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1 Introduction

An integer program is a mathematical problem that is widely used in many �elds such

as economics, management and computer science. Because of its importance, scientists

have continuously been developing and extending the algorithms and methods that can

solve integer programs e�ciently. The motivation comes from the fact that solving inte-

ger programs is an NP-hard problem. This means that, in theory, we need exponential

time to solve an integer program. As a result of the previous research we can, in prac-

tice, solve many problems very quickly. However, solving integer programs is still a very

complex and time consuming task in general.

One of the methods used to solve an integer or a mixed-integer program is the Branch-

price-and-cut algorithm developed by Gamrath (2010). In order to run the algorithm,

we need to divide the problem in a set of sub-problems. In order to divide a problem, we

must �nd special structures in the constraint matrix of the integer program. Finding a

good structure in the matrix can signi�cantly ease the problem and therefore reduce the

solving time. In this study, we try a novel method to discover good structure(s) in the

matrix with the help of clustering techniques. Particularly, we can use graph clustering

methods, as the constraint matrix can be implicitly mapped to a graph.

1.1 Motivation

As mentioned earlier, solving an integer program is a very complex task (see Schrijver

(2003)). This means that, in practice, the solving time for an integer program can be

very long. For that reason, many heuristics that try to reduce the solving time have

been proposed. There are many di�erent approaches on how to reduce the runtime (e.g.

the pre-solving steps), and they are often combined together to reduce the runtime as

much as possible. Finding a good decomposition (i.e. division of a problem into more

sub-problems) of an integer problem is another approach that tries to minimise the solv-

ing time. In this study we propose a method to �nd a good special structure in the

matrix with the help of clustering techniques.

1



1 Introduction

Even though there are already a few methods to automatically �nd special structures in

the matrices, according to our best knowledge, there are yet no methods to �nd special

structures with the help of clustering algorithms. With the proposed method we have

obtained satisfactory results, which were often as good as or even better than those

obtained with methods implemented before. However we still cannot give a proof that

the solving time for all integer problems will be signi�cantly reduced or reduced at all.

For example, our method did not work on bin packing and equivalent problem instances.

Nevertheless our method showed some remarkable improvements that may be very useful

in the practical use.

1.2 Overview

In this Section we will take a look at the steps of the method described in the study.

As our input we take a linear program (LP). From the LP, we extract the constraints

and pack them into a sparse matrix. After that we can divide our algorithm into three

main parts. The �rst part of the algorithm, which is discussed in Section 3.1, has the

task to convert the constraint matrix to a graph, i.e. to de�ne a similarity (or a distance

respectively) measure between any two rows in the constraint matrix. This enables us

to use the clustering algorithms in a meaningful way. The second part of the algorithm,

described in Section 3.2, is focused on the clustering of the matrix. There we try a couple

of di�erent clustering algorithms that run on the constraint matrix with the similarities

(or distances) de�ned in the �rst part of the study. The third part of the algorithm has

the task to process the clusters and bring them in a suitable form. This means that the

clustered constraints obtained at the end of this process must be in an acceptable form

required by the Dantzig-Wolfe decomposition. This step is described in more detail in

the Section 3.3.

1.3 Related work

There has been very little work done on the topic of the automated special structure

detection. It is considered that �nding a special structure has to be done based on the

speci�c problem knowledge i.e. the experts who state a problem can exploit their knowl-

edge of the problem to de�ne most suitable structure. Therefore, automatic structure

detection is omitted from the most state of the art integer program solvers. However,

there is a method described by Bergner et al. (2015) that shows how the automatic

2



1 Introduction

structure detection can be implemented and scored. Based on these scores, we can, at

least up to a certain probability, predict how good the discovered structure is.

The methods used by Bergner et al. (2015) to �nd special structures are based on

the (hyper-)graph partitioning where no clustering algorithms were mentioned. Also,

the special structure detectors implemented in the Generic Column Generation1 (GCG)

that was developed by Gamrath (2010) and Gamrath & Lübbecke (2010) rely on the

graph partitioning. The graph partitioning procedures are mostly based on �nding min-

cuts of the graphs or hyper-graphs. Also some methods implemented in the GCG do

not use graph partitioning, but only the breath-�rst-search methods.

As, according to our knowledge, no previous works have applied clustering techniques to

the problem, we take the linking of this two concepts main contribution of this thesis.

1.4 Outline

� Chapter 2 describes the main terms, concepts and algorithms used in this study.

Here we will brie�y explain what is an integer program, and how it is solved. In

addition, we will give a short insight into clustering in general, and the main ideas

and concepts used in clustering algorithms in general.

� Chapter 3 describes in detail the work done as a part of this study. This includes

the pre-processing step, the clustering step and the post-processing. We will take

a deeper look into each of the clustering algorithms used in the study, and give the

motivation for choosing each one of them.

� Chapter 4 provides an evaluation of each of the methods (i.e. clustering tech-

niques and pre-processing methods) used in the study. Here we will also present

the improvements achieved in this study.

� Chapter 5 summarizes the main idea of the study and proposes the possible

future work.

1www.or.rwth-aachen.de/gcg/

3



2 Basics

The thesis combines at least two di�erent �elds of study: data mining and mathematical

optimization. From data mining we use the clustering techniques and apply them to

structure the mathematical optimization problems such as integer programs. In order

to better understand the problem and the solutions discussed in Chapter 3 we shall �rst

introduce some basic de�nitions, algorithms and concepts used in the thesis. We will

start by explaining what an integer program is. After that we will brie�y look at the

algorithm used to solve an integer program so that we can understand why we need to

�nd special structures at the �rst place. Lastly, we will explain what clustering is and

describe di�erent approaches used by the clustering algorithms.

2.1 Integer program

A linear program (LP) is a mathematical optimization and feasibility problem. It

consists of two parts. The �rst part is an objective function. This is the function that

we want to maximize or minimize, which essentially does not make any di�erence. The

second part of the linear program are the constraint functions. The objective function

is a subject to the constraint functions. Our goal is to �nd the optimal solution for

our objective function under the constraints that are given. Sometimes we can �nd the

optimal solution to our problem, sometimes we can �nd more than one optimal solu-

tion, but it can also happen that no solution exists. In that case we have shown that

the problem is infeasible. Solving a linear program can be done in polynomial time by

the, for example, ellipsoid method described by Khachiyan (1979) and the interior point

methods described by Karmarkar (1984) and Renegar (1988). However, the most widely

used method for solving the LPs is the simplex method developed by Dantzig et al.

(1955) which is very e�cient in practice.

An integer program (IP) is a special case of a linear program but with one sig-

ni�cant additional constraint: all variables are integer numbers. An integer program in

4



2 Basics

its canonical form looks like this:

maximize cTx

subject to Ax 6 b

x ∈ Zn
+

where A is the constraint matrix, b the vector of the right-hand-side values and c the

vector of coe�cients in the objective function. The complexity of solving IP increases

due to its integral constraint and because of that it belongs to the NP-hard complexity

class as proven in Papadimitriou (1981).

The integer programs have a wide �eld of application. We can use them to formulate a

travelling salesman problem, a bin packing problem, a set cover problem, a p-median, a

generalized assignment problem and many many others. Integer programs are used in

many areas. We can use them in the production planning, logistics, scheduling, telecom-

munication networks, computer science etc. . .

One type of an integer program is theMixed Integer Program (MIP). This program

is very similar to the IP but here we allow some of the variables to have a fractional

component. Because of integral constraints that are still present in the MIP, MIP has

the same complexity as the IP and it is solved by the same algorithm: Branch-price-

and-cut algorithm. We will brie�y explain this algorithm in the following section.

2.1.1 Example: Generalized Assignment Problem

One typical example of an integer program is the Generalized Assignment Problem

(GAP). The objective of the GAP is to �nd the maximum pro�t assignment of n jobs

to m agents such that each job is assigned to exactly one agent. Besides that, each

agent has a restricted capacity. Formally, we can state the problem as follows:

max
∑m

j=1

∑n
i=1 pijxij

s.t.
∑m

j=1 xij = 1 ∀i = 1..n∑n
i=1wijxij ≤ cj ∀j = 1..m

xij ∈ {0, 1} i = 1..n, j = 1..m

where:

� pij is the pro�t of assigning job i to agent j,

5



2 Basics

� wij is the claim of the capacity of agent j by job i,

� cj is the capacity of agent j and

� xij equals 1 if job i is assigned to agent j, and 0 otherwise.

The �rst constraint guarantees that each job is assigned to exactly one agent. The

second constraint ensures that each agent can get no more jobs than his capacity allows.

The last constraint makes sure that we get an integral solution.

2.2 Dantzig-Wolfe Decomposition

In this Section, we will brie�y look at the Dantzig-Wolfe decomposition method (as de-

scribed by Desrosiers & Luebbecke (2010), Gamrath (2010) and Desrosiers & Luebbecke

(2005)) and the input it needs. Furthermore, we will examine why we have to discover

special structure in the constraint matrix as a motivation for the further research done

in this thesis. Also, we will examine what types of special structures are possible for

Dantzig-Wolfe decomposition.

Dantzig-Wolfe decomposition is a method a for solving the MIPs. It exploits the special

structure in the constraint matrix. The structure that our algorithm will output, and

that can be well exploited by Dantzig-Wolfe decomposition is de�ned as follows:

min
∑
k∈[K]

cTk x
k (2.1)

s.t.
∑
k∈[K]

Akxk ≥b (2.2)

Dkxk ≥dk ∀k ∈ [K] (2.3)

xk ≥0 ∀k ∈ [K] (2.4)

xki ∈Z ∀k ∈ [K], i ∈ [n∗k] (2.5)

This is a reformulation of MIP which is called bordered block diagonal structure. The

structure is illustrated in Figure 2.1. Sometimes it is possible to reformulate the MIP as

shown above, but without the constraint 2.2. In that case, we call it pure block diagonal

structure. As we will discuss later, the pure block diagonal structure is favourable in

comparison to the bordered one. Beside these two structures, the third, staircase struc-

ture is also allowed, but it will not be part of this study, and thus we will not discuss it

6



2 Basics

Figure 2.1: Bordered block diagonal structure

any further.

In this model, with k ∈ [K] blocks where K ∈ Z>0, we have two types of con-

straints: linkage constraints 2.2 and structural constraints 2.3. The linkage constrains

are represented by Ak ∈ QmA×nk matrices and the right-hand-side b. These constraints

represent master constraints. Furthermore, the structural constraints are represented

by Dk ∈ Qmk×nk and dk on the right-hand-side. These constraints are "separated" in

K blocks and constraints in block k enforce restrictions for vector xk. This structure is

also allowed to have only one block, but typically it has more than one blocks (i.e. k > 1).

In order to obtain diagonal structure of the matrix, we must rearrange its columns

and rows. The rearrangement will not change anything in the linear program, because

the order of columns (i.e. variables) and rows (i.e. constraints) does not matter and can-

not a�ect the solution. We arrange the rows so that constraints belonging to one block

k are listed one after the other (i.e. they should not mix with constraints of the other

blocks). At the bottom of the matrix we list all the remaining (i.e. master) constraints.

We must also rearrange the columns of the matrix in the same manner. Now, the

only "problem" is how to decide which rows and columns belong to which block. This is

done with the help of clustering algorithms and more detail on that is given in Chapter 3.

7



2 Basics

Furthermore, we can de�ne a set Xk for each block K as follows:

Xk := {xk ∈ Zn∗
k

+ ×Qnk−n∗
k

+ |Dkxk ≥ dk} (2.6)

This set represents a set of feasible solutions for blockK, i.e. it satis�es all the constrains

that are a part of Dk. It also satis�es corresponding integrality and non-negativity

constraints. This means that in this de�nition we have implicitly included constraints

2.3, 2.4 and 2.5. Therefore, we can write the MIP in compact form:

min
∑
k∈[K]

cTk x
k (2.7)

s.t.
∑
k∈[K]

Akxk ≥b (2.8)

xk ∈Xk ∀k ∈ [K] (2.9)

After applying the convexi�cation (i.e. representing each vector xk ∈ Xk by a convex

combination of extreme points plus a conical combination of extreme rays, see Dantzig

& Wolfe (1960)) or the discretisation (see Vanderbeck (2000)) of Xn, which we will not

explain in this study (see Desrosiers & Luebbecke (2010), Gamrath (2010)), we can

obtain the following equivalent master problem (MP):

min
∑

p∈P cpλp +
∑

r∈R crλr

s.t.
∑

p∈P apλp +
∑

r∈R arλr ≤ b∑
p∈P λp = 1

λ ≥ 0

This master problem is equivalent to the original problem and the optimal solution

value to the master problem is also a lower bound for the optimal solution value to the

original problem. Optimal solutions to the master problem can be transformed to the

optimal solution (possibly fractional) candidates of the original problem (i.e. we can

�nd the candidates for the optimal values of x).

The disadvantage of this reformulation is that the number of variables increases ex-

ponentially. Now for each polyhedron k (one polyhedron corresponds to one block) we

have one new variable λkp for each extreme point p ∈ Pk and one variable λkr for each

extreme ray r ∈ Rk. However, this huge number of variables that suddenly appears can

8



2 Basics

be managed by the column generation approach (see Barnhart et al. (1998)). Besides

that, the main reason for reformulating the original MIP in the master problem is the

fact that the master problem yields much lower integrality gap than a simple relaxation

of the MIP. Integrality gap is the di�erence between the optimal solution of the original

MIP and the optimal solution of the same problem but without any integrality con-

straints. Lower integrality gap has a huge e�ect on the complexity of the problem, i.e.

it signi�cantly reduces the solving time.

In conclusion, due to its e�ect on reducing the integrality gap, Dantzig-Wolfe decomposi-

tion has proven to be very a e�cient way of solving MIPs. For that reason it has become

a standard part of the MIP solvers. This made us think, how we could best generate

the input for the solver i.e. how we could automatically �nd good special structures in

the matrices. With that motivation, the idea has raised, to try to discover the blocks in

the matrix with the help of the clustering algorithms, where each cluster will represent

one block, and where non-clustered points will represent the maser constraints.

2.3 Clustering

In this section we will describe what clustering is and what connects the clustering and

the reformulation needed for the Dantzig-Wolfe decomposition.

Clustering is a technique for grouping similar data points. Data points which are similar

to each other should belong to the same cluster, while the points that do not have much

in common should belong to di�erent clusters. Some clustering algorithms also allow

some data points to be out of the clusters. These points are labelled as non-clustered

points. These are the "noisy" points, which means that they do not ful�l necessary

criteria to be assigned to any of the clusters.

The similarity between each two points in the feature space is usually de�ned as a

negative squared Euclidean distance. On the other hand, most of the algorithms allow

similarity measure to be de�ned as desired (for example Hamming distance or Cosine

distance) if it is necessary. By de�ning a speci�c similarity for each two data points,

we implicitly build a (complete) graph where the vertices are the original data points

and the edges contain the similarity value of the two adjacent vertices. If the similarity

between some two points is equal to zero, we can omit the corresponding edge. De�ning

9



2 Basics

a speci�c similarity allows us also to use graph clustering algorithms on our data.

There are several clustering methods as described by Berkhin (2002), for example "density-

based clustering" (e.g. DBSCAN), "graph clustering" (e.g. Markov Chain Clustering),

"hierarchical clustering", partitioning relocation clustering (e.g. K-means), "distribution-

based clustering" (e.g. EM), etc.

In this study, clustering algorithms had to ful�l one of the following two prerequisites:

� the algorithm is able to deal with the user-de�ned similarity (or distance) measure

� the algorithm can cluster binary data in a meaningful way

As the second prerequisite might seem a bit odd, the reason for that is the follow-

ing: the input for a clustering algorithm is the binary version of the constraint matrix.

Namely, we wanted to �nd a special structure in the matrix, i.e. we wanted to divide

constraints into blocks. Two constraints belong to the same block if they have a certain

amount of common variables, but two constraints that belong to di�erent blocks are

not allowed to have any common variables. For that reason, we were only interested

in the information what variables are included in what constraints. Thus we were able

to convert the original constraint matrix A to its binary version A′ as follows:

a′ij =

1 for aij 6= 0

0 for aij = 0
(2.10)

If implemented e�ciently, this reformulation can save a lot of memory: instead of

storing a �oating-point number which is 32 or 64 bits long, we can now save each coef-

�cient as a corresponding binary number which has the length of 1 bit.

In the context of discovering special structures in the constraint matrix of a LP, clus-

tering has the task to partition the constraints in such a manner that constraints that

share more variables have a higher probability to appear in the same cluster, while the

constraints that share less or none variables are less likely to be part of the same cluster.

With that in mind, we have examined di�erent similarity (or distance) measures that

were tailored for this task.

After the clustering had been done, we wanted to evaluate the obtained result. There are

10
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many measures that can be applied to evaluate the quality of the clustering. Basically

the evaluation metrics can be divided in two parts: internal and external as described

in the book by Manning et al. (2008). The internal metrics express the goal of obtaining

high intra-cluster similarity and low inter-cluster similarity. The external metrics are

measured based on the data that was not clustered and the metrics may vary heavily

depending on the problem. For example, an external metric can be based on the true

labels or some external benchmarks. The way we are going to evaluate the results is

tailored for our application and it will be discussed in the Section 3.3.

In conclusion, the clustering has been applied to many di�erent problems, and very

often, the input for the algorithms and their evaluation has to be tailored to the purpose

of their use. Here we have used clustering techniques for a completely new objective and

thus we had to make some adjustments in order to get good results.

11
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In this Chapter we will describe the core work that has been done in the study. The

biggest part of the study was choosing, implementing and testing di�erent clustering

algorithms and similarity measures in order to �nd the special structures in the matrices.

Also we have done some post-processing. These three steps are divided as follows:

De�ning the similarity measure In this part of the work we have de�ned di�erent

similarity (or distance) measures for each pair of rows in the constraint matrix of

the given MIP. More detail on this is given in the Section 3.1.

Clustering the data Here we have run di�erent clustering algorithms on the given sim-

ilarity measures. The algorithms used in the study and more detail on each one of

them is given in the Section 3.2.

Post-processing Last part of the work was divided into two sub-parts. Firstly, we

adapted the clustering labels to make a suitable matrix decomposition from the

given clustering. Secondly, as all of our clustering algorithms ran many times (i.e.

we ran each of them with di�erent parameters), we had to decide, which clustering

we want to pick as the most suitable one. A brief explanation of these steps is

given in Section 3.3.

Beside the three main points mentioned above, the work consisted of two more parts.

The �rst part was parsing the input LP �le from which we obtained the constraint ma-

trix. The input �le types supported in this study were .lp and .mps. Furthermore, in

order to test the obtained decompositions, the structured matrix was saved in decom-

position �le (.dec) which speci�ed for each row in the matrix if it was part of a block

or it was a master constraint, and if it belonged to a block, it speci�ed to which one.

After saving the output, the GCG solver ran on each obtained decomposition. As these

operations are not relevant part of the research, but rather trivial steps needed in the

implementation, they will not be discussed any further.

The whole source code needed for the thesis was written in Python1. Two main reasons

1www.python.org
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for this choice are the fact that Python is an open-source language and that it sup-

ports the numerical operations, linear algebra operations and clustering algorithms very

well. This means that most of the basic functionalities and clustering algorithms were

already implemented in some of the numerous open-source libraries for this language

(e.g. scikit-learn2, numpy3, scipy4). Beside this fact, Python is also very easy and fast

to code, which made the work much faster and gave more time and space to focus on the

research itself. On the other side, Python has one disadvantage. Namely, it is a script

language, and thus some basic concepts (e.g. loops) are very slow in comparison to the

other languages. For this reason Python is suitable for prototyping, but should not be

used in the �nal version.

3.1 De�ning similarity measures

Running the clustering algorithms in order to �nd special structures in the constraint

matrices is a very speci�c problem. Here we consider the rows of the matrix to be the

data points and the columns the features. Herewith we can notice the matrices have

very di�erent feature spaces. As our goal is to �nd diagonal blocks in the matrix, where

entries outside the blocks must be zero, we have discovered that distinguishing only be-

tween zero and non-zero entries is enough and that only that way we can produce some

decent results. So, we have de�ned a more abstract and more simple feature space. In

such a feature space we had to de�ne the similarity (or distance) measures on our own

as the usual Euclidean distance would not be applicable any more.

Some clustering algorithms deal with similarity measures while the others need dis-

tance measure between data points. In order to be able to run all algorithms, we need

a way to convert similarity measure into comparable distance measure and vice versa

easily. For that purpose, we de�ne all similarity values to be in the range [0,1], where 1

is the highest and 0 is the lowest similarity between any two rows in the matrix. With

that in mind, we can now use the following equations to convert between distance and

similarity:

d(x, y) = 1− s(x, y), s(x, y) : [0, 1]M × [0, 1]M 7→ [0, 1] (3.1)

2www.scikit-learn.org
3www.numpy.org
4www.scipy.org
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where d(x, y) and s(x, y) are distance and similarity functions respectively between rows

x and y of length M .

If we want to de�ne the distance measure, it must be a true distance measure, i.e.

it must ful�l the following requirements according to Giancarlo et al. (2010):

1. Non-negativity: d(x, y) ≥ 0,∀x, y

2. Identity: d(x, y) = 0 if and only if x == y

3. Symmetry: d(x, y) = d(y, x)

In the following sections, we will show and discuss the similarities (i.e. distances) used

in the study. There are much more known measures that could be used for this problem

as stated by Choi et al. (2010). However, we have implemented and evaluated only a

handful of them because of the time limit and the complexity that would arise from big

number of similarity measures.

We had two basic criteria when choosing these similarity measures. Firstly, similar-

ity between two rows had to be di�erent than zero if and only if two rows had at least

one common variable. This signi�cantly reduces the running time of the algorithms

and also enables us to discover the pure diagonal structure (see Section 2.2) with some

algorithms. Second, the increase in the similarity had to correlate with the increase in

the number of common variables.

In order to better describe some similarity/distance measures, we will �rst de�ne some

expressions as in paper by Choi et al. (2010):

a =
M−1∑
n=0

in ∗ jn

b =
M−1∑
n=0

¬in ∗ jn

c =
M−1∑
n=0

in ∗ ¬jn

d =
M−1∑
n=0

¬in ∗ ¬jn
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Figure 3.1: Example for the similarity values calculated for two di�erent pairs of ma-
trix rows. (*): the values obtained by intersection similarity have to be
normalized later based on the biggest similarity.

where i and j are binary rows of length M . We have obtained binary values by convert-

ing each non-zero value to 1.

We will also de�ne the distance or similarity matrix A ∈ RNxN with ai,j = d(i, j),

or ai,j = s(i, j) respectively.

3.1.1 Johnson similarity

Johnson similarity measure is de�ned as:

sJohnson(i, j) =
a

a+ b
+

a

a+ c
(3.2)

In order to ful�l our requirement that all similarity measures are in range [0,1], we have

to divide sJohnson(i, j) by 2. Here is similarity the fraction of the common variables in

each of the two rows. This way we give smaller similarity in the cases where one row

can have decent number of common variables, but still has a huge number of the other

variables. In that case we might prefer this row to be part of the master constraints.

3.1.2 Intersection similarity

Intersection similarity measure is de�ned as:

sIntersection(i, j) = a (3.3)

This is very simple similarity measure, but seemed to bring very good results. This

measure is a number of common non-zero entries. In order to scale it properly, we

divide each entry in the similarity matrix by the maximum similarity found and then
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multiply it with 1 − ε in order to make it less than 1. After that we manually add

s(i, j) = 1, for i = j. We have chosen this similarity because it was the most intuitive

way to connect the rows with common variables.

3.1.3 Jaccard similarity

Jaccard similarity measure is de�ned as:

sJaccard(i, j) =
a

a+ b+ c
(3.4)

Jaccard similarity is also known as the ratio between the intersection and the union of

two sets. Here we calculate the fraction of common variables in the total number of

variables present in the both rows. Similarly as in Johnson similarity, we try to reduce

the similarity for the rows with big number of non-common variables. This similarity

penalises heavily the case where number of non-common variables in any of the two rows

is high relative to the number of common variables.

3.1.4 Cosine similarity

Cosine similarity is de�ned as:

sCosine(i, j) =
a√

a+ b ∗
√
a+ c

(3.5)

This represents a cos Θ, with Θ being an angle between binary vectors i and j. This

should represent the natural distance of two binary vectors. If their distance is smaller,

it means that they have more common variables and less of the other variables.

3.1.5 Simpson similarity

Simpson similarity is de�ned as:

sSimpson(i, j) =
a

min (a+ b, a+ c)
(3.6)

This similarity measure correlates with the number of common variables, but also penal-

izes the case where both rows have lots of uncommon variables. In contrast to Johnson,

Jaccard and the Cosine similarities, this one gives higher similarity in the case where

one row has almost all variables as the other, no matter how many uncommon variables

the other row has.
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3.1.6 Further similarity measures

At the end we will describe couple more similarity measures that did not work well in

order to motivate our basic criteria for choosing the similarities which described at the

beginning of this section.

� s3(i, j) = d, with this similarity measure we were not able to distinguish clearly

among the clusters because very weak correlation existed with the number of com-

mon variables. For example DBSCAN was not able to detect any cluster or only

1 cluster that contained all the rows in the matrix. This is due to the fact that

the constraint matrices are sparse matrices with lots of columns. This similarity

measure had typically very high value for any pair of rows and the obtained values

could not been distinguished well.

� s4(i, j) = d+a∗ (a+ b+c
2

)∗ 1
N
, this similarity measure is by default not in the range

[0,1] and thus has to be scaled in the same way as we scaled sIntersection. With

this similarity measure we have achieved similar results as with s3 and it wont be

subject of further discussion.

� s7(i, j) = a + d ∗ (a + b+c
2

) ∗ 1
N
, this similarity measure contradicts our criteria

that only pairs of rows with common variables should have similarity > 0. This

has signi�cantly a�ected the running times of MCL and R-MCL algorithms and

additionally did not bring any results better than the other similarities.

3.2 Clustering

In this section we will describe the algorithms used in this study, theory behind them

and their advantages and disadvantages. The algorithms are listed below:

� DBSCAN

� Minimum spanning tree clustering

� Markov Chain Clustering

� Regularized Markov Chain Clustering

� Expectation Maximisation

� Agglomerative clustering
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Motivation for choosing each of these algorithms defer and will be explained more de-

tailed in the following subsections. Even though all of these algorithms were used and

compared at some point of the study, only the �rst four algorithms from the list had

sustainably good performance. For that reason, the �nal evaluation will focus only on

these algorithms.

3.2.1 DBSCAN

DBSCAN algorithm was the �rst clustering algorithm used in this study. Main reasons

for that are that it supports the pre-computed distance measure and it allows certain

points to be de�ned as "noise".

The DBSCAN algorithm belongs to the group of "density-based" clustering methods

and it was developed and described by Martin Ester & Xu (1996). Main advantages of

the algorithm are:

� it is very e�cient and scalable

� we need to set only one input parameter (we can easily �nd the appropriate value

for it and the second parameter may be �xed)

� it discovers clusters of arbitrary shapes

� it supports any user-de�ned distance function

DBSCAN considers clusters as the areas of high density that are separated by low

density areas. It divides the points in three di�erent types as showed in �gure 3.2:

� Core points: these are the points that have at least minimal required number of

points (MinPts) within the radius Epsilon including the point itself.

� Border points: these are the points that have at least one core point within the

Epsilon radius.

� Outliers: these points meet the requirements for neither core nor border points.

The core points are those located in high density regions, border points are on the

edges of the high-density regions, while the outliers are the points in the low density

areas.

5Adapted from Wikipedia
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Figure 3.2: Core, border and noisy points 5

We can build the clusters recursively by choosing an arbitrary core point, adding it

to the cluster, �nding all of its neighbours that are core points, adding them to the clus-

ter and repeat the process for the chosen neighbours until no core points are neighbours

of the cluster members. At the end we can also add the border points as our cluster

members. The running time of this algorithm is almost linear and it depends on nearest

neighbour search. By de�nition, every cluster must have at least MinPts number of

points and the core points are deterministically assigned to the clusters. On the other

hand, this clustering method is not deterministic because the border points might belong

to di�erent clusters.

This kind of approach enables us to detect clusters of arbitrary shapes and sizes and

it also allows us to cluster the points without prede�ning the number of clusters. The

only two parameters we can adjust are the Epsilon and minPts. In the study done by

Martin Ester & Xu (1996) it was empirically shown that for k > 4 no signi�cant im-

provement in clustering exists, but only the computation time increases. Because of that

we have �xed minPts to 4 in this study. On the other side we had to determinate Epsilon

parameter for each data set (in our case constraint matrix). In the paper Martin Es-

ter & Xu (1996) there was a solution proposed that could help determinate Epsilon,

but it was not implemented in this study because of certain limitations of Python (e.g.

time-expensive function calls). For that reason, we ran DBSCAN with di�erent Epsilon

values that were obtained from symmetric geometric array on length 49 and the range

[mid− 0.5,mid+ 0.5], where mid was calculated as the percentile of non-zero values in

the distance matrix with q = 10. Of course, the values in the array that were smaller

or equal to 0 and bigger or equal to 1 were omitted. Also, if our clustering consisted of
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only one cluster that contained all the points, we did not run DBSCAN with any higher

Epsilon values.

Overall, DBSCAN is very simple and e�cient, but also very powerful algorithm. As

shown later, it has brought some very promising results.

3.2.2 Minimum Spanning Tree Clustering

The Minimum Spanning Tree (MST) Clustering is a graph clustering procedure which

is based on minimum spanning trees of the graphs. It was developed by Zahn (1971).

Also it was shown by Xu et al. (2002), Morris et al. (1986) to have very good results

in various applications. Besides that, there is no need to adjust many parameters (e.g.

number of clusters) and this algorithm can also do a good job in �nding the clusters

of various sizes and "shapes". Also, because this is a graph clustering technique, it �ts

well to our problem as our similarity (or distance) matrix represents a graph implicitly.

These were the main reasons for choosing this algorithm as part of our study. The source

code used here was written by Vanderplas (2015).

Even though this algorithm has a completely di�erent approach than DBSCAN (i.e.

DBSCAN uses a density-based approach and MST is a graph clustering technique), it

has brought very similar and often the same results as DBSCAN. However, this algorithm

has a small advantage over DBSCAN because it can detect a pure diagonal structure in

the constraint matrix.

As said before the algorithm is based on �nding the minimum spanning tree of the

graph. Input is the distance matrix, were every distance is "length" of the correspond-

ing edge. In addition we enter two parameters: cuto� and min cluster size. Cuto�

denotes the threshold for the length of the edges, while min cluster size is responsible

for labelling too small clusters as noise. After choosing these two parameters, we �nd a

minimum spanning tree. A MST is an acyclic sub-graph such that the sum of the length

of its edges is minimal. We can �nd a MST e.g. with the algorithm proposed by Kruskal

(1956), which has the time complexity of O(n log n), where n is the number of edges.

After �nding the MST we remove all edges of the MST which have length bigger than

cuto� parameter. At the end we obtain a graph which consists of multiple components,

where each component represents a cluster. If a component has less vertices than min

cluster size, we label its vertices as "non-clustered".
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Because of similar meaning of the input parameters as in DBSCAN, we choose them in

the same way as we did for DBSCAN.

In conclusion, the algorithm has very good scalability because its running time is dom-

inated by �nding an MST. Also, its well-behaving has contributed to choosing it as a

part of this study and eventually as part of the �nal evaluation.

3.2.3 Markov Chain Clustering

Markov Chain Clustering (MCL) is an example of a graph-clustering method and it is

based on Markov chains. It was developed as a part of the Ph.D. thesis by van Dongen

(2000). The algorithm was also used in research done by A. J. Enright & Ouzounis

(2002).

The algorithm is based on the assumption that there are more and stronger links be-

tween the members of the same cluster and fewer and weaker links among the vertices

of di�erent clusters. This is an assumption of the random walk which states that if we

start at some node we are more likely to stay within the cluster than to change the

cluster. Based on these random walks, we can see where the �ow tends to congregate.

MCL calculates the random walks using Markov chains.

MCL takes a similarity matrix (one described in Section 3.1) as an input. Besides

that, MCL takes two input parameters: expand factor and in�ate factor. The �rst step

of the algorithm is to normalize the input matrix column-wise so we can recognize it as

a Markov chain transition matrix. The second step is called expansion. This is basically

moving to the next generation of Markov chain (i.e. increasing the length of the random

walk). This is simply multiplication of the matrix by itself expand-factor-times. This

step is responsible for pushing the �ow to di�erent regions of the graph. The third step

is called in�ation. In this step we try to minimize the e�ect that, on the long run,

the �ow tends to be equal across the graph. For that purpose we intentionally increase

the edge weights that are within the cluster and decrease the weights of the edges that

connect di�erent clusters. This is simply done by raising each column in the matrix to

a non-negative power (in�ate factor), and then re-normalising each column. The forth

step of the algorithm is pruning. We do this step only for the purpose of reducing the

computation time. In this step we convert very small values to 0 as we assume that
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they would reach zero anyway. After this step we repeat the whole procedure until the

convergence or until the maximum number of iterations is reached. In this study the

maximum number of iterations was set to 20. Even though there is no proof given in the

van Dongen (2000), it was experimentally shown that the algorithm converges, namely

in 10 to 100 iterations.

The idea behind this approach is very intuitive and also correct as shown in many studies

(e.g. A. J. Enright & Ouzounis (2002), Satuluri & Parthasarathy (2009), �Engineering

Graph Clustering: Models and Experimental Evaluation� (2008)). This approach lets

the cluster structure of the graph show itself and if no structure exists, it will return

one cluster. We also do not have to specify the number of clusters, which is very good,

because this information is not available to us. In addition this algorithm is suitable for

our study, as the similarity measures implicitly represent a graph.

The bad side of the algorithm is its complexity. The most expensive step is the expan-

sion and it has the complexity of O(n3), where n is the number of rows in the constraint

matrix. In�ation step is done in O(nnz) time, where nnz is the number of non zero values

in the matrix. The good thing is that our input matrix is sparse and also after very few

steps the number of non-zero values in the matrix decreases signi�cantly. If implemented

e�ciently, (e.g. with CSR matrix from the scipy6 Python module) multiplication time

gets reduced signi�cantly, so that only �rst couple of iterations are time consuming. In

order to reduce the computation time even further, we can set very small values in the

input matrix directly to zero as we assume they would become zero eventually.

As mentioned above, we need to set two input parameters: expand factor and in�ate

factor. As A. J. Enright & Ouzounis (2002) suggest we have �xed the expand factor to

2, which is equal moving one step in a random walk per 1 iteration of the algorithm.

Furthermore we have chosen our in�ate factor to have the values [1.1, 2) with the step

of 0.05. The reason for that is the following: choosing the in�ate factor to be 1 would

mean that we annihilate the in�ation step. Also choosing in�ate factor to be too high

produces lots of smaller clusters, which is not desirable (explained in the Section 3.3).

In the Figure 3.3 you can clearly see that the number of clusters climbs rapidly.

In conclusion, the MCL clustering is very elegant and intuitive method for clustering

6www.scipy.org
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Figure 3.3: Number of clusters increases with the increase of the in�ate factor. Stop
criterion is set to 0.4 of nr. of clusters/nr. of total rows ratio.

the graphs and according to A. J. Enright & Ouzounis (2002), Satuluri & Parthasarathy

(2009), �Engineering Graph Clustering: Models and Experimental Evaluation� (2008) it

returns good results. On the other side, the theoretical complexity of the algorithm is

O(n3) which is extremely expensive and MCL sometimes tends to produce the singleton

clusters as stated in Satuluri & Parthasarathy (2009) and some very big clusters. Overall

the idea behind the algorithm seems to be promising and that was the main reason for

choosing this algorithm as part of this study.

3.2.4 Regularized Markov Chain Clustering

Regularized Markov Chain Clustering (R-MCL) is a variant of the MCL algorithm with

one signi�cant di�erence. In the expansion step of MCL we have multiplied the current

�ow graph with itself expand-factor-times. In the R-MCL, instead of multiplying the

current �ow graph with itself, we multiply the the current graph with the initial input

graph.

R-MCL is a response to the problem of over-�tting of the MCL. As stated in Satu-

luri & Parthasarathy (2009), MCL usually tends to produce lots of small clusters, rather

then few bigger ones. Reason for that is that MCL often allows the edges between

neighbouring nodes to raise signi�cantly and therewith reduce the weights of the other

surrounding edges. This is due to the fact that the input graph structure is taken in

consideration only in the �rst iteration, while in the later runs of the algorithm, the
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Figure 3.4: Number of clusters increases with the increase of in�ate factor.

initial graph structure is being neglected.

As for the MCL, we must also choose the suitable value of the in�ate factor. In this

study, we have used the values of the in�ate factor in the range [1.1, 2), with the step

of 0.1. The value of 1 or below would mean, same as in MCL, that we annihilate the

in�ation step and for values above 2, as shown in Figure 3.4, the number of clusters

increases signi�cantly.

3.2.5 Expectation Maximisation

Expectation maximisation (EM) is an algorithm that softly assigns data points to each

of the mixture components. It was developed by Hartley (1958) and later described by

Dempster et al. (1977). If we consider the points in a cluster as the points generated

from a single distribution, we can then assume that all data points can be described

by a mixture model. In this study we have assumed that every component is de�ned

with Bernoulli distribution because our data is of binary type, but other probability

distributions are also supported by the algorithm. Bernoulli distribution is de�ned as

p(x|µ) =
D∏
i=1

µxi
i (1− µi)

(1−xi) (3.7)

with parameter µ which represents a mean of the distribution, i.e. a "centroid" for each

cluster. One advantage of this method is that we do not have to calculate any similarity

measure before running the algorithm, but only to initialize the means of the clusters.
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Sadly, the initialization of the centroids makes the algorithm non-deterministic, and the

results may drastically vary in each run.

The bene�t of the algorithm is that we only have to determinate one parameter, namely

the number of clusters. We will call this parameter K, and we will label each cluster

with k ∈ [K]. In addition we de�ne xn to be the n-th row the input constraint matrix.

After setting parameter K, algorithm runs as follows:

1. Initialize the clustering with K randomly chosen centroids (cluster means).

2. E-step: softly assign samples to mixture components:

γ(zn,k) =
πkp(xn|µk)∑K
j=1 πjp(xn|µj)

(3.8)

This is the responsibility of component k for point xn. Here zn,k represents a latent

variable corresponding to data point n and cluster k and γ(zn,k) is its expected

value.

3. M-step: re-estimate the parameters for all the components:

Nk =
N∑

n=1

γ(zn,k), is a soft number of points labeld with k (3.9)

µk =
1

Nk

N∑
n=1

γ(zn,k)xn, is centroid of component k (3.10)

πk =
Nk

N
, is a weight for component k (3.11)

4. Go to step 2 until convergence

We have tried out this algorithm ∀K ∈ {2, 3, ..., 10} but the results that we obtained

after the post-processing showed that points were clearly clustered in no more than 3

or 4 clusters, while the other algorithms were able to detect more and better clusters

for the same instances. Because of that and the huge time complexity of the algorithm,

O(N ∗ K ∗ D) (with N the number of constraints, K number of clusters and D the

number of variables), we have decided to discard it from the further study.
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In conclusion, even thought this algorithm is good in many application �elds, like image

processing, it did not show very well for our problem.

3.2.6 Hierarchical/Agglomerative clustering

Hierarchical/Agglomerative clustering approach is very well known and common tech-

nique for clustering. It was used in many di�erent applications and studies (Cheng et

al. (2006), Dasgupta & Long (2005), King (1967)) where it has shown to have very

strong results what made us also include it in our study. The algorithm was described in

many studies, among which the earliest central study was done by Sneath & Sokal (1962).

This algorithm basically consists of two parts. First we declare each point as a sep-

arate cluster. In further iterations of this step we merge the clusters with the smallest

distance. Distance between two clusters u and v can be de�ned in many ways, but we

have mostly tested following two distance measures:

� Single method: d(u, v) = min(d(u[i], v[j])), ∀i ∈ u, ∀j ∈ v

� Complete method: d(u, v) = max(d(u[i], v[j])), ∀i ∈ u, ∀j ∈ v

We iterate as long as we reach the state where all points belong to the same cluster. We

also save the clusterings obtained in each iteration in a linkage table.

The second step is hierarchical clustering. Here we start with one cluster containing

all the points and divide it according to the linkage table saved in previous step. We

divide the clusters as long as we reach the terminating criteria. We have used k, the

number of clusters, as the terminating criteria. We have obtained k as the highest value

of the second derivative of cluster distances obtained from the linkage table. This way

we have chosen the k for which we had the biggest change in the inter-cluster distances.

Sadly, this algorithm did not bring good enough results to be tested further. Clus-

ters obtained from the algorithm were often very unequally sized e.g. many clusters

with 1 point and few or 1 very big cluster. Because of that we will not include this

algorithm in the �nal evaluation.
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3.3 Post-processing

In this section we will talk about the steps that we made just after we ran the clustering

algorithms mentioned earlier. We can divide the procedure in two parts:

� Adopt the clustering to the acceptable form for Dantzig-Wolfe decomposition.

� Decide which iteration(s) of clustering was the best.

In the �rst part, we sort matrix rows according to the cluster labels in the ascending

order and then we �nd those rows in a cluster, which had the common variables in the

constraint(s) that belonged to some other cluster. When we �nd such a row, we remove

it from the cluster i.e. we label it as non-clustered row. After repeating the procedure

for all clusters we have satis�ed the requirement that one variable cannot belong to the

constraints of two di�erent blocks. At the end we sort the columns so that all variables

belonging to a cluster are grouped together, and these groups are then also sorted in the

ascending order. This way we obtain the matrix which has the form shown in Figure 2.1.

During this study, we have discovered that it is better that clustering algorithm returns

less bigger clusters than more smaller clusters. This is because after complying to the

above mentioned requirement, we often have to remove several rows from each cluster,

so at the end we �nish up with removing lots of rows from the clusters. This means that

clustering was not very successful. According to that, we can now evaluate the output

of the clustering algorithms in the way that we de�ne some result good, if the number of

non-clustered points did not increase signi�cantly after removing non-compliant rows.

If the number of non-clustered rows increased dramatically we can freely assume that

clustering was not successful enough.

The second part of post-processing, which builds on top of the �rst part, is meant

to choose the best iteration of clustering algorithm. As mentioned earlier, we run each

algorithm multiple times with di�erent parameters. Because of that we get multiple

clusterings for one algorithm and one problem instance. It would be almost impossible,

but certainly unnecessary to compare all these clusterings at the end. As a result we

had to decide for only few of them which we want to include in the later comparison of

the algorithms. We have choose to pick up to two clusterings for each algorithm. The

selection criteria are de�ned as follows:

� Choose the clustering with fewest non-clustered points.
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(a) Original matrix (b) Smallest lower border (c) Score s = 0

Figure 3.5: Original matrix and two decompositions chosen according the two criteria.

� Choose the clustering with lowest score s. We de�ned s as:

s =
std

mean
∗ n2
−1 (3.12)

where std and mean are standard deviation and mean of sizes of the clusters and

n−1 is the number of non-clustered points.

Setting these two criteria is based on the research done by Bergner et al. (2015).

They suggest a couple of factors that can in�uence the quality of a decompositions. The

strongest correlation observed in the study was the one between the size of border (i.e.

number of non-clustered points in our case) and solving time. Namely, it was found that

solving time for an MIP decreases with the decrease of the size of the border. Further-

more, it was discovered that the solving time is high in cases with extremely high or

extremely low border size.

Having that in mind, we wanted to pick those clusterings with least number of non-

clustered points. This is precisely what the �rst criterion is about. The second criterion

also takes this into consideration, but it also rewards more equally distributed points in

clusters. This way we want to penalize cases where, for example, we have two very big

clusters (with size of 90% of all points) and many clusters with only one or two points.

In the Figure 3.5 we have illustrated the case where we have chosen decomposition with

smallest lower border and decomposition where all clusters have the same size, which

means that our score s = 0.

Beside these two criteria, we have one more superior criterion: if we get zero non-

clustered points, and more than one cluster, we consider such clustering as the best

possible clustering and we immediately break the loop and forward the result to the

GCG. This is the case when we have discovered the pure block diagonal structure. This
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decision is based on the suggestions given by Bergner et al. (2015) and empirical analysis

which is described more detailed in Chapter 4.
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In this Chapter we will discuss the results obtained by the clustering algorithms. We

will �rst describe the measurement used in evaluation and then we will discuss how did

the algorithms perform in comparison to those implemented in the GCG. We will also

discuss the special cases and some unexpected results that appeared during the testing.

4.1 Measurements for evaluation

The main goal of the thesis was to reduce the solving time for MIPs by �nding the appro-

priate decompositions for the constraint matrices. Therefore, the primary measurement

for the evaluation was the solving time. GCG is an MIP solver which already contains

couple of methods for the automatic decomposition detection which were described in

the Section 1.3. We have used the GCG as the benchmark for the evaluation. After

generating couple of di�erent decompositions, GCG chooses the one, that is considered

to be the best. In this study, we also compare all of its decompositions with the chosen

one and with all of our decompositions. In addition we use the GCG to solve MIPs

so the resulting runtime for each instance was obtained from that solver. We limit the

computation time for the solver to one hour. We have run the solver on the machine

with the Intel i7 CPU and 16GB RAM. If the solver cannot �nd a solution within one

hour, it terminates.

4.2 Test data

For evaluating the performance of the clustering algorithms, we have chosen problem

instances of several types. Most of the instances used in the testing come from the MI-

PLIB2003 by Achterberg et al. (2006) and MIPLIB2010 by by Koch et al. (2011) data

sets. These data sets contain various instances of mixed integer programs. Beside these,

we also use instances from the following data sets: airland (MIPs), various bin packing

problem data instances, cpmp (capacitated p-median problem) and setcover. Instances

from each of these four sets yield very similar results, so in the Appendix we include at

most one representative from each of the four sets.
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After choosing the instances from these data sets, we group them in di�erent test sets.

In total we have made six test sets with approximately four to �ve instances in each

one of them. This makes twenty seven instances and for each instance we had eight

clusterings used in the comparison for each of the similarity measures de�ned in the Sec-

tion 3.1 excluding measures 3,4 and 7. Combined together, this gives 27 ∗ 8 ∗ 5 = 1080

decompositions that we have obtained. Thus we will not discuss all of the decomposi-

tions obtained, but rather try to pull out some conclusions, or to give some interesting

observations from the obtained results.

4.3 General performance

Here we present a sample from our test set and we discuss the results in general. In

Figures 4.1 and 4.2 you can see the runtime comparison for ten di�erent instances. Each

row corresponds to one instance and each column corresponds to one similarity measure.

In the �gures we observe that our clustering methods, when combined together, did

behave well in most of the cases. In almost all cases, at least one decomposition ob-

tained by the clustering algorithms was equally good or better than those obtained by

the GCG. Also we can see that it is very hard to pull some general conclusion for a

speci�c clustering algorithm or a speci�c similarity measure. For example, Figure .17

shows that very small variations in the clusterings can result in large di�erences in the

solving time. With that said, we cannot predict what clustering is optimal for a certain

problem instance, and thus we cannot generalize performance of a single algorithm or a

single similarity measure.

However, when used together, these algorithms can be very useful. For example, in

the Figures 4.1 and 4.2 you can see that we had some cases where R-MCL was the

only one to produce good results, while often it did not contribute at all. In addition,

we have observed that DBSCAN has one small advantage. Namely, if some structure

exits in the matrix it is likely to be discovered by DBSCAN and also, when no suitable

structure exists, DBSCAN returns one big cluster, which in some cases (e.g. in �ber,

neos-1224597, air04) was shown to be better solution. We also notice that DBSCAN and

MST produce very similar result (this can be concluded from the Figures given in the
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(a) Johnson (b) Intersection (c) Jaccard (d) Cosine (e) Simpson

Figure 4.1: Time comparison for di�erent clusterings and di�erent similarity measures.
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(a) Johnson (b) Intersection (c) Jaccard (d) Cosine (e) Simpson

Figure 4.2: Time comparison for di�erent clusterings and di�erent similarity measures.
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Appendix 5.2) with an additional feature that MST always discovers the pure diagonal

structure.

From the Table 4.1 we can see statistics, which give us a rough estimate of the al-

gorithms and similarity measures performance. From the table we can see that the best

results were obtained with the MST and MCL clustering algorithms. Also, we can notice

that DBSCAN had good results, while R-MCL has shown the worst results among these

four algorithms.

DBSCAN MCL R-MCL MST Total Per Sim.
b w fail b w fail b w fail b w fail b w fail

Johnson 18 7 23 19 9 21 17 4 27 21 4 24 75 24 95
Intersection 13 5 21 20 6 23 16 5 26 20 9 16 69 25 86
Jaccard 18 7 21 15 8 27 13 6 28 26 1 15 72 22 91
Cosine 21 4 18 22 4 24 8 5 35 22 3 20 73 16 97
Simpson 20 4 23 23 8 17 14 6 28 22 7 21 79 25 89
Total per Alg. 90 27 106 99 35 112 68 26 144 111 24 96

Table 4.1: Final statistics. Meaning of the �elds: b - number of cases where runtime
with clustering found decompositions was better or equal than GCG found
decs, w - number of cases where GCG found decompositions were better, fail
- number of cases where clustering found decompositions failed after the time
limit

From the table we can observe that there was no similarity measure that is dominant

over the others, or that there is one similarity that is remarkably worse than the rest.

All of the similarities shown in the evaluation have relatively good results. From the

table 4.1 we can see that the Simpson similarity is just slightly better than the others,

while the Intersection similarity is a bit worse.

Finally, we can notice a small correlation between "good clustering" (i.e. small lower

bound and similarly sized clusters) and reduced solving times. Furthermore, as stated

by Bergner et al. (2015), we notice that the pure diagonal structure is usually better

than the one with the lower bound. But also here we �nd a counter example. If Figure
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.11 we discover that in the case of the instance "neos-826650" R-MCL has given bet-

ter results than MCL or MST, which have indeed discovered the pure diagonal structure.

4.3.1 Clustering running time

In the Table 4.2 we provide a runtime comparison for the used clustering algorithms.

For this comparison we use problem instances of di�erent sizes and densities. In this

study we run DBSCAN and MST up to 49 times (for di�erent eps), MCL up to 15

times (for di�erent in�ate factor) and R-MCL up to 8 times (for di�erent in�ate fac-

tor). Also, in each run of the MCL or R-MCL we have limited the number of loops to 20.

Instance Size Density DBSCAN MCL R-MCL MST
noswot 182 9.7% 0.02 0.7 1.9 ∼ 0
�ber 363 2.4% 0.04 2.4 3.2 ∼ 0
neos-820146 830 2.9% 0.06 9.9 19.3 ∼ 0
n4-3 1236 2.1% 0.08 14.8 57.1 ∼ 0
wachplan 1553 20% 0.25 177.4 190 0.006
neos-948126 7272 0.3% 0.2 289 117.8 0.002
rmatr100-p5 8685 1.07% 0.45 83.9 106 0.01
neos18 11402 0.67% 1.02 183 733 0.01

Table 4.2: Running time comparison for clustering algorithms. In column "Size" is the
number of constraints and in column "Density" is the percentage of non-zero
values in the similarity matrix for Johnson similarity measure.

We observe that DBSCAN and MST are very fast in all of the cases, while MCL and

R-MCL are e�cient only in the cases up to certain size and density. It is also to notice

that the runtimes of MCL and R-MCL heavily depended on the matrix density and not

only on the size of the matrix.

4.4 Special case: bin packing problem

In this section we talk about a special case that has occurred during testing. Namely,

we could not use clustering algorithms to �nd special structures in the constraint ma-

trices of the bin packing problem and any other equivalent problem. In this group, we

also include the GAP, the p-median, the cpmp problems. The reason for that is very
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simple. According to Valerio de Carvalho (n.d.), the best decomposition for these kind

of problems is the following:

� For each bin make a block of size one with the corresponding capacity constraint

� Put the rest of the constraints (allocation constraints) in the lower border.

Figure 4.3: Example of BPP-like constraint matrix with 4 bins.

In order to understand why clustering techniques are useless here, we have visualized

a BPP constraint matrix in the Figure 4.3. In this example, we have four bins, which

are represented with four lower rows, and thirty allocation constraints which are in the

upper part of the matrix. As you can notice in the �gure, no matter what similarity

measure we use to describe this matrix, we will always have the same similarity between

any two allocation constraints as we will have between any two capacity constraints.

Namely, no pair of capacity nor pair of allocation constraints has any common variables.

This makes it impossible for the clustering algorithms to distinguish between capacity

and allocation constraints. In conclusion, we are unable to recognize one cluster per

capacity constraint, while labelling the allocation constraints as non-clustered.
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5.1 Future work

Markov chain clustering

As mentioned in the Section 3.2.3, Markov chain clustering is not very e�cient approach.

Thus we could �nd some more e�cient variations of MCL. For example, we could im-

plement Multi-level Regularized MCL (MLR-MCL) method described by Satuluri &

Parthasarathy (2009). This method has shown to produce results similar or better to

those of MCL, and the method is scalable in the contrast to the MCL.

Post-processing

In this study we have used only two criteria for �nding the best clusterings for each

algorithm. In the future, we could think of some other scoring functions in order to

determinate what clustering should be chosen. As our results have shown, the smallest

lower border or the smallest score s was not always the best choice and thus a further

research has to be done on how to evaluate the given decompositions. Furthermore,

in this study we have used a very simple method for removing the rows with colliding

variables, and in some cases we have noticed that in the post-processing step more

rows were removed from the blocks than actually needed. For that reason, the optimal

solution for this problem should be found.

Implementation

Currently our code is implemented in Python as a separate program, independent of

GCG. Because of the limitations of Python, some parts of the code were very slow. For

example the pre-processing and post-processing steps took very long time to �nish, even

though the same steps implemented in the GCG took signi�cantly less time. For that

reason, it would be better to implement this code in C/C++, or maybe even as a part

of the GCG itself. If it was part of the GCG, than we could have certainly got better

results, because here we did not include the pre-solving step of the solver which can

simplify the problem instance and thus reduce the solving time. We were not able to do
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that because our program was a separate entity, and the pre-solving step is executed by

the solver before we load our decomposition.

5.2 Summary

This thesis was one step further in the goal to try to automatically �nd suitable Dantzig-

Wolfe decompositions. The particular goal of the thesis was to examine a completely

di�erent approach for decomposition detection, namely the clustering techniques. We

have compared four algorithms with each other and also with existing decomposition

detectors in the GCG. In addition, we have compared di�erent similarity measures used

in the clustering step.

Chosen clustering algorithms and similarity measures have shown that they were able

to detect the special structures in most of the cases and often very e�ciently indeed.

Also the resulting IP solving time was sustainable, and at least one, but often more de-

compositions found by clustering algorithms have shown to have better or equally good

performance in comparison to the decompositions obtained by already existing detectors.

In conclusion, we believe that this novel approach was a good choice for automatic

decomposition detection and we believe that it could be improved even more with the

steps proposed in the Future work section.
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In the �gures shown in the appendix each row of plots represents one problem in-

stance. The plot on the left represents the comparison of solving time by GCG with

each of the following clusterings: DBSCAN with smallest lower border, DBSCAN with

lowest score s (as described in 3.3) (i.e. DBSCAN-STD), MCL with smallest border,

MCL with smallest score s (i.e. MCL-STD), R-MCL with smallest border, R-MCL with

smallest score s (i.e. R-MCL-STD), MST with smallest border, MST with smallest score

s (i.e. MST-STD). Running times obtained by these clusterings are coloured, while the

running times of already existing GCG decomposition detectors are grey (with dark grey

we have represented the automatic chosen decomposition). It is also to notice that the

time axis is scaled logarithmically. Beside the time plots are the visualizations of the

constraint matrices for each clustering as shown in 2.1.

Also, you may notice that some bars are missing from the time bars charts. If the

corresponding matrix visualizations are also missing, this means that clustering algo-

rithm has failed to produce any results. If, on the other hand, image is there while the

time bar is missing, this is due to an error in GCG, where GCG has failed to output any

result (e.g. solved, aborted or not feasible) for the given decomposition.

44



F
ig
u
re

.1
:
T
es
t
se
t
0,
J
oh
n
so
n
si
m
il
ar
it
y

45



F
ig
u
re

.2
:
T
es
t
se
t
0,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

46



F
ig
u
re

.3
:
T
es
t
se
t
0,
J
ac
ca
rd

si
m
il
ar
it
y

47



F
ig
u
re

.4
:
T
es
t
se
t
0,
C
os
in
e
si
m
il
ar
it
y

48



F
ig
u
re

.5
:
T
es
t
se
t
0,
S
im
p
so
n
si
m
il
ar
it
y

49



F
ig
u
re

.6
:
T
es
t
se
t
1,
J
oh
n
so
n
si
m
il
ar
it
y

50



F
ig
u
re

.7
:
T
es
t
se
t
1,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

51



F
ig
u
re

.8
:
T
es
t
se
t
1,
J
ac
ca
rd

si
m
il
ar
it
y

52



F
ig
u
re

.9
:
T
es
t
se
t
1,
C
os
in
e
si
m
il
ar
it
y

53



F
ig
u
re

.1
0:
T
es
t
se
t
1,
S
im
p
so
n
si
m
il
ar
it
y

54



F
ig
u
re

.1
1:
T
es
t
se
t
2,
J
oh
n
so
n
si
m
il
ar
it
y

55



F
ig
u
re

.1
2:
T
es
t
se
t
2,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

56



F
ig
u
re

.1
3:
T
es
t
se
t
2,
J
ac
ca
rd

si
m
il
ar
it
y

57



F
ig
u
re

.1
4:
T
es
t
se
t
2,
C
os
in
e
si
m
il
ar
it
y

58



F
ig
u
re

.1
5:
T
es
t
se
t
2,
S
im
p
so
n
si
m
il
ar
it
y

59



F
ig
u
re

.1
6:
T
es
t
se
t
3,
J
oh
n
so
n
si
m
il
ar
it
y

60



F
ig
u
re

.1
7:
T
es
t
se
t
3,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

61



F
ig
u
re

.1
8:
T
es
t
se
t
3,
J
ac
ca
rd

si
m
il
ar
it
y

62



F
ig
u
re

.1
9:
T
es
t
se
t
3,
C
os
in
e
si
m
il
ar
it
y

63



F
ig
u
re

.2
0:
T
es
t
se
t
3,
S
im
p
so
n
si
m
il
ar
it
y

64



F
ig
u
re

.2
1:
T
es
t
se
t
4,
J
oh
n
so
n
si
m
il
ar
it
y

65



F
ig
u
re

.2
2:
T
es
t
se
t
4,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

66



F
ig
u
re

.2
3:
T
es
t
se
t
4,
J
ac
ca
rd

si
m
il
ar
it
y

67



F
ig
u
re

.2
4:
T
es
t
se
t
4,
C
os
in
e
si
m
il
ar
it
y

68



F
ig
u
re

.2
5:
T
es
t
se
t
4,
S
im
p
so
n
si
m
il
ar
it
y

69



F
ig
u
re

.2
6:
T
es
t
se
t
5,
J
oh
n
so
n
si
m
il
ar
it
y

70



F
ig
u
re

.2
7:
T
es
t
se
t
5,
In
te
rs
ec
ti
on

si
m
il
ar
it
y

71



F
ig
u
re

.2
8:
T
es
t
se
t
5,
J
ac
ca
rd

si
m
il
ar
it
y

72



F
ig
u
re

.2
9:
T
es
t
se
t
5,
C
os
in
e
si
m
il
ar
it
y

73



F
ig
u
re

.3
0:
T
es
t
se
t
5,
S
im
p
so
n
si
m
il
ar
it
y

74


	List of Figures
	Introduction
	Motivation
	Overview
	Related work
	Outline

	Basics
	Integer program
	Example: Generalized Assignment Problem

	Dantzig-Wolfe Decomposition
	Clustering

	Own work
	Defining similarity measures
	Johnson similarity
	Intersection similarity
	Jaccard similarity
	Cosine similarity
	Simpson similarity
	Further similarity measures

	Clustering
	DBSCAN
	Minimum Spanning Tree Clustering
	Markov Chain Clustering
	Regularized Markov Chain Clustering
	Expectation Maximisation
	Hierarchical/Agglomerative clustering

	Post-processing

	Evaluation
	Measurements for evaluation
	Test data
	General performance
	Clustering running time

	Special case: bin packing problem

	Summary and future work
	Future work
	Summary

	References
	Appendices

