Dr. Andreas M. Tillmann  Wissenschaftlicher Mitarbeiter

Büro:
B245
Telefon:
+49 241 80 96182
Email:
Sprechstunde:
nach Vereinbarung

I am a PostDoc at the Visual Computing Institute (see my homepage there, which also contains preprint and software links) and the Chair of Operations Research, and head the "Data" unit of the profile area CompSE (Computational Science and Engineering) of RWTH Aachen University. I received my doctoral degree (Dr. rer. nat.) from TU Darmstadt in December 2013, and was an interim/visiting professor of mathematical optimization at TU Braunschweig in winter 2014/15.

My research interests focus on theoretical and practical aspects of optimization and complexity theory in areas like compressed sensing, signal and image processing, machine learning, operations research, and (discrete) geometrical problems. I am affiliated with the project "EXPRESS – EXploiting structure in comPREssed Sensing using Side constraints" within the DFG priority program CoSIP ("Compressed Sensing in Information Processing", SPP 1798). I am also the principal investigator of the project "Efficient exact maximum-likelihood decoding and minimum-distance computation for binary linear codes" funded by the RWTH ERS StartUp/DFG Excellence Initiative. 

You can also find me on Google Scholar and on Research Gate.

Publikationen

Brauer, C., Lorenz, D.A. and Tillmann, A.
A Primal-Dual Homotopy Algorithm for L1-Minimization With L-infinity-Constraints. Computational Optimization and Applications, 70(2):443—478, February 2018.
Fischer, T., Hegde, G., Matter, F., Pesavento, M., Pfetsch, M.E. and Tillmann, A.
Joint Antenna Selection and Phase-Only Beam Using Mixed-Integer Nonlinear Programming. to appear in Proc. WSA 2018, January 2018.
Lange, J.-H., Pfetsch, M.E., Seib, B.M. and Tillmann, A.
Sparse Recovery with Integrality Constraints. arXiv:1608.08678 [cs.IT], RWTH Aachen, TU Darmstadt, August 2016.
Tillmann, A., Eldar, Y. C. and Mairal, J.
Dictionary Learning from Phaseless Measurements. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4702—4706, January 2016.
Tillmann, A., Eldar, Y. C. and Mairal, J.
DOLPHIn - Dictionary Learning for Phase Retrieval. IEEE Transactions on Signal Processing, 64(24):6485—6500, January 2016.
Tillmann, A.
Equivalence of Linear Programming and Basis Pursuit. Proc. in Applied Mathematics and Mechanics (PAMM) 15(1), pages 735—738, November 2015.
Tillmann, A.
On the Computational Intractability of Exact and Approximate Dictionary Learning. IEEE Signal Processing Letters, 22(1):45—49, January 2015.
Lorenz, D.A., Pfetsch, M.E. and Tillmann, A.
Solving Basis Pursuit: Heuristic Optimality Check and Solver Comparison. ACM Transactions on Mathematical Software, 41(2):Art. No. 8, January 2015.
Tillmann, A., Gribonval, R. and Pfetsch, M.E.
Projection Onto The Cosparse Set is NP-Hard. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7148—7152, May 2014.
Lorenz, D.A., Pfetsch, M.E. and Tillmann, A.
An infeasible-point subgradient method using adaptive approximate projections. Computational Optimization and Applications, 57(2):271—306, January 2014.
Tillmann, A. and Pfetsch, M.E.
The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing. IEEE Transactions on Information Theory, 60(2):1248—1259, January 2014.
Tillmann, A.
Computational Aspects of Compressed Sensing. Doctoral Dissertation, TU Darmstadt, December 2013. ISBN 978-3-8439-1445-1.
Wenger, S., Ament, M., Guthe, S., Lorenz, D.A., Tillmann, A., Weiskopf, D. and Magnor, M.
Visualization of Astronomical Nebulae via Distributed Multi-GPU Compressed Sensing Tomography. IEEE Transactions on Visualization and Computer Graphics, 18(12):2188—2197, January 2012.

Vorträge

Eingeladen: Spark-MIP: Mixed-Integer Programming for the (Vector) Matroid Girth Problem von Dr. A. Tillmann
Vortrag: Computing the Spark of a Matrix von Dr. A. Tillmann
The Aussois Combinatorial Optimization Workshop, Aussois, Frankreich, January 9-13, 2017.
Eingeladen: Sparse Signal Reconstruction with Integrality Constraints von Dr. A. Tillmann
Eingeladen: Exploiting hidden sparsity for image reconstruction from nonlinear measurements von Dr. A. Tillmann
Workshop "Data Science meets Optimization", Aachen, Deutschland, April 4-5, 2016.
Eingeladen: New Applications of Sparsity-Based Learning von Dr. A. Tillmann
ISMP (22nd International Symposium on Mathematical Programming), Pittsburgh, PA, Vereinigte Staaten, July 12-19, 2015.
Eingeladen: Branch & Cut Methods for Exact Sparse Recovery von Dr. A. Tillmann
Eingeladen: Computational Aspects of Sparse Recovery von Dr. A. Tillmann
Eingeladen: Computational Aspects of Sparse Recovery von Dr. A. Tillmann
Vortrag: The Computational Complexity of Spark, RIP, and NSP von Dr. A. Tillmann
Eingeladen: Branch & Cut for L0-Minimization von Dr. A. Tillmann
ISMP (21st International Symposium on Mathematical Programming), Berlin, Deutschland, August 19-24, 2012.
Eingeladen: Heuristic Optimality Check and Computational Solver Comparison for Basis Pursuit von Dr. A. Tillmann
SIAM Conference on Applied Linear Algebra, Valencia, Spanien, June 18-22, 2012.
Eingeladen: Solving Basis Pursuit von Dr. A. Tillmann
Vortrag: An Infeasible-Point Subgradient Method and Computational Comparison for l¹-Minimization von Dr. A. Tillmann

RepORts

Tillmann, A.
Computing the Spark: Mixed-Integer Programming for the (Vector) Matroid Girth Problem. repORt 2018—044, February 2018. Optimization Online E-Print ID 2018-03-6525.