes from O1 or a node in O1 with a node in U1
5: Compute maximum matching in G′ by augmenting M1

6: if M is applicant-complete then
7: return M
8: else
9: return ”no popular matching”

10: end if
11: if M is applicant-complete then
12: Partition A ∪ P as O2, E2 and U2 with respect to M in G′

13: Remove any edge in G′ between a node in O2 and a node in U2
14: Denote the resulting graph by G′′ = (A ∪ P,E′′)
15: end if

5.1 Generalizing the Switching Graph

In this section we explain the needed definition of a switching graph for instances, where
ties are allowed. A definition of the switching graph for instances, where no ties are
allowed, was already given in Section 4. Let G be an instance of POP-M, where ties are
allowed, and let M be an arbitrary popular matching on G. Then the switching graph
GM = (P,EM) is a directed, weighted graph and is defined as follows with respect to M :
For every post in G we add a node. The set of edges is defined using the graph G′′, as
constructed in Step 14 of Algorithm 5.1. Iff for some a ∈ A, M(a) = pi and (a, pj) ∈ E′′
we add a directed edge from pi to pj to the graph, the weight is determined as follows:

w(pi, pj) = 0 if a is indifferent between pi and pj
w(pi, pj) = −1 if a prefers pi to pj
w(pi, pj) = +1 if a prefers pj to pi.

It is easy to see that this graph can be constructed in time O(
√
nm) using Algorithm

5.1.
Note that some of the results presented in the next paragraphs will be very similar to
results proved in Section 4, however we will still show them again since there are some
small but important differences.
The following easy lemma characterizes sink vertices in GM (cf Lemma 4.1):

Theorem 31. A post p is a sink vertex iff p is unmatched in M .

Let X be a maximal weakly connected component of GM . We call X a sink component
iff X contains at least one sink, otherwise a non-sink component.
For a path T = 〈p1, . . . , pk〉 (respectively cycle C = 〈c1, . . . , ck〉) its weight (w(T) re-

27

spectively w(C)) is the sum of the weights on the edges in T (respectively C).
Here, a switching path is a path in GM which ends in a sink vertex and has weight 0.
Similarly, a switching cycle is a cycle in GM with weight 0. Let AT = {ai : M(pi) = ai}
for i ∈ {1 . . . k} and AC = {ai : M(pi) = ai} for i ∈ {1 . . . k}. By M ′ = M · T we denote
the matching, which is created when applying the switching path T to M , that is for
ai ∈ AT , M ′(ai) = pi+1, and M(ai) = M(ai) for all ai 6∈ AT . Similarly, by M ′ = M · C
we denote the matching which is created when applying the switching cycle C to M ,
that is for ai ∈ AT , M ′(ai) = pi+1 mod k, and M(ai) = M(ai) for all ai 6∈ AC .

5.1.1 Properties of the Switching Graph

In this section we will prove some useful properties of the switching graph GM .

Property 32. ([3]) All sink vertices of GM belong to the set E1.

Proof. We know that a popular matching is a maximum matching on M1. Such a
matching matches every node in O1 ∪ U1 and since sink vertices are unmatched, they
have to be in E1.

Property 33. ([3]) Every post p belonging to a sink component has a path to a sink and
thus belongs to the set E2. Every post belonging to a non-sink component belongs to the
set U2.

Proof. ([3]) We show that a post p belongs to a sink component of GM iff p ∈ E2.
Let p be a post such that p ∈ E2, then p is either unmatched or there exists an alternating
path with even length from an unmatched node p′ to p. If p is unmatched, it is a sink
and we are done. Otherwise, let P denote such a path. Note that, since p is even, every
edge is of the form O2E2 or E2O2, thus no edge gets deleted in Step 13 of Algorithm 5.1.
Thus P is still present in GM and p belongs to the sink component containing p′.
Now let X be a sink component and let p be in X. If p ∈ E2 we are done, since p is even
and contains a path to a sink. Otherwise let p ∈ U2 (recall that P ∩ O2 = ∅). Since p
belongs to X, there has to exist some vertex p′ ∈ E2 such that p′ has a path to p, denote
a minimal path by 〈p′ = p1, p2, . . . , pk = p〉. Let M(pi) = ai for all i ∈ {1, . . . k}. Since
the path is minimal and p ∈ U2, we know that all pi ∈ U2, i ∈ {2, . . . k}. However p′ ∈ E2
implies a1 ∈ O2 and thus the edge from a1 to p2 in G′′ would be of the form O2U2. This
should have been deleted in Step 13 of Algorithm 5.1 and is a contradiction to p ∈ U2.
Because P ∩ O2 = ∅, the above immediately implies that p belongs to a non-sink com-
ponent iff p ∈ U2 and finishes the proof.

Property 34. ([3]) For an edge (pi, pj) its weight is determined by the partitions pi and
pj belong to when partitioning the vertices in O1, E1 and U1 according to M1. Let (pi, pj)
be an edge with M(pi) = a, then its weight is determined as follows:

28

pi/pj O1 E1 U1
O1 0 -1 -

E1 +1 0 -

U1 - -1 0

Proof. ([3]) Note that if a post p ∈ O1 ∪ U1, then it has only rank-1 edges incident
in G′. Thus if pi ∈ O1 ∪ U1, then pi is a rank-1 post for a. We examine all possible
combinations:

• pi ∈ O1: pi is a rank-1 post for a and since nodes in O1 get matched with nodes
from E1 this implies that a ∈ E1.

– pj ∈ O1: pj is also a rank-1 post for a and thus w(pi, pj) = 0.

– pj ∈ E1: If pj would be a rank-1 post for a, an E1E1 edge would exist in G1,
a contradiction to Lemma 8c. Thus pj cannot be a rank-1 post for a and
w(pi, pj) = −1.

– Since nodes in U1 have only rank-1 edges incident to them, pj would be a
rank-1 post for a. That would imply that an U1E1 edge would exist in G1, a
contradiction to Lemma 8c. Thus such an edge cannot exist.

• pi ∈ Ei: Here we distinguish two cases:
(i) pi is a rank-1 post for a: In this case, note that s(a) ⊆ f(a) and hence a has
only rank-1 edges incident to it in G′, all ending in posts which belong to E1. Thus
the only possible case is pj ∈ E1 and w(pi, pj) = 0.
(ii) pi is a non-rank-1 post for a: First note that a ∈ E1, because posts in O1 ∪ U1
get matched along rank-1 edges.

– pj ∈ O1: pj is a rank-1 post for a and thus w(pi, pj) = +1.

– pj ∈ E1: Assume pj is a rank-1 post for a. Then in M1 an E1E1 edge exists, a
contradiction to Lemma 8c. Thus pj is not a rank-1 post for a and w(pi, pj) =
0.

– pj ∈ U1: Such an edge cannot exist, because then an E1U1 edge would exist
in G1, which is a contradiction to Lemma 8c.

• pi ∈ U1: pi is a rank-1 post for a, and since nodes in U1 get matched to nodes in
U1, a ∈ U1.

– pj ∈ O1: pj is a rank-1 post for a, however O1U1 edges get deleted in Step 4
of Algorithm 5.1, thus such an edge cannot exist.

– pj ∈ E1: Assume for a contradiction that pj is a rank-1 post for a. But then
an U1E1 edge would exist in the graph G1, a contradiction to Lemma 8c. Thus

29

pj is a non-rank-1 post for a and w(pi, pj) = −1.

– pj ∈ U1: pj is a rank-1 post for a and therefore w(pi, pj) = 0.

Property 35. ([3]) Every path T in GM has weight w(T) ∈ {−1, 0,+1}. Every circle
C in GM has weight w(C) = 0. Furthermore, there exists no path T in GM which ends
in a sink with weight w(T) = +1.

Proof. ([3]) Using the table above it is easy to see that every path T in GM has weight
w(T) = {−1, 0, 1} and every circle C in GM has weight w(C) = 0. First, because there
are no edges from nodes in O1 ∪ E1 to nodes in U1, all circles can only contain nodes
from O1 ∪ E1 or U1. All edges in circles in U1 have weight 0, edges in circles in O1 ∪ E1
have the alternating weights +1 and −1, thus in both cases the weight of the circle is 0.
Paths can contain an edge from a node in U1 to a node in O1 ∪ E1 and they do not have
to be closed, such possible weights are −1, 0, 1.
It remains to show, that there is no path of weight +1 ending in a sink vertex. Assume
there was such a path T . Consider applying this path to M and examine M · T . The
number of applicants preferring M · T is one greater than the number of applicants
preferring M , contradicting the fact that M is popular.

Property 36. ([3]) For every switching path T (respectively switching cycle C) in GM ,
the matching M · T (respectively M · C) is a popular matching.
Furthermore, every popular matching can be obtained from M by applying one or more
vertex disjoint switching paths and switching cycles in each of a subset of sink components
of GM together with applying one ore more vertex disjoint switching cycles in each of a
subset of the non-sink components of GM .

Proof. ([3]) Let 〈p1, p2, . . . , pk〉 be a switching path in GM with pk unmatched and let
AT = ∪k−1i=1 {M(pi) = ai}. Denote by M ′ the resulting matching M · T . Note that in
M ′ every applicant a ∈ AT is still matched to f(a) ∩ s(a), because only these edges
are present in the switching graph, and M(a) = M(a) ∀a 6∈ AT . Furthermore, because
w(T) = 0, for every applicant that got demoted from his f-post, there exists a unique
applicant who got promoted, so M ′ is popular. A similar arguments proves that M · C
is a popular matching, for every switching circle C in GM .
Let M ′ be any popular matching in G and consider M ⊕M ′, this is the set of vertex dis-
joint path and cycles in G. All paths have even length, since they cannot start or end at
applicants (then this applicant was unmatched in one matching), same holds for cycles, as
they contain applicants and posts in alternating order. Let TG = 〈p1, a1, . . . , pk, ak, pk+1〉
be any even length alternating path or cycle in M ⊕M ′ with pk+1 unmatched in M and
p1 unmatched in M ′. For every 1 ≤ i ≤ k let M(pi) = ai. Note that every in M
unmatched edge is of the form O2E2 and hence not got deleted in Step 13 of Algorithm

30

5.1. Thus, this path is present in GM and ends in a sink. TG cannot have strictly pos-
itive weight since M is a popular matching. Furthermore, for every path with strictly
negative weight, another path with strictly positive weight has to exist since both M
and M ′ are popular. But this again contradicts the fact that M is popular and shows
that TG has to have weight 0, ends in a sink and thus is a switching path. A similar
arguments shows the same for circles. Thus we have proven that any popular matching
can be obtained by applying these paths and cycles.

Definition 37. ([3]) For an applicant a, let choices(a) be the set of posts p such that
(a, p) is an edge in G′′ after applying Algorithm 5.1.

We now define the notation of a tight pair, that is a set of applicants A1 and a set of
posts P1 with |A1 |= |P1|. Further, for every a ∈ A1, choices(a) ⊆ P1. We show, that
such a tight pair exists in every non-sink component of GM .

Lemma 38. ([3]) Let Y be a non-sink component in GM and q ∈ Y . Define Pq =
q ∪ {p : q has a path to p in GM}. Then there exists a set of applicants Aq such that (i)
|Aq| = |Pq|, and (ii) for every a ∈ Aq, choices(a) ⊆ Pq.

Proof. ([3]) Let Aq = ∪p∈PqM(p). Since every p ∈ Pq is matched, |Aq| = |Pq| follows.
For every applicant a ∈ Aq we have M(a) ∈ Pq and M(a) ∈ choices(a). Furthermore,
for every p′ ∈ choices(a) \M(a) there exists an edge (M(a), p′) in GM , thus every such
p′ belongs to Pq and we have choices(a) ⊆ Pq.

5.1.2 Generating Popular Pairs and Counting Popular Matchings

Let G = (A ∪ P,E) be an instance of POP-M. Define
PopPairs = {(a, p) ∈ E : there exists a popular matching M with M(a) = p}.
It is easy to calculate this set using the switching graph. Let GM be a switching graph
with respect to some popular matching M . From Property 36 we can conclude that
e = (a, p) is a popular pair iff (i) M(a) = p, (ii) (M(a), p) belongs to some switching
path in GM , or (iii) (M(a), p) belongs to some switching cycle in GM . The following
theorem explains the complexity of checking these conditions.

Theorem 39. ([3]) The set of popular pairs for an instance G = (A∪P,E) of POP-M
where ties are allowed can be computed in time O(

√
nm).

Proof. ([3]) For more details about the implementation see [3], here just note that

• Condition (i) can be checked in time O(
√
nm) using Algorithm 5.1 and

• Condition (ii) and (iii) can be checked using a simple depth-first-search, which
takes linear time in the size of GM .

31

In [3] also the following was proved using a reduction from the problem of counting
perfect matchings in 3-regular bipartite graphs:

Theorem 40. ([3]) Given an instance G = (A∪P,E) of POP-M where ties are allowed,
counting the total number of popular matchings in G is #P-Complete.

5.2 Properties of the Cheating Instance

In this section we will start defining the cheating strategies. For that we will partition
the applicants into three sets, depending on which posts they get matched to when being
truthful in the instance G:
Af = {a: every popular matching in G matches a to one of his rank-1 posts}
As = {a: every popular matching in G matches a to one of his non-rank-1 posts}
Af/s = A \ (Af ∪As)
The set Af denotes applicants who get matched to one of their rank-1 posts in every
popular matching, the set Af applicants who get matched to one of their non-rank-1
posts in every popular matching. The set Af/s contains applicants who belong to neither
of the previous partitions, there exist some popular matchings that match them to their
rank-1 posts but also some popular matchings that do not match them to their rank-1
posts. This partition can easily be obtained after calculating the set of popular pairs.
Now we will let one applicant a1 be the cheater, he is aware of the true preferences of
all other applicants and can change his preference list, creating an instance H, to get
himself better off. Let L = P1, P2, . . . , Pt, . . . , Pl denote the true preference list of a1,
where Pi denotes his set of i-th ranked posts. For any applicant a we will index his
preferences with respect to the desired instance, for example fG(a) and sG(a) denotes
f(a) and s(a) in the instance G. Note that fG(a1) = P1 and assume that sG(a1) ⊆ Pt,
t > 1.
Recall the definition of a better always strategy. For any applicant a ∈ Af , stating
his true preferences is his best strategy, therefore in the following we will only consider
applicants in As and Af/s.

• If a1 ∈ As, then in order to get better always there has to exist at least one popular
matching in H that matches a1 to a post higher ranked that t.

• If a1 ∈ Af/s, then in order to get better always every popular matching in H has
to match him to one of his true rank-1 posts.

32

s(a) for Other Agents Remains Unchanged

Let H be the instance obtained by falsifying the preference list of a1 alone. Since the
rest of the applicants is truthful, we have fG(a) = fH(a) for all a ∈ A \ {a1}. However,
since the definition of s-posts is dependent of other f-posts, changing a’s preference list
might result in the change of some s-posts. We claim that, if a falsifies his preference
list only to improve the rank of the post he gets matched to, this is not the case. We
will prove that in Theorem 44, whose proof requires the following lemmas.

Lemma 41. ([3]) Let a1 ∈ As ∪Af/s when he is truthful. Then, fG(a1) ⊆ (O1)G.

Proof. ([3]) Assume for a contradiction that there exists q ∈ fG(a1) and q ⊆ (E1 ∪U1)G.
This implies that a1 ∈ (O1 ∪ U1). If a1 ∈ (O1)G, then s(a1) ⊆ f(a1), because nodes in
O1 have only edges to nodes in E1. Thus, a1 has only rank-1 edges incident and always
gets matched to one of his rank-1 posts. If a1 ∈ U1, he also always gets matched to one
of his rank-1 posts. This is because nodes in U1 always get matched to nodes in U1. A
contradiction to a1 ∈ As ∪Af/s.

Lemma 42. ([3]) Let H be such that H � G w.r.t. a1. Then, fH(a1) ⊆ (O1 ∪ U1)G.

Proof. ([3]) Assume for a contradiction that fH(a1) ∩ (E1)G = {q1, . . . , qk}. We show
that every popular matching in H matches fH(a1) to one of qi, which is a contradiction
because then a1 never gets matched to a higher ranked post in H than in G.
We first show that, if fH(a1)∩(E1)G 6= ∅, then the size of a maximum matching on rank-1
edges in H is strictly greater than that of a maximum matching on rank-1 edges in G.
Let M1 be a maximum matching on edges of rank 1 in G which leaves a1 unmatched.
Note that such a matching exists because fG(a1) ⊆ O1 (Lemma 44), which implies that
a1 ∈ E1. Consider the graph H1, which is the graph of rank-1 edges in H. Note that
M1 is a matching in H1, as no other applicant except a1 changes his preferences. Then
the edge (qi, ai) represents an augmenting path, giving a maximum matching M2 of size
M1 + 1.
Now consider a popular matching M ′ in H and let M ′1 denote the matching restricted
to edges of rank 1. Let us consider all possible cases how a1 can be matched to get the
desired contradiction:

• M ′(a1) ∈ {q1, . . . , qk}: In this case we are directly done.

• M ′(a1) = q with q ∈ fH(a1)∩(O1∪U1)G: Assume q ∈ fG(a1). In this case the edge
(a1, q) ∈ G1 andM ′1 is a maximum matching inG1. But |M ′1| = |M1+1| contradicts
the fact that M1 is a maximum matching in G1. Thus assume q 6∈ fG(a1). Note
that M ′1\{(a1, q)} is a maximum matching in G1 since no other applicants changed
their preference lists. However, M ′1 leaves a1 unmatched, which is a contradiction

33

to q ∈ (O1 ∪ U1)G, since posts from (O1 ∪ U1)G get matched in any maximum
matching of G1.

• M ′(a1) ∈ sH(a1): If sH(a1) ⊆ fH(a1), this is covered in the previous cases. Oth-
erwise assume sH(a1) ∩ fH(a1) = ∅. This implies, that a1 is unmatched in M ′1.
Because no other applicants changed their preferences, M ′1 is also a matching in
G1. But |M ′1| = |M + 1| contradicts the fact that M1 is a maximum matching in
G1.

Lemma 43. ([3]) Let M1 be a maximum matching in G1, such that M1 leaves a1 un-
matched. Then in any instance with H � G w.r.t. a1, M1 is a maximum matching in
H1.

Proof. ([3]) Like in the proof of the previous lemma, note that a matching M1 in G1

that leaves a1 unmatched exists because fG(a1) ⊆ O1 (Lemma 41), which implies that
a1 ∈ E1. Assume M1 is not a maximum matching in H1, then there exists an augmenting
path 〈a1, p1, . . . , ak, pk〉 in H1 with respect to M1, such that a1 and pk are unmatched.
However this path is also an alternating path of even length from pk to p1, contradicting
the fact that p1 ∈ (O1 ∪ U1)G.

Theorem 44. ([3]) Let H be an instance such that H � G w.r.t a1. Then, (i) (E1)G ∩
P = (E1)H ∩P and therefore sH(a) = sG(a) for every a ∈ A\{a1}, and (ii) (O1)G∩A =
(O1)H ∩A.

Proof. ([3]) If fH(a1) = fG(a1), H1 = G1 and (i) and (ii) are trivially true. Thus consider
the case that fH(a1) 6= fG(a1) and let M1 be a maximum matching in G1 that leaves a1
unmatched. By Lemma 43 we know that it is also a maximum matching in H1.
We first prove (E1)G ∩ P = (E1)H ∩ P , consider for this the following two cases:

• p ∈ (O1∪U1)G∩P : Assume p ∈ (E1)H ∩P . This implies, that there exists an even
length alternating path T with respect to M1 in H1 from an unmatched node to p.
The path cannot contain a1, since a1 is unmatched in M1. Thus, T is also present
in G1, which contradicts the fact that p ∈ (O1 ∪ U1)G.

• p ∈ (E1)G ∩ P : There exists an even length alternating path T with respect to
M1 in G1 from an unmatched node to p, which does not contain a1, since a1 is
unmatched in M1. Thus, T also exists in H1, which proves that p ∈ (E1)H ∩ P .

Since all other applicants leave their preferences unchanged, it is clear that sG(a) = sH(a)
∀a ∈ A \ {a1}.
Now consider any a ∈ (O1)G ∩A. Assume for a contradiction that a ∈ (E1)H ∩A. Then
there exists an even length alternating path T w.r.t. M1 from an unmatched node in
H1 to a. T has to contain a1, otherwise it was already present in G1. Because a1 is

34

unmatched, T has to start at a1. But since a is odd in G1, the post adjacent to a1 in T ,
say p′, would be even. Since p′ ∈ fH(a1), this is a contradiction to Lemma 42.

An As Applicant Cannot Get One of Her True Rank-1 Posts

In this section we will prove, that, although an applicant from As is able to improve the
rank of the post matched to him, he is never able get his true rank-1 post. This is shown
in Theorem 48, for which the following lemmas are needed.

Lemma 45. ([3]) Let a1 ∈ As and let q ∈ fG(a1). Then, q belongs to a non-sink
component of GM and the edge (M(a1), q) is not contained in a cycle in GM .

Proof. ([3]) We first show that (M(a1), q) is not contained in any cycle in GM . Assume
it was in some cycle C. Since every cycle has weight 0, every cycle is a switching circle.
When examining the matching M · C, we find another popular matching where a1 is
matched to one of his rank-1 posts, a contradiction to a1 ∈ As.
Now we show that q does not belong to a sink component. Assume not, then q belongs
to some sink component X of GM . By Property 33 we know that there exists a path
T from q to a sink q′ in X. Furthermore, by Lemma 41 we know that q ∈ (O1)G and
by Property 32 that q′ ∈ (E1)G. From the table in Property 34 we can see, that any
path from a node in O1 to a node in E1 with alternating nodes in between has weight
−1. Furthermore, w(M(a1), q) = +1, because M(a1) ∈ sG(a1) and q ∈ fG(a1). Thus,
(M(a1), q) connected with T forms a switching path, since it ends in a sink and has
weight 0, and applying this path gives a popular matching where M(a1) ∈ fG(a1). This
is a contradiction to a1 ∈ As.

Lemma 46. ([3]) Let a1 ∈ As and let q ∈ fG(a1). Let Pq = q ∪ {q′ : there is a path
from q to p′ in GM} and Aq = ∪q′∈PqM(q′). Then, a1 6∈ Aq.

Proof. ([3]) Since a1 ∈ As, by Lemma 45 q belongs to a non-sink component, say Y , of
GM . If M(a1) 6∈ Y then a1 6∈ Aq is obvious. Otherwise, let M(a1) ∈ Y . Assume for a
contradiction that there exists a path from q to M(a1) in Y . Since M(a1) belongs to
a non-sink component of GM , M(a1) ∈ (U2)G, which implies a1 ∈ (U2)G. Further, by
Lemma 41 q ∈ O1 since q ∈ fG(a1) and thus a1 ∈ (E1)G. Then according to Claim 30
the edge (M(a1), q) does not get deleted in either Step 4 or Step 13 of Algorithm 5.1.
This implies, that the edge (M(a1), q) is contained in a circle in GM , a contradiction to
Lemma 45.

Lemma 47. ([3]) Let a1 ∈ As and q ∈ fG(a1). Then there exist sets Aq and Pq with
|Aq| = |Pq|, such that for every a ∈ Aq choicesH(a) ∈ Pq.

Proof. ([3]) Since a1 ∈ As and q ∈ fG(a1), by Lemma 45 we know that q belongs to a
non-sink component of GM , say Y . Thus we can use the definition from Lemma 38 to

35

construct Aq and Pq with |Aq| = |Pq| and for each a ∈ Aq choicesG(a) ∈ Pq. Thus, to
prove the lemma we just have to show choicesH(a) ⊆ choicesG(a).
By Lemma 46 a1 6∈ Aq, and thus fG(a)∪ sG(a) = fH(a)∪ sH(a) for all a ∈ Aq. Different
edges though could be deleted in Step 4 and Step 13 of Algorithm 5.1 when run on G
and H, which we have to check.
Since every a ∈ Aq belongs to a non-sink component due to Lemma 45, a ∈ U2. By
Claim 30 we know that in Step 13 of Algorithm 5.1 no edges incident to applicants in
U2 get deleted.
It remains to show that, if an edge (a′, p′) gets deleted in Step 4 of Algorithm 5.1 when
run on instance H, then it also gets deleted in this step when run on instance G, to
uphold choicesH(a) ⊆ choicesG(a). Lemma 41 implies, that q ∈ (O1)G. From the table
in Property 34 we can see that no post in (U1)G can be reached from a node in (O1)G, so
for any q ∈ Pq q ∈ (O1)G∪ (E1)G. Furthermore, also for every a ∈ Aq a ∈ (O1)G∪ (E1)G,
because posts in (O1)G∪(E1)G get matched to applicants in (O1)G∪(E1)G. If a′ ∈ (E1)G,
by Claim 30 no edge incident to a′ gets deleted in Step 4 of Algorithm 5.1. If a′ ∈ (O1)G
and (a′, p′) gets deleted in Step 4, then q′ ∈ (O1)G ∪ (U1)G. Then, by Theorem 44 also
a′ ∈ (O1)H and p′ ∈ (O1)H ∪ (U1)H and the edge also gets deleted in Step 4 as well when
run on instance H.

Theorem 48. ([3]) Let a1 ∈ As. Then, by falsifying his preferences, a1 cannot get
matched to a post in fG(a1) in any popular matching in the falsified instance H.

Proof. ([3]) For a contradiction assume there exists a popular matching M ′ in H such
that a1 gets matched to a post q in fG(a1). By Lemma 45 we know that q belongs to
a non-sink component. By Lemma 47 we know that there exist sets of applicants and
posts, Aq and Pq, with |Aq| = |Pq| and choicesH(a) ∈ Pq for all a ∈ Aq, but a1 6∈ Aq.
Thus if a1 gets matched to q, one applicant a from Aq cannot get matched to choices(a),
a contradiction to the fact that M ′ is a popular matching.

5.3 The Modified Instance G̃

In this section we will describe a modified instance G̃, which is used to find a1’s cheating
strategies. One reason we do this is that some rank-1 edges, which got deleted in
Algorithm 5.1, can be used in falsified instances. Thus when creating G̃, we try to
imitate H’s characteristics regarding edge deletion, of course while still allowing the
popular matchings available in G. More precisely, the instance G̃ created out of G
should have the following properties: (i) Every popular matching in G is a popular
matching in G̃, and (ii), any edge (a, p) that gets deleted in Step 4 of Algorithm 5.1,
when run on instance G̃, also gets deleted in Step 4 of Algorithm 5.1, when run on an
instance H, with H � G w.r.t. to some applicant a1. However, the definition of G̃ is
independent of a1.
The graph G̃ is defined as follows: Let {q1, . . . , qk} be the posts in U1. Add a dummy

36

applicant b to the instance G, who has all these unreachable posts tied as his rank-1
preference. Formally, G̃ = (Ã ∪ P, Ẽ), with Ã = A ∪ {b}, Ẽ = E ∪ {(b, q1), . . . , (b, qk)},
and each of these edges is a rank-1 edge.
Note that fG̃ = {q1, . . . , qk} and sG̃ = l(b). Since all uneven nodes are matched in G1,

every maximum matching in G1 is also a maximum matching in G̃1, with the difference
that in G̃1 every node is odd or even.
First we show that this change does not affect the s-posts of any applicant.

Lemma 49. ([3]) For every a ∈ A, sG(a) = sG̃(a).

Proof. ([3]) Let M1 be any maximum matching in G1. Since M1 is also a maximum
matching in G̃1, examine the partition given by this. The only difference caused by the
addition of the unmatched node b is that every formerly unreachable post is now odd.
Thus (E1)G ∩ P = (E1)G̃ and the set s(a) is unchanged for every a ∈ A.

Now let M be a popular matching in G and let M̃ be the corresponding matching in
G̃, where M(a) = M̃(a) for every a ∈ A and M̃(b) = l(b). Since M̃1 is a maximum
matching in G̃1 and every applicant is either matched to his f- or s-post, M̃ is a popular
matching.

Lemma 50. ([3]) Let (a, p) be an edge which gets deleted in step 4 of Algorithm 5.1
when run on G̃. Then this edge also gets deleted in Step 4 when run on any instance H
such that H � G w.r.t a1.

Proof. ([3]) As mentioned before, nodes in G̃1 are either even or odd, so if an edge got
deleted in Step 4 of Algorithm 5.1, then it is of the form O1O1. To prove the lemma, it
thus suffices to show that any odd node in G̃1 stays odd in H1.
Let a ∈ A such that a ∈ (O1)G̃. This means, that there exists an alternating path T1 of

odd length starting at an unmatched post p in G̃1 to a. T1 cannot contain a1, because
a1 is unmatched in G̃1. For a contradiction assume that a ∈ (E1)H , so there exists an
alternating path T2 of even length starting at an unmatched applicant p in H1. T2 has
to start at a1, otherwise it was already present int G̃1. But then, joining T1 and T2
gives an augmenting path in M1, contradicting the maximality of M1 in H1 (that M1 is
a maximum matching was shown in Lemma 43).
Now consider p ∈ P such that p ∈ (O1)G̃ and denote with T1 the odd length alternating
path starting at an unmatched applicant. T1 cannot contain a1 as not an endpoint
because a1 is unmatched, and has to start at a1, otherwise it was also present in H1. Now
for a contradiction assume that p ∈ (E1)H . Denote with T2 the even length alternating
path with respect to M1 starting at an unmatched post in H1. T2 cannot contain a1
because a1 is unmatched, and joining T1 and T2 again gives an augmenting path in G̃1,
contradicting the maximality of M1 in G̃1.

Lemma 51. ([3]) Let a ∈ A \ {a1}, such that a belongs to a non-sink component G̃M .
Let H be an instance with H � G w.r.t. a1. Then choicesH(a) ⊆ choicesG̃(a).

37

Proof. ([3]) Since all a ∈ A \ {a1} keep their preferences, the only way to falsify
choicesH(a) ⊆ choicesG̃(a) is to delete some edges in G̃. Since a belongs to a non-
sink component, both a and M(a) belong to the set (U2)G̃. Thus, by Claim 30, no
edge adjacent to a gets deleted in Step 13 of Algorithm 5.1. Furthermore, according to
Lemma 50, the same edges get deleted in Step 4 when run on H and G̃, thus we have
choicesH(a) ⊆ choicesG̃(a).

5.4 Definition of the Strategies for Single Manipulative Applicants

In this section we will use the modified instance G̃ to formulate cheating strategies
for a single applicant a1 in As and Af/s. The true preference list of a1 is denoted by
L = P1, . . . , Pt, . . . , Pl, where Pi denotes a1’s set of i-th ranked posts and sG(a1) ⊆ Pt.

As Applicant

Let a1 ∈ As and let M be any popular matching in G, denote by M̃ the corresponding
popular matching in G̃ which matches b to l(b). By the definition of As we know that
M̃(a1) ∈ sG(a1) and thus M(a1) ∈ Pt. We use the switching graph to check whether
a1 can always be better off. Let Lf denote a1’s falsified preference list. The strategy is
reflected in Algorithm 5.2

Algorithm 5.2 Cheating Strategy for an As Applicant

1. For i = 2 . . . t− 1 check if there exists a post p ∈ Pi in a1’s preference list such that
(a) p belongs to a sink component of G̃M or,
(b) p has a path to M̃(a1) in G̃M

2. If no post satisfies (a) or (b), then a1’s true preference list is optimal
3. Else let p be a1’s most preferred post satisfying (a) or (b). Set p as a1’s first ranked
post
4. Let a2 be some applicant with M̃(a2) ∈ fG(a1) and p′ ∈ sG(a2). Set p′ as a1’s
second ranked post
5. Lf = p, p′

Theorem 52. ([3]) Let a ∈ As. Then there exists a cheating strategy for a which makes
him always better off iff there exists some post p in his preference list ranked 2 . . . t − 1
such that either
(a) p belongs to a sink component in G̃M̃ or

(b) p has a path to M̃(a1) in G̃M̃ .

Proof. ([3]) We first prove that, if there exists a post which satisfies either of the above
conditions, then in every popular matching in H a1 gets matched to p and thus is better

38

off than when listing his true preferences.
For a contradiction assume there exists a popular matching M ′′ in H such that M ′′(a1) =
p′. Note that M̃ is a popular matching in G̃, which is constructed from a popular
matching M in G. Let M̃(a2) = M(a2) = q. Since q ∈ fG(a1), by Lemma 45 q belongs
to a non-sink component. By Lemma 47 there exist sets Aq and Pq with |Aq| = |Pq|,
a1 6∈ Aq and for every a ∈ Aq, choices(a) ⊆ Pq.
We show that p′ also belongs to Pq and thus, if M ′′ matches a1 tp p′, at least one
applicant a in Aq cannot get matched to a post in choices(a).
If GM contains the edge (q, p′), then we are done. Since M(a2) = q and p′ ∈ s(a2),
the edge (q, p′) can only be absent in GM if the edge (a2, p

′) got deleted. In Step 4
of Algorithm 5.1 it cannot get deleted, as here only rank-1 edges get deleted. Since q
belongs to a non-sink component of GM , q ∈ (U2)G. Then also M(q) = a2 ∈ (U2)G, thus
the edge (a2, p

′) does not get deleted in Step 13 of Algorithm 5.1 either.
Finally we prove, that if our strategy does not find a post matching either condition,
there is no strategy which makes a1 always better off. More precisely, if no matching
post is found, there exists no instance H, in which there exists a popular matching which
matches a1 to a post with rank less than t.
For a contradiction assume there exists an instance H in which a1 listed fake preferences.
Let M ′ be some popular matching of H, such that M ′(a1) = q and a1 strictly prefers
q to his t-th ranked post. Since our strategy did not find q, it belongs to a non-sink
component Y of G̃M̃ and there exists no path from q to M̃(a1) in G̃M̃ . Consider the
sets Aq and Pq as defined in Lemma 38. We know |Aq| = |Pq| and for every a ∈ Aq we
have choices(a) ⊆ Pq. Note that a1 6∈ Aq, as then M̃(a1) ∈ Pq and thus there was a
path from q to M̃(a1), a contradiction. Also see that l(b) 6∈ Pq and thus b 6∈ Aq. That
means, for every a ∈ Aq we have choicesH(a) ⊆ Pq. Therefore, if M ′ matches a1 to q,
there exists at least one applicant in Aq who cannot get matched to one of his posts in
choices, a contradiction to the fact that M ′ is a popular matching.

Af/s Applicant

Now let us formulate a strategy for an applicant a1 in Af/s, with which he can improve
the rank of the post matched to him, if possible. Let M be a popular matching that
matches a1 to one of his rank-1 posts and denote by M̃ the corresponding popular
matching in G̃ which matches b to l(b). Again we use the switching graph to define the
strategy, as shown in Algorithm 5.3.

Theorem 53. ([3]) Let a1 ∈ Af/s. There exists a cheating strategy for a1 to get always
better off iff there exists some post p′ in (E1)G which satisfies the following properties:
(a) p′ belongs to a non-sink component Y of G̃M̃ and,

(b) p′ does not have a path T to M̃(a1) in G̃M with w(T) = +1.

Proof. ([3]) Like before, we first show that, if such a post exists, the strategy makes a1
indeed always better off and then, if no such post exists, that his true preferences are

39

Algorithm 5.3 Cheating Strategy for an Af/s Applicant

1. For every p′ ∈ (E1)G ∩ P check if
(a) p′ belongs to a non-sink component Y of G̃M and,
(b) p′ does not have a path T to M̃(a1) in G̃M with w(T) = +1
2. If no post satisfies both properties, then a1’s true preference list is optimal
3. Else set M(a1) = p as the rank-1 post of a1 and p′ as the rank-2 post in a1’s falsified
preference list
4. Lf = p, p′

optimal.
Suppose there exists a post p′ satisfying both properties and let H be the resulting
instance when a1 changes his preferences according to the above cheating strategy. We
will show that every popular matching in H matches a1 to p. M = M̃ \ {b, M̃(b)} is a
popular matching in H, because only a1 changes his preferences, but his assigned post
is still in choices(a1) and is an f-post. Let us now show that every popular matching in
H matches a1 to p. Assume for a contradiction that there exists a matching M ′ with
M ′(a1) = p′.
We know that p′ belongs to a non-sink component Y of G̃M and p′ does not have a
path T to M̃(a1) in G̃M̃ . Define Ap′ and Pp′ as in Lemma 38, thus |Ap′ | = |Pp′ | and for

every a ∈ Ap′ choices(a) ⊆ Pp′ . Since p′ does not have a path to M̃(a1), M̃(a1)
′ 6∈ Pp′

and thus a1 6∈ Ap′ . Further, M̃(b) 6∈ Pp′ since M̃(b) = l(b) does not have any incoming
edges. Thus, for every a ∈ Ap′ , choices(a) ⊆ Pp′ . But if M ′(a1) = p′, then at least one
applicant a from Ap′ cannot get matched to choices(a), a contradiction to the fact that
M ′ is a popular matching in H.
Now we prove that, if no post exists which satisfies both properties, a1’s true preferences
are optimal. For a contradiction assume there is no post satisfying both properties from
Theorem 53, but there exists an instance H in which in every popular matching a1 gets
matched to a post in fG(a1). Let q′ ∈ sH(a1). First note that q′ ∈ fG(a1), as otherwise
q′ ∈ (O1)G due to Lemma 41 and thus q′ could be no s-post. Since the algorithm did
not find q′, q′ either belongs to a sink component of G̃M̃ or it belongs to a non-sink

component of G̃M and has a path of strictly positive weight to M̃(a1). In both cases we
will construct a popular matching which matches a1 to q′.

• q′ belongs to a sink component Y of G̃M̃ . Thus there exists a path T starting in q′

and ending in a sink (Property 33). Because q′ ∈ sH(a1), q ∈ (E1)H∩P = (E1)G̃∩P ,
whereat the last equation follows from Theorem 44. Since the end point of T is a
sink vertex in G̃M̃ , which therefore also belongs to (E1)G̃ ∩P , we can see from the
table in Property 34 that w(T) = 0. Thus T is a switching path and we consider the
matching M1 = M̃ · T , which leaves q′ unmatched. Let M2 = M1 \ {(a1, M̃(a1))}
and M ′ = {(a1, q′), (a2, M̃(a))} ∪M2. Assume now that M̃(a1) 6∈ Y (i), or if yes,

then q′ does not have a path to M̃(a1) (ii). The case when q′ does have a path
to M̃(a1) (iii) is handled in the next case. Let AT = ∪p∈T {M̃(p)}. In either case,

40

(i) or (ii), a1 6∈ AT . Also, b 6∈ AT , since M̃(b) = l(b) does not have any incoming
edges. That means, for any a ∈ AT we have M(a) ∈ {fG̃(a) ∪ sG̃(a)} and thus
M(a) ∈ {fH(a) ∪ sH(a)} since their preferences remain unchanged. Furthermore,
M ′(a2) ∈ fG̃(a2) = fH(a2) and M ′(a1) ∈ sH(a1). Thus for every a M(a) ∈
{fH(a) ∪ sH(a)}. Further, since w(T) = 0 and a1 prefers M ′ but a2 M̃ , the
number of rank-1 edges in M ′ is the same as the number of rank-1 edges in M̃ .
Thus, M ′ is in fact a popular matching and we have the desired contradiction.

• q′ belongs to a non-sink component Y of G̃M : Then q′ has a directed path T to
M̃(a1) with w(T) = +1, otherwise the above algorithm would have found q′. The
case (iii) from before is also covered here, let also T be the path from q′ to M̃(a1).
Since q′ ∈ (E1)G̃ and M̃(a1) ∈ (O1)G̃, we see from the table in Property 34 that
also w(T) = +1.
Let M1 = M̃ \{(a1, M̃(a1)), (b, M̃(b))}, which leaves M̃(a1) unmatched. Let M2 =
M · T and M ′ = M2 ∪ (a1, q

′). Like before we can show that for every a M(a) ∈
{fH(a) ∪ sH(a)}. Further, since w(T) = +1 and a1 is no longer matched to one
of his rank-1 posts, the number of rank-1 edges in M ′ is the same as the number
of rank-1 edges in M̃ . Therefore we have a popular matching M ′ in H with
M ′(a1) ∈ sH(a1), the desired contradiction.

Theorem 54. ([3]) The optimal falsified preference list for a single manipulative appli-
cant to get better always can be calculated in time O(

√
nm) if the preference lists contain

ties, and in time O(n+m) if not.

Proof. ([3]) Like seen before, to calculate the optimal falsified preference list for an
applicant we have to (i) compute the set of popular pairs, (ii) construct the switching
graph and (iii) run one of the defined strategy algorithms. (iii) can be done in linear
time with respect to the switching graph. In Theorem 39 we have shown, that (i) and
(ii) can be done in time O(

√
nm) in the case of ties. In the absence of ties we can reduce

this to time O(n+m) using Algorithm 3.1.

41

6 An Alternative Characterization of Popular Matchings

In this section we want to give a different characterization of popular matchings than
the one obtained in Section 3. The idea first came up when trying to count all instances
that allow popular matchings and when trying to define the popular matching polytope.
Both of this did not work, however, this characterization might be interesting for some
other applications.
For any subsets A1, A2 of the applicants we define BA2(A1) = {p ∈ P | ∃a ∈ A1, f(a) =
p ∨ s(a) = p}, when respecting all applicants in A2, so it is the reduced subgraph of
A1 with respect to A2. Denote by F (A1) and S(A1) the sets of f- and s-posts for all
applicants in A1. With this an characterization of popular matchings is immediate:

Lemma 55. An instance does not allow a popular matching ⇔ there exists a subset A1

of the applicants, |BA(A1)| < |A1|.

Proof. An instance does not allow a popular matching ⇐ for some subset A1 of the
applicants, |BA(A1)| < |A1|: If such a subset exists, i applicants must be matched to j
posts with j < i, which is not possible.
If an instance does not allow a popular matching, some subset has to exist with A1

|BA(A1)| ≤ |A1|, otherwise there would be a matching in the reduced graph.

We can refine this characterization where we consider only sets of applicants with some
kind of independence:

Lemma 56. An instance does not allow a popular matching ⇔ there exists a subset A1

of the applicants, |BA(A1)| < |A1| ∧BA(A \A1) ∩BA(A1) = ∅

Proof. An instance does not allow a popular matching ⇐ for some subset A1 of the
applicants, |BA(A1)| < |A1| ∧ BA(A \ A1) ∩ B(A1) = ∅: If such a subset exists, i
applicants must be matched to j posts with j < i, which is not possible. Furthermore,
when examining the complete instance, the BA(A1) does not change, thus there exists
no popular matching.
An instance does not allow a popular matching ⇒ for some subset A1 of the applicants,
|BA(A1)| < |A1| ∧ BA(A \ A1) ∩ BA(A1) = ∅. If an instance does not allow a popular
matching, we know that for some subset A1 |BA(A1)| ≤ |A1|. Trivially, F (A \ A1) ∩
S(A1) = ∅. If not yet BA(A \ A1) ∩ B(A1) = ∅ holds, we can itaratively expand A1

until the condition holds. Since BA(A \ A1) ∩ B(A1) 6= ∅, there exists one applicant
a for which either one of the following is true: 1. f(a) ∈ F (A1) 2. s(a) ∈ S(A1) 3.
f(a) ∈ F (A1) ∧ s(a) ∈ S(A1). In either case, include a in A1. If 1 or 2 holds, BA(A1)
grows by 1, |A1| also. So |BA(A1)| < |A1| still holds. If 3 is true, BA(A1) grows by 0,
|A1| by 1, so |BA(A1)| < |A1| still holds. Since in every step we include an applicant to
A1 and A is finite, we at some stage reach a set with the desired properties.

42

7 Counting Instances that Allow Popular Matchings

In this section we try to count the exact number of instances allowing a popular matching
using a closed combinatoric formula. The formula could not be completed here, however
still results achieved so far shall be listed here, because by this principle the number
of groups of applicants with a specific size, who prohibit a popular matching, can be
counted, and using combinatorics to count popular matchings itself is a very interesting
thing. The formula was not finished because preventing double counting is not easy, and
was not studied more intensively, since the formula takes long to compute anyway and
the exact number of popular matchings can be approximated very well using measures,
see Section 7.3.

7.1 Preliminaries

We first define and explain some sub functions needed for the complete calculation. In
this section we will actually, contrary to the notion in some other sections, denote by n
the number of applicants and by m the number of posts. For the basic case, only the
case that |n| = |m| is considered under the assumption that each applicant has a strictly
ordered preference list of length |m|.

EV EN(a) = 1 if a odd, − 1 else

SAME(i1, . . . , ik) = factorial for each number of distinct values in i1, . . . , ik, e.g.
SAME(1, 1, 2, 3, 3) = 2! ∗ 1! ∗ 2!

DIFFPOST (a, b, c) = (m−a)!
((m−a−b)!) ∗

∑
i1>=1,...ib>=1,i1+...+ib=n−c,i1≤i2...≤ib

1
SAME(i1,...,ib)

∗
(n−c)!

i1!∗...∗ib!
We use this function to assign exactly b different posts to n− c positions, for this m− a
posts can be used.

(m−a)!
((m−a−b)!) describes the number of possibilities to chose b different values out of m − a
possibilities. The order is important here, as we will think of them as the value with the
lessest occurrences, the value with the second lessest occurrences etc. If n− c > b, the b
chosen values will be used more than once. The sum is used to iterate over all possible
combinations of occurrences. Value i1 has to occur at least once, since we assume the
values to be ordered, i2 has to occur at least i1 times and so on, the sum of all ik has to
equal the number of desired positions, n− c. If multiple values have the same number of
occurrences, the order becomes irrelevant for these, we prevent double counting by di-
viding through SAME(i1, . . . , ik). Finally (n−c)!

i1!∗...∗ib! denotes the number of permutations
of n− c elements, if the elements occur respectively ik times.

DP (a, b) = (m−a)!
(m−a−b)!∗b!

This function describes the number of possibilities to choose b different elements out of

43

m− a.
(m−a)!

(m−a−b)! denotes the number of possibilities to chose b elements, we divide by b! since
we do not care for the order.

ERPOST (a, b, c, d) = (1 ∗ (m − a)! + c(1 + (m − a − 2)! + (c − 1)[. . . (c − 2)(1 + 1 ∗
(m− a− c)!)]))b ∗DIFFPOST (m− d, d, n− b)
This function describes the number of possibilities, to chose the 2-nd till m-th priority
of an applicant, if exactly d s - posts exist and up to c other posts can be ranked higher
than his s - post.
With DIFFPOST (m − d, d, n − b) we choose these d s - posts, we draw here from
m− (m− d) = d posts and repeat the process for n− (n− b) = b applicants. Choosing
exactly d posts from d possibilities maybe seems unintuitive, but this way we assign a
priori every applicant some s - post out of the preselected d ones, making sure every
post of the d is used.

.

1

(m− a)!

. . . d

(m− a)!

1

1

(m− a− 1)!

. . . d 2

. . .

. . . c

. . .

. . . c

1

(m− a− 1)!

. . . d 2

. . .

. . . c

. . .

The tree above depicts, how the 2nd till m-th priorities of any applicant may look like.
As his second priority, on the one hand one the d s posts may directly be chosen (left
side). Then for the remaining priorities, there are (m − a)! priorities. On the other
hand, the second priority can be any of the other acceptable c posts (right side). For the
third priority this is repeated, and so an. But since we have already chosen beforehand
via the function DIFFPOST , which applicant gets which s post, instead of d possibil-
ities there remains only one, in the tree the red nodes are deleted. The inner part of
(1 ∗ (m−a)! + c(1 + (m−a− 2)! + (c− 1)[. . . (c− 2)(1 + 1 ∗ (m−a− c)!)]))b describes the
structure of the tree, the exponent b takes into account, that each of these b applicants
have this choice.

44

7.2 A Combinatorial Formula

My idea was to get to the total formula:∑
f,s≥1,f+s<n

DIFFPOST (0, f, 0) ∗DP (f, s) ∗ ERPOST (2, n, f − 1, s) (1)

+
n−1∑

size=3

∑
f,s≥1,f+s<size

n−size∑
i=1

n−size∑
j=1≥n

DIFFPOST (0, f, n− size) ∗DP (f, s) ∗ ERPOST (2, size, f − 1 + i, s)

∗SUBSET (size) ∗DIFFPOST (f + s, i, size) ∗ ERPOST (2, n− size, f − 1 + i, j)

(2)

It is based on Lemma 56. The idea is to count exactly those instances for which for some
subset A1, |B(A1)| < |A1| and thus no popular matching exists. Therefore we examine
every possible size of A1, first we consider subsets containing all applicants. Here an
instance does not allow a popular matching, if the number of f-posts plus the number
of s-posts is smaller than the number of applicants. We iterate over all values for the
number of f- and s-posts satisfying this condition and calculate for each pair of values
the number of instance allowing no popular matchings: We have DIFFPOST (0, f, 0)
possibilities to choose the f-posts and DP (f, s) possibilities to choose the s-posts (since
the f-posts are already chosen, n−s posts remain). By ERPOST (2, n, f−1, s) we select
the remaining priorities (1)
Basically we repeat this for all other sizes of subsets greater than 3. For this though the
formula slightly changes. First, in ERPOST also the f posts of the applicants not in
the subset (let i be this number) have to be taken care of, thus we add i to the number
of posts which can appear before the s-post. Second, we multiply the calculated number
with the number of possible subsets of the current size. Furthermore, we have to count
the number of possibilities how the priorities of the applicants not in the subset can
look like. DIFFPOST (f + s, i, size) describes their choosing of their i f-posts, the f-
and s-posts of the applicants in the subset are already taken and subtracted from the
possible posts. In the ERPOST part, the f-posts of the subset as well as the i f-posts of
the applicants not in the subset are remembered. Call the number of occurring s-posts
of the applicants not in the subset j.
By this though we now count, as mentioned, too much. There seem to exist four reasons
for this, call the applicants forming the subset with size s S, the set containing the other
applicants R:
1. We can move one applicant from R to S, if in S still no popular matching exists, we
already counted that instance in an iteration of a bigger subset S.
2. We can move multiple applicants from R to S, with the same argumentation as in 1,
we count too much here.
3. / 4. The same can be done from S to R.
Removing 1 and possibly 3 should not be too hard. However, 2 and 4 are hard to take

45

account of in the formula. Especially by moving applicants from S to R, in R of course
the number of applicants increases. Also the number of f- and s-posts increases, but
depending on how many of the moved posts share these, probably not as fast. This can
lead to other not popular matchings, which might have been counted in other iterations.
One valid result though the reader can take, is that the number of instances not allowing
a popular matching, where exactly s applicants prohibit the popular matching, can be
counted, for this just take the corresponding iteration of the calculation:

Lemma 57. The number of instances, in which at least ”size” applicants exist for which
no popular matching can be found, is given by

∑
f,s≥1,f+s<size

n−size∑
i=1

n−size∑
j=1≥n

DIFFPOST (0, f, n− size) ∗DP (f, s) ∗ ERPOST (2, size, f − 1 + i, s)

∗SUBSET (size) ∗DIFFPOST (f + s, i, size) ∗ ERPOST (2, n− size, f − 1 + i, j)

(3)

For me this is still an interesting result, thinking for example towards the relaxation of
the definition of popular matchings as done in Section 10, where subsets of applicants
may be removed to find a popular matching in every instance.

7.3 Estimating the Number of Popular Matchings

Despite not knowing how to count the exact number of popular matchings, we can esti-
mate this number very accurately testing many random instances.
When creating a number m of random instances, dividing the number of instances al-
lowing a popular matching by m and then taking this factor for the total number of
possible instances (which of course can be easily calculated by yn, where y is the num-
ber of possible permutations of a preference list and n the number of applicants), the
difference between the estimated result and the actual result will converge to a normal
distribution when m gets large. For the normal distribution a 95 % confidence interval
is given by [µ− 1.96 ∗ δ, µ+ 1.96 ∗ δ], with µ being the mean and δ the standard devia-
tion. Since we are here interested in estimations based on empirical data, we also have
to estimate mean and standard deviation. Interpreting xi = 1 as instance i allowing a
popular matching and xi = 0 as the opposite, we use the following easy estimators for

mean and standard deviation respectively: µ =
∑m

i=1 xi

m , δ =
√

1
m−1

∑m
i=1(xi − µ)2.

Details of the implementation can be found in Section 13.1.7, using that algorithm we
get the result shown in Figure 2 (for each instance size 1000000 random instances were
created).

46

Figure 2: Estimated Percentage of Instances Not Allowing a Popular Matching

47

8 Using Linear Programs in the Popular Matching Problem

In this section we want to introduce the usage of linear programs for problems related to
popular matchings. The plan was to first describe POP-M using a linear program and
then extending this concept to define a polytope consisting of subsets of the applicants
and posts allowing a popular matching. This would be a very interesting theoretical
result and has been done for regular matchings in [11]. The popular matching linear
program is formulated, but the polytope could not be described. However here a negative
result showing what is not sufficient to define it could be stated.

8.1 The Popular Matching LP

In this section we want to formulate the popular matching problem as a linear program.
This approach is not present yet in the existing literature, however a formulation of the
optimal edge weighted popular matching problem as a linear program ([12]).
A representation of a standard maximum matching problem on a bipartite graph with
edge set E and node set V looks as follows, for every edge e there exists a corresponding
variable xe:

Maximize
∑

e inE s.t.
∀u ∈ V

∑
e∼u xe ≤ 1

∀e ∈ E xe ≥ 0

As all optimal solutions of this turn out to be already integer, we can formulate the
matching problem as it is and do not have to add integer constraints.
We will use a similar characterization for the popular matching problem here, but since
the behavior of the optimal solutions is unknown, we will formulate it as an integer linear
program.
Again there are variables xe for each edge e, A denotes the set of applicants and P the
set of posts. Note that, since the graph is bipartite, to every edge belongs exactly one
applicant and one post. The ILP looks as follows:

Maximize 0 s.t.
∀a ∈ A

∑
e∼a xe = 1 (1)

∀p ∈ P
∑

e∼p xe ≤ 1 (2)
∀e ∈ E xe ≤ 0, if e’s rank is not 1 and e points to an f-post (3)

∀e ∈ E xe ≤

{
≤ 1, if e is the highest ranked edge of the incident applicant pointing to a non f-post

≤ 0, otherwise

(4) ∀e ∈ E xe ∈ {0, 1} (5)

Constraint (1) requires, that the found solution is a valid matching in every applicant,
but also, that all applicants are matched, which is a necessary criteria for popular match-
ings. Constraint (2) requires, that the solution is a valid matching in every post. With

48

constraint (3) we forbid the choosing of edges, which have not rank 1 but point to f-posts.
Constraint (4) enforces the correct selection of an s-post for every applicant. Only one
edge per applicant is allowed to point towards a non f-post, and this is required to be the
highest ranked edge, which ensures the existence of the correct edge towards the s-post
for each applicant. Constraint (5) finally is the integer constraint.
Note though, that formulating the LP for the popular matching problem and solving it
is not feasible. The effort is probably exponential with respect to the input, and we any-
way already have a very efficient polynomial time algorithm for this problem. However,
it would be practically useful to formulate the NP-complete problems defined in Section
9 and 10, namely the relaxations of the popularity condition, as then we could calculate
their solutions more efficiently.

49

8.2 The Popular Matching Polytope

After having successfully modeled the popular matching problem as a linear program,
a logical extension is close: It would be very interesting to define the so called popular
matching polytope, that is the polytope formed of all vectors representing subsets of
the graph nodes, such that these subsets admit a popular matching. Unfortunately, an
efficient characterization for this polytope could not be found, however a negative result
shall be presented, showing what is not sufficient for the definition.
In [11] this was done for the regular matching problem. There a system of linear in-
equalities was given to classify the perfectly matchable subgraph polytope of a given
bipartite graph - that is, all those subsets of the nodes, such that there exists a perfect
matching in them. For this, some sort of ”counting argument” was used, the inequalities
expressed, that for every subset of the nodes at least as many neighbors had to be picked
to ensure a possible matching. More specifically, the following inequalities were used to
describe the polyhedron [11], here x(Y) is the number of nodes included in the set Y
and Γ(Y) is the set of neighbors from nodes in Y :

0 ≤ xi ≤ 1 for all i ∈ V
x(V1)− x(V2) = 0
x(S)− x(Γ(S)) ≤ 0 for all S ⊆ V1

Furthermore, this LP turned out to have integer optimal solutions, which made it ex-
tremely useful for the practice. Since a popular matching is a perfect matching in the
reduced subgraph, the principle could be tried to copy for this topic. However, because
the reduced graph can be different for each subset of the applicants, such a ”simple
counting argument” like before, for example setting the number of applicants in the
subset in relation to the posts of their corresponding reduced graph, is not sufficient.
More precisely, it is not hard to show:

Lemma 58. A system of linear inequalities containing the inequalities x(A1) ≤ f(A1)
for every A1 ⊂ A, |A1| ≥ 3 cannot define the popular matching subgraph polytope for any
function f .

Proof. See this graph, here red lines represent rank-1 edges, blue lines rank-2 edges,
green lines rank-3 edges:

50

a1

a2

a3

a4

p1

p2

p3

p4

When restricting our attention to a1, a2 and a3 = A3 the reduced graph looks as follows:

a1

a2

a3

p1

p2

So for this instance no popular matching exists, in order to define the desired polytope
f(A3) < 3.
However for a1, a2, a3 and a4 = A4 the inequality should be fulfilled, since the complete
instance allows a popular matching, as the reduced graph looks as follows:

a1

a2

a3

a4

p1

p2

p3

p4

But when considering the LP for A4, also the inequality regarding A3 is included, which
is still not satisfied. Therefore, no LP of the above classification can define the polytope
for instances of the size 4. Furthermore, we can add arbitrarily many applicants with a
distinct first preference post to construct arbitrarily big instances containing our counter
examples for which the approach described above does not work.

51

9 The Least-Unpopularity Factor

In this section we will discuss the least-unpopularity factor of matching instances ([4]),
which is a criteria for choosing a matching if no popular matching exists. The idea of
it is to calculate for every possible two matchings N,M a factor u/v, where u is the
number of people who prefer N over M and v is the number of people who prefer M
over N . This way, matchings can be compared in their ”goodness”, eventually allowing
us to chose the ”best” matching of a selection of ”bad” ones.

9.1 Calculating the Least-Unpopularity Factor

First we need to define

Definition 59. ([4]) A matching N dominates a matching M by a factor of u/v, if u
people prefer N over M , and v people prefer M over N .

Definition 60. ([4]) The unpopulariy factor of a matching is the greatest factor by
which it is dominated by any other matching (ignore matchings with u = v = 0).

Definition 61. ([4]) The least-unpopularity factor of an instance is the minimum of the
unpopularity factors of all possible matchings. The matchings which achieve this factor
are considered optimal.

Note that a matching M has an unpopularity factor of∞, if and only if another matching
represents a Pareto-improvement over M . That means that a matching has a finite
unpopularity factor if and only if it is Pareto efficient. Furthermore, a matching is
popular according to our basic definition, iff its unpopularity factor is 1 or less.
Like done before with switching paths and switching circles (e.g. in Section 4), here we
will consider applying paths and circles to matchings. The paths and circles are the same
as switching paths and circles except the additional requirements, so they are paths and
circles containing applicants and pots alternatively. Again we can apply these paths and
circles, matching every applicant in it to its other neighbor in the path or circle. We
say a path T or circle C is applicable to a matching M if M · T or M · C is a valid
matching. Each reassignment in a path or circle may represent a promotion or demotion
with respect to the applicant, depending on his preferences.

Pressures

Directly using the definition above, to calculate the unpopularity factor of a matching
we would have to calculate all other matchings and compare them, which would mean
exponential effort. Luckily though there is a way to calculate the unpopularity factor
efficiently, using the concept of pressures.

52

Definition 62. ([4]) Let M be a pareto efficient matching. The pressure of a filled
position p in M is the largest k for which there exists an alternating path applicable to
M , which promotes k people without demoting anyone and ends with the demotion of
the occupant of p to his last resort. Note that the demotion itself is also such a path for
k = 0. The term pressure comes from the idea of k people stacked behind the current
occupant of p, all of them wanting to improve their current position.

Theorem 63. ([4]) The unpopularity factor of a matching is the greatest pressure of
any of its filled positions.

Proof. ([4]) We have to proof: If (a) M has a position with pressure k, then there exists
another matching N which dominates M by at least k and (b), if M is dominated by
another matching N with factor k, then there exists a position with pressure at least k.
(a) is fairly easy. For this simply consider the position with pressure k and its k ”stacked”
applicants. Let N be the result of applying this path to M , then there are k people better
off compared to one person who is worse off, giving the desired unpopularity factor of k.
In (b) we let u and v be the numbers of people who are better and worse off in N than in
M . First we demote all people, who are worse off in N than in M , to their last resorts,
this does not change u nor v. When now examining M ⊕N and leaving out paths and
cycles which do not demote or promote anyone, we find only disjoint paths, no cycles.
This is, because all applicants worse off in N are matched to their last resort, letting the
path end in this. Furthermore, there has to exist at least one path demoting someone,
so that M is not a Pareto-improvement. So there exist i paths demoting exactly one
person and promoting the others, with i = v. Let ui be the number of people being
promoted in path i, of course

∑
ui = u. By the pigeon hole principle then at least one

ui exists with ui ≥ du/ve = k. Take the position whose applicant is demoted, this gives
the desired pressure.

Corollary 64. ([4]) The unpopularity factor of a matching, if finite, is an integer.

Computing the Unpopularity Factor

Theorem 65. The unpopularity factor of a given matching can be calculated in time
O(m

√
n), where n is the number of positions and m is the total number of entries in the

preference lists.

The pressures of a matching can be calculated with the following algorithm (presented
in [4]), which is based on Goldberg’s shortest-path algorithm ([13]):
Out of a matching M create a graph G, whose vertices are positions and with edges
defined as follows:

53

1. Add an edge from p1 to p2 with weight −1, if p1 is filled by a person, who strictly
prefers p2 over p1.

2. Add an edge from p1 to p2 with weight 0, if p1 is filled by a person who is indifferent
between the two posts.

Run Goldberg’s algorithm.
If a cycle with negative length or a path with negative length arriving in an unfilled
position is found, output that M is not Pareto-optimal. Otherwise the pressure of each
position is the negative of the length of the shortest path arriving at it.

Correctness ([4]): The edges in G represent possible reassignments of people, exactly
the ones which are not demotions are included in the graph. If there exists a cycle with
negative length or a path of negative length arriving at an unfilled position, each person
in it can be promoted without demoting anyone, thus giving a Pareto-improvement.
Otherwise, for every position the shortest negative path represents the maximum number
of people ”stacking up” behind that position, which is the pressure of the position.

Taking the running time of Goldberg’s algorithm which dominates the overall algorithm,
we find a running time of O(m

√
n).

9.2 NP-hardness of Finding Least-Unpopularity Matchings

In this section we will explain the polyomial time reduction from the NP-complete prob-
lem 3-satisfiability (3SAT) to finding the least-unpopularity factor of an instance, like
presented in [4], which of course then shows, that finding the least-unpopularity factor
of an instance is also NP-hard. The reduction converts an instance of 3SAT to a match-
ing instance, which has a least-unpopularity factor of at most 2 iff 3SAT is satisfiable,
otherwise the least-unpopularity factor is higher.

Overview over the Reduction

Like many reductions this one here also uses different gadgets with a different purpose
to model an instance of 3SAT as a matching instance. For each variable x we create a
m-n gadget, with the purpose of forcing a decision whether to satisfy x or x̄. For each
positive and negative occurrence of the variable a post is created, which is left open if x
is allocated that way. Furthermore for each clause a pool is created, which is connected
to all m-n gadgets of the variables occurring in the clause. The pool needs to get at least
one post, otherwise it produces a pressure higher than the one allowed. Then an instance
of 3SAT is satisfiable, iff the matching instance has a least-unpopularity factor of at most
2. Each gadget consists of internal and linking people, as well as internal and external
posts. Internal people are only willing to occupy internal positions, whereas a linking

54

person is open to occupy also exactly one linking position, which is his first choice. From
his point of view any reassignment from that position is a demotion and could also just
be a demotion to his last resort. Thus the state of domination, which can be achieved
by demoting a linking person, depends only on the state of the gadget providing the
replacement - gadgets are isolated from each other unpopularity wise. Therefore, each
gadget represents a specific constraint, if it is satisfied the gadget produces a pressure of
at most the ideal pressure of 2, otherwise a higher pressure results.

The Gadgets

The first type of gadget is the box. It consists of four internal positions (x, y, z and
u), three internal people (i1, i2 and i3) and three linking people (w, n1 and n2). The
priority lists look as follows:



x y z u lw ln1 ln2

w 2 3 5 4 1 − −
i1 1 2 3 4 − − −
i2 1 2 3 4 − − −
i3 1 2 3 4 − − −
n1 − − − 2 − 1 −
n2 − − − 2 − − 1


We call w the wide person and n1 and n2 narrow people. A box is satisfied and produces
a pressure of 2, if either the wide person or both narrow people get their linking positions.
However, if both the wide person and at least on narrow person are denied their linking
position, the gadget constraint is not satisfied and a pressure of 3 results.
A box is a ”two-for-one” gadget. If it is denied its wide linking position, it demands both
narrow linking positions. Building on this we can create an m-for-one and an m-for-n
gadget. When taking m-1 one boxes and always identifying the wide positions of each
box after the first one with a narrow position of the previous box, we get a m-for-one
gadget. When combining two such gadgets, respectively with m− 1 and n− 1 boxes, by
giving the two boxes in the middle the same wide position, we get an m-for-n gadget.
This is, because if one of the middle boxes claims the central wide position, the m
narrow positions on that side can remain free, but the n narrow positions of the other
side have to be occupied. See Figure 3 for an exemplary 4-for-3 gadget. In it the circles
denote linking positions and the lines adjacent to them linking people, internal people
and positions are not shown but just symbolized by the box. On the left side of the
gadget both narrow positions of each box are visualized to its left, the wide person to
its right - on the right side it is the other way around.

A pool consists of two internal positions and three linking people with the following
structure:

55

Figure 3: A 4-for-3 gadget

¬x1 x1 ¬x2 x2
¬x3
¬x3

(x1 ∨ x2 ∨ ¬x3) (¬x1 ∨ ¬x2 ∨ ¬x3)

Figure 4: An Exemplary Matching Instance


x y lf1 lf1 lf3

f1 2 3 1 − −
f2 2 3 − 1 −
f3 2 3 − − 1


If k of the people in the pool are denied their linking positions, there exists one linking
position with a pressure of k.

The Reduction

For each variable xi occurring in the instance of 3SAT we create an m-for-n gadget,
where m and n are the numbers of positive and negative occurrences of xi. We will
think of the set of narrow positions of the respective side as references to xi or x̄i. Then
for each clause we add a pool and identify its three linking positions with narrow posts
of the m-for-n gadgets of the variables it contains.
The example in Figure 4 shows how the 3SAT formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨
¬x3) is converted to a matching instance: In this diagram rectangles represent m-for-
n gadgets and squares pools. The narrow linking positions of the m-for-n gadgets for
the corresponding variables are displayed by their label (e.g. x1), lines display linking
people.

56

Correctness

We now show how to find a valid matching with pressure at most 2 in the created
instance, if the corresponding instance S of 3SAT is satisfiable by a tuple of truth values
(t1, . . . , tk). If ti is true we match each box on the non-negated (xi) side according to
the first table below, fillings its wide linking position, in each box on the negated (¬xi)
side according to the second table, filling both its narrow linking positions. Here the
superscripts over the posts show the resulting pressure. In the first table n1 is the linking
person whose linking position is shared with a pool, and n2 is matched to his last resort.



x2 y1 z0 u1 l0w l2n1
l1n2

w 2 3 5 4 (1) − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − (2) − 1 −
n2 − − − 2 − − 1





x2 y1 z0 u0 l1w l0n1
l0n2

w 2 3 5 (4) 1 − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − 2 − (1) −
n2 − − − 2 − − (1)


Observe now, that all narrow linking positions ln1 are not occupied and can be taken by
linking people of xi containing pools. If ti is false, we match the boxes on each side the
other way around. Then we assign every person in the pools to their linking position if it
is available, otherwise to the best available position in the pool. Since the assignment of
the ti satisfies S, for each pool at least one person can be assigned to his linking position,
resulting in a pressure of at most 2. Now since nowhere we found a pressure of more
than 2 and the gadgets are ”isolated”, like stated before, M has the least-unpopularity
factor of at most 2.
Now let us assume S is not satisfiable and let M be an arbitrary Pareto-efficient matching
of the created instance. Then, by the previous comments, one can see that not all
gadget constraints can be satisfied. It remains to show that we then indeed get a least-
unpopularity factor of greater than 2. First suppose a box constraint is dissatisfied, i.e.
the wide person and at least one narrow person (say n1) are denied its linking position.
If one position of the box was not occupied in it, one person was matched to his last
resort and the matching would not be Pareto-optimal, as that person could be matched
to the empty post. If n1 is matched to his last resort, we could promote him to u, its
occupant to y, its occupant to x and demote its occupant to his last resort. Otherwise,
one of the persons w, i1, i2 or i3 is matched to his last resort. Then we can promote
him to z, its occupant to y, its occupant to x and again demoting its occupant to his
last resort. Either way, in both cases at least a pressure of 3 occurs. Now suppose a
pool constraint is dissatisfied, meaning all persons in the pool are denied their linking
positions. Then one person must be matched to x, one to y and one to his last resort,
say the order is f1, f2 and f3. We can promote f3 to y, f2 to x and f1 to its linking
position, demoting its previous occupant to his last resort. Again this gives a pressure
of 3, which in total shows, that M cannot achieve a least-unpopularity factor of 2 or
lower.

57

10 Subset Maximal Popular Matchings

After Section 9 in this section another relaxation of the definition of popular matchings,
in order to find a satisfying result for every instance, is to be proposed. This is the
concept of subset maximal popular matchings, which is a very natural criteria to apply,
if no popular matching exists, yet it has not been investigated though. For this we define
the applicant number α of an instance of POP-M:

Definition 66. Let G = (A ∪ P,E) be an instance of the popular matching problem.
Then, the applicant number of G, α(G), is defined as:
α(G) = max{|A′| | A′ ⊆ A ∧G′ = (A′ ∪ P,E) admits a popular matching}.

Using this, we define which matching is optimal, and we are always able to output a
matching when presented an instance of POP-M:

Definition 67. Given an instance G = (A∪P,E) of POP-M, a matching M ′ is a subset
maximal popular matching iff it is a popular matching in a subset A′ of the applicants
with |A′| = α(G). In M ′, every applicant not contained in A′ is unmatched.

Definition 68. Given an instance G = (A∪P,E) of POP-M, the problem POPSUB-M
is the problem of finding a subset maximal popular matching of G.

Note that for every instance a subset maximal popular matching exists (trivially with
|A′| = 1) and that there can exist multiple subset maximal popular matchings. Further-
more, every popular matching is also a subset maximal popular matching with |A′| = |A|.

10.1 Complexity of Finding a Subset Maximal Popular Matching

The question arises how difficult it is to find a subset maximal popular matching. It
is easy to see that POPSUB-M ∈ NP . When examining the corresponding decision
problem to find a subset maximal popular matching with A′ ≥ d, we can present a string
coding the resulting subset for which the needed conditions can be checked in polynomial
time. Using the decision problem, POPSUB-M can be solved by, for example, a binary
search over possible values for d.
It is not yet known what a lower bound for solving POPSUB-M is, intuitively it also
seems to be NP-hard, as exponentially many subsets of the applicants exist and for each
the reduced graph can be different. A similar approach as in the reduction for finding
the least-unpopularity factor was tried but not finished.

58

11 Conclusion

Popular matchings are a natural criterion for defining fair matchings. The facts that they
are efficiently computable and also somewhat robust against manipulations justify their
practical application. However, so far they are just examined in theory, but recently
the interest in them has grown due to certain publications. A negative point though is
that not every instance allows a popular matching. Two generalizations of the original
definition, so that for every instance a matching can be chosen, are known: A definition
using the least-unpopularity factor and subset maximal popular matchings. What is still
missing is a generalization which can be computed efficiently, as for the previous two no
polynomial time algorithm is known.
This work has hopefully collected the most important results regarding popular match-
ings. Hopefully, also the new facts and questions presented here are helpful and inter-
esting for further research.

12 Acknowledgments

I want to thank Marco Lübbecke and Florian Dahms for introducing me to the fascinating
topic of popular matchings. And, of course, for the opportunity to write my bachelor
thesis in this field and their continuous and great support. I also want to thank Britta
Peis for being the second corrector.

59

References

[1] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn.
Popular matchings. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’05, pages 424–432, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[2] Eric McDermid and RobertW. Irving. Popular matchings: Structure and algo-
rithms. In HungQ. Ngo, editor, Computing and Combinatorics, volume 5609 of
Lecture Notes in Computer Science, pages 506–515. Springer Berlin Heidelberg,
2009.

[3] Meghana Nasre. Popular matchings – structure and cheating strategies. CoRR,
abs/1301.0902, 2013.

[4] RichardMatthew McCutchen. The least-unpopularity-factor and least-
unpopularity-margin criteria for matching problems with one-sided preferences. In
EduardoSany Laber, Claudson Bornstein, LoanaTito Nogueira, and Luerbio Faria,
editors, LATIN 2008: Theoretical Informatics, volume 4957 of Lecture Notes in
Computer Science, pages 593–604. Springer Berlin Heidelberg, 2008.

[5] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[6] P. Gärdenfors. Match making: Assignments based on bilateral preferences. Syst.
Res., 20:166–173, 1975.

[7] Colin T. S. Sng and David F. Manlove. Popular matchings in the weighted ca-
pacitated house allocation problem. J. of Discrete Algorithms, 8(2):102–116, June
2010.

[8] DavidJ. Abraham and Telikepalli Kavitha. Dynamic matching markets and voting
paths. In Lars Arge and Rusins Freivalds, editors, Algorithm Theory – SWAT 2006,
volume 4059 of Lecture Notes in Computer Science, pages 65–76. Springer Berlin
Heidelberg, 2006.

[9] Telikepalli Kavitha and Meghana Nasre. Optimal popular matchings. Discrete
Applied Mathematics, 157(14):3181 – 3186, 2009.

[10] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[11] E. Balas and W. Pulleyblank. The perfectly matchable subgraph polytope of a
bipartite graph. Networks, 13:495–516, 1983.

[12] Vamski Kundeti. Algorithms for optimal popular matching in a weighted bipartite

60

graph under general preferences.

[13] A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on
Computing, 24(3):494–504, 1995.

[14] Bettina Klaus and Flip Klijn. Procedurally fair and stable matching. Economic
Theory, 27(2):431–447, 2006.

[15] F. Masarani and S.S. Gokturk. On the existence of fair matching algorithms. Theory
and Decision, 26(3):305–322, 1989.

[16] Bettina Klaus and Flip Klijn. Median stable matching for college admissions. In-
ternational Journal of Game Theory, 34(1):1–11, 2006.

[17] Chien-Chung Huang and Telikepalli Kavitha. Popular matchings in the stable mar-
riage problem. In Luca Aceto, Monika Henzinger, and Jǐŕı Sgall, editors, Automata,
Languages and Programming, volume 6755 of Lecture Notes in Computer Science,
pages 666–677. Springer Berlin Heidelberg, 2011.

[18] Rupam Acharyya, Sourav Chakraborty, and Nitesh Jha. Counting popular match-
ings in house allocation problems. In EdwardA. Hirsch, SergeiO. Kuznetsov, Jean-
Éric Pin, and NikolayK. Vereshchagin, editors, Computer Science - Theory and Ap-
plications, volume 8476 of Lecture Notes in Computer Science, pages 39–51. Springer
International Publishing, 2014.

61

13 Appendix

13.1 Implementation

In this section a program written during the course of this bachelor thesis shall be
presented, which implements most of the algorithms described in this work. In my
opinion it is a useful tool to find and understand popular matchings and related problems,
especially because of its graphical output. In this section also example runs of described
algorithms are depicted. The source code and an executable can be found online at
https://github.com/OliverScheel/PopularMatchings.
The implemented functionalities include:

1. Finding popular matchings using Algorithm 3.1 for instances without ties and
using Algorithm 3.3 for instances with ties.

2. Finding popular matchings using a linear program.

3. Creating the switching graph for a popular matching, counting and enumerating
all popular matchings.

4. Counting all instances that allow a popular matchings of a given size n, that means
all instances with n applicants and n posts are checked, with all applicants having
a complete preference list.

5. Creating m random instances of a given size n, that means all instances with n
applicants and n posts are checked, with all applicants having a complete preference
list, and counting the number of instances that allow a popular matching.

6. Repeating 5) for each m in a row of numbers, and calculating for each m a 95 %
confidence interval to estimate the actual number of instances allowing a popular
matching.

13.1.1 Overview

The program has been written in C# for Windows computers.
Before coming to the code, we will briefly look at the user interface and give an overview
of its usage. The program consists of one form with three tab pages, which look as
follows:

62

63

On the first tab page, ”Calculator”, one can find a popular matching using either the
solver for instances without ties or with ties. For this, the instance has to be encoded
and entered in the textfield ”Input”. After clicking ”Go”, the result is displayed next
to ”Output”. If the option ”Print” is enabled, the solver will create a graphical output.
Via ”Choose”, the output path for this can be determined, ”Open Folder” opens it in
the Windows Explorer.
On the bottom half of the page, one can experiment with the switching graph after
a popular matching has been found. When clicking ”Create Switching Graph”, the
switching graph is created and the number of popular matchings for this instance is
calculated and outputted next to ”#Popular Matchings”. If ”Print” is enabled, the
switching graph is pictured in the selected directory. Clicking ”Enumerate” creates an
enumeration of all popular matchings, which are displayed in the selected path in the
subfolder ”Enumeration”.

On the second tab page ”Simulator”, via ”Find All Instances”, all instances of the given
size are created and the number of instances which do not allow a popular matching is
displayed, as well as the total number of instances. Note that his function is merely for
testing purposes and is not feasible already for sizes greater than 4 or 5.
Via ”Calculate Random”, ”#Iterations” many instances of the desired size are created
and tested for popularity. The output is a 95 % confidence interval for the actual number
of instances not allowing a popular matching.
”Calculate Random Row” does the previous for the row of numbers between ”n Start”
and ”n End” and outputs the results in the Excel file ”confidence.xls” in the application
directory.

64

On the last tab page, ”LP”, the popular matching problem is solved using linear pro-
gramming. Next the result also the constructed LP, i.e. the constraints, is displayed in
the text field at the bottom.

Let us conclude this section with the description of the input and output format of the
program.
As input simply the joint priority list of the instance is required, that is the concatenation
of the input lists of all existing applicants. One single preference list entry of an applicant
consists of the ID of the post and the rank corresponding to that edge, it is written as
targetID.rank. Each entry is separated by a comma, whole preference lists are separated
by a minus. At the end of the input string we append −capacity to describe the capacity
of each post. Note that this way IDs of applicants are given automatically, while reading
the input for each found priority list an applicant is created and the ID is incremented.
IDs of posts are given implicitly, for each occurring post ID in a preference entry a post
is created. A sample input could look as follows: 0.0, 1.1 − 0.0, 1.1 − 2.0, 1.1 − 1. This
scheme can also be simplified by omitting every rank, when the priority list is ordered
and does not contain ties. Textwise, the output of the program is either ”No Popular
Matching” or a string representation of a matching. In it, simply all matching partners
are printed in the form ApplicantID− >PostID.
The program can also output instances and matchings in a graphical form: Posts are
drawn as rectangles, applicants as circles, the posts on the right side, the applicants
left of it. Each group is drawn in a vertical line, the object with ID 0 is located at
the top, with increasing IDs towards the bottom. The unique l-posts of the applicants
are drawn to their left. Preferences are represented as lines, with decreasing thickness
for decreasing rank. For more clarity colors are iterated between black and green, for
example we get the following: Rank 1 - Black, Thick; Rank 2 - Green, Middle; Rank
3 - Black, Thin. If an applicant is matched to a post, the line is drawn in red. The
types of the nodes, as determined during the algorithm of the solver for instances with
ties, is written next to the node. −1 means not yet determined, 0 even, 1 odd and 2
unreachable. The input example from before is then represented as follows:

13.1.2 Solver for Instances Without Ties

In this section we will look at the class PopSolver, which can solve the popular match-
ing problem for instances without ties. The function Match() is responsible for find-

65

ing a popular matching. In GetReduced() first the reduced graph is calculated. In
Inflate() the posts are inflated so that each post has only capacity 1. The function
GetApplicantComplete() then checks for the existence of an applicant-complete match-
ing. For this, first all posts connected to a single applicant are matched and posts with
degree 0 are deleted. If then still an applicant-complete matching can be found, the
function GoPath() is called, which traverses all the disjoint cycles of the graph and
matches every second edge. Afterwards, in Match(), all f-posts are filled.

The input 0, 3, 2 − 1, 3, 0 − 2, 1, 3 − 0, 1, 2 − 1 creates the output below, as you can see
there exists a popular matching and the resulting images represent the important steps
of the algorithm:

0Start.bmp

1Reduced.bmp

2Inflated.bmp

66

3ApplicantComplete.bmp

4AllFPostsMatched.bmp

67

13.1.3 Solver for Instances With Ties

This section covers the class PopSolver2, which can solve the popular matching problem
for instances with ties. Again, the function Match() is the starting function to find a
popular matching. Then, first Inflate() is called to inflate the instance. After that,
the function MaxMatching() is called, which tries to find a maximum matching on
edges of rank 1. To find such a maximum matching, a simple algorithm based on
augmenting paths is used. Via depth-first-search augmenting paths from unmatched
nodes are searched, and then matched until no such paths exist. The running time
of this is O(nm). The fastest known algorithm for finding maximum-matchings is the
Hopcroft-Karp algorithm, which runs in O(n

√
m) though. Thus the procedure used

here does not reach the overall running time as described in Section 3.3. But as the
implementation is not the main part of this work, the slightly slower running time is
acceptable. Furthermore, when implementing the Hopcroft-Karp algorithm one has to
be very careful to do it efficiently, to not make it even slower - another reason for this
simple algorithm. The function DetermineTypes() then determines the types of all
nodes. Since the definition of odd and even is based on the distance from unmatched
nodes, from each of these a search is started to find all existing paths, on the way
directly the odd and even nodes can be determined. With this information now the
reduced graph can be determined, therefor the function GetReduced() is called. In it,
according to the characterization in Lemma 8, posts which are odd and unreachable
are deleted as candidates for the s-posts. Then the highest ranked even node for each
applicant is set as s-post. Thereafter, DeleteEdges() is called, in which edges are deleted
connecting two odd nodes are an odd and an unreachable node, which is not possible
in a popular matching. Then, again the function MaxMatching() is called to find
a maximum matching, but this time edges of any rank are allowed. If the resulting
matching is applicant-complete, it is also popular.

The same input as above, 0, 3, 2− 1, 3, 0− 2, 1, 3− 0, 1, 2− 1, is now processed using this
solver, which creates the output below. As you can see there exists a popular matching
and the resulting images represent the important steps of the algorithm:

0Start.bmp

68

1Inflated.bmp

2FirstMax.bmp

3Types.bmp

69

4Reduced.bmp

5EdgesDeleted.bmp

6GeneralMaxMatching.bmp

70

13.1.4 Creating the Switching Graph

A switching graph is represented as an instance of the class SwitchingGraph. It is
created in its constructor, to which the underlying instance has to be passed. The
posts and edges are created according to the procedure described in Section 4, then
IdentifyComponents() is called to identify the components of the switching graph. In
it a depth-first-search is used to find the tree and cycle components of the graph. When
adding an s-post to a component, a variable is incremented. That way, the function
Count() can count the number of popular matchings according to the formula described
in Theorem 26.
The example from Figure 1 in Section 4 is programatically solved and displayed, tree
components are drawn in red, cycle components in blue:

71

Posts are drawn as rectangles, with their corresponding IDs in the shape. Edges repre-
sent the applicants, their IDs are drawn next to them.
In the example in the tree component only post 6 is an s-post, so there exist no switching
paths in that component. Since there exists one cycle component, the number of popular
matchings for this instance is 21 ∗ 1.

72

13.1.5 Enumerating Popular Matchings

The function Enumerate() enumerates all possible popular matchings of an instance and
outputs them graphically in the selected folder. For that, the function CreateV ectors()
recursively creates all possible vectors of selected switching paths and cycles. Then for
each vector, the corresponding switching paths and cycles are applied and the resulting
matching is saved.
As mentioned, for the previous example there exist two popular matchings. The instance
itself is visualized as:

The matching the solver outputs is this, which is also the first matching which is enu-
merated (”0.jpg”):

73

The other popular matching can be created by applying the switching cycle in the one
cycle component (”1.jpg”):

74

13.1.6 LP Solver

This section is about the class LPSolver, which is used to solve the popular matching
problem using linear programs. Core of it is the Gurobi Optimizer, whose .Net interface
is used to solve the actual linear program. As variables serve the edges - they are binary,
as not integer numbers have no useful interpretation in the model. Then iteratively the
model is created. First for every applicant and post conditions are added, so that the
sum of all variables corresponding to edges incident to that applicant or post is less or
equal to 1. For applicants we require the sum to be even equal to 1, as we know that
all applicants have to be matched. Then for each edge, which is incident to an f-post
and has not rank 1, the corresponding variable is restricted to be less or equal to 0, as
these edges cannot be taken in a popular matching. Afterwards, all edges incident to an
applicant (which essentially are the contents of his priority list) are checked, and only
the highest ranked edge connected to a not f-post is allowed, that is, for all variables

75

corresponding to the other edges a ≤ 0 condition is inserted. Simultaneously, not feasible
edges are deleted in the actual instance, so that the instance can be drawn accordingly.
Eventually also conditions are inserted to guarantee the matching of all f-posts.
For the example 0, 3, 2 − 1, 3, 0 − 2, 1, 3 − 0, 1, 2 − 1, the output 0− > 0; 1− > 1; 2− >
2; 3− > 7; is generated. If ”Print” is enabled, the LP conditions are printed out, they
are for this instance:

13.1.7 Enumerate Instances of a Given Size

This section is about the class Simulator. With it, all instances of a given size can be
created, or a random subset of them.
We here only consider instances with an equal amount of applicants and posts, which we
call the instance size, furthermore each post is contained in each applicant’s preference
list. The function FindAllMatchings() creates and counts all possible instances of a
given size n. For this the function RecPrios() is used. It is called recursively with each
possible preference list for each applicant except applicant 1. Applicant 1 always gets
the same priority list, this way a factor of n! possible permutations of posts in respect

76

to his preferences does not have to be examined. While creating all instances, they
are checked for popularity and the total number is incremented too, thus we eventually
get the complete result when paying attention to the permutation factor. Using this
approach, counting all instances of size greater 6 will take a very long time. We could
reduce the effort by taking out other possible permutations (for example permutations
of the posts in general), but this is not implemented, as all this only slows the growths of
the effort, but it still remains exponential. This is, because the number of all instances
of a size n is given by (n!)n, which is, of course, an extremely quickly growing function.
For instance sizes 3 to 5 we get the following result:

n # not popular instances # instances
3 6 216
4 24264 331776
5 3211845120 24883200000

Therefore, the program contains functions to estimate the number of instances allowing
a popular matching fairly precise, but with a feasible effort.
The function SimulateRandomInstanes(n, a) generates a random instances of size n.
Then the factor x/a is calculated, where x is the number of instances not allowing a
popular matching. This is then projected to the total number of instances by calculating
(x/a)∗n!)n. It is unclear though how reliable this number alone is. Therefore the program
calculates a 95 % confidence interval for it. This calculation is based on the assumption,
that the projected number converges towards a normal distribution with a mean of the
actual total number. Thus, a 95 % confidence interval is given by [µ− 1.96 ∗σ/

√
N,µ−

1.96 ∗ σ/
√
N], where µ is the mean, σ the standard deviation and N the number of

samples. Since we here only inspect random samples, we have to estimate also µ and σ.
For the mean we simply use the average as an estimator x̄, for the standard deviation

the corrected sample standard deviation s =
√

1
N−1

∑
i=1N(xi − x̄)2. N of course is a

in this case, the single xi we interpret as 0 or 1, depending on whether the generated
instance i allows a popular matching or not.
The function TestCalcConfidenceRow() repeats the above for a row of numbers and
prints the results in an Excel file. For instance sizes 3 to 18 the results are depicted in
Section 7.3.

77

